
Recommended Computer System Learning Materials

Zhenbang You

January 2022

Last Updated: March 5, 2022

The latest version can always be found at https://www.overleaf.com/read/txqjnjxyxqqx

1 Preliminary

• The following materials are list in an order suitable for learning.

• The references help you identify the authors.

• CSAPP (3rd Edition) [13] is the starting point of everything below.

• Familiarity with C/C++ is required.

• For the foundation of data structures and algorithms, Introduction to Algorithms (3rd
Edition, the 4th Edition is coming in April 2022) [14] is highly recommended.

• The most fundamental components of computer systems are:

1. Computer Architecture

2. Operating Systems (OS)

3. Computer Networks

4. Compilers

5. Programming Languages (PL)

Master them before moving on to other parts.

What if I want more?
Search for advanced courses offered by top universities. Meanwhile, you are likely to find lots of
papers there!

2 Computer Architecture

1. Computer Organization and Design: The Hardware-Software Interface
(5th Edition [29]/RISC-V Edition [28]/ARM Edition [30])

• The original version is based on MIPS. RISC-V version is recommended; after reading
this version, you may proceed on ARM version which is a good textbook for learning
ARM.

2. Digital Design and Computer Architecture
(2nd Edition [18]/RISC-V Edition [19]/ARM Edition [17])

• You may just read Chap 1-5.

• The original version is based on MIPS.

3. The RISC-V Reader An Open Architecture Atlas [27]

1

https://www.overleaf.com/read/txqjnjxyxqqx 


4. Computer Architecture: A Quantitative Approach (6th Edition) [20]

• You may leave out appendices the first time you read this book.

• Difficult as it may be, this book is just “the second book for novices”. If you
want to have a deep understanding of a specific topic, do go to read official tuto-
rials/documentations such as those of NVIDIA.

5. RISC-V Privileged Architecture (slides)
https://riscv.org/wp-content/uploads/2018/05/riscv-privileged-BCN.v7-2.pdf

• A wonderful slide on RISC-V privileged architecture, as well as the core problem
“what is the privileged architecture”.

• The video of this lecture can be found at
https://www.youtube.com/watch?v=fxLXvrLN5jA

• Most of the textbooks on computer architecture discuss little about privileged ar-
chitecture, resulting in great difficulties understanding the OS kernel. Always keep
in mind that ISA, i.e., the hardware-software interface, consists of both the unprivi-
leged architecture and the privileged architecture.

6. RISC-V specifications
https://riscv.org/technical/specifications/

• Elaborate specifications as they may be, they are indeed excellent textbooks for both
neophytes and specialists!

• Appendix A: RVWMO Explanatory Material of “The RISC-V Instruction Set Manual
Volume I: Unprivileged ISA” is a brilliant tutorial for Memory Consistency!

7. A New Golden Age for Computer Architecture (a Turing Lecture with full text)
https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/fulltext

• The famous Turing Lecture by Hennessy and Patterson. What wonderful insights of
Masters!

3 Operating Systems (OS)

1. Operating Systems: Three Easy Pieces [7]
https://pages.cs.wisc.edu/ remzi/OSTEP/

• Due to the research interest of the authors, this book puts much emphasis on File
Systems. You may leave out some chapters of this part the first time you read it.

2. Operating Systems Principles & Practice (2nd Edition)

• Four volumes:

– Volume I: Kernels and Processes [5]

– Volume II: Concurrency [2]

– Volume III: Memory Management [3]

– Volume IV: Persistent Storage [4]

3. Operating Systems Concepts (9th Edition) [31]

4. xv6 source and text: https://pdos.csail.mit.edu/6.828/2021/xv6.html

• Hands-on experiences with a real OS is indispensable, and xv6 is an excellent starting
point!

5. Supplemental textbooks

(a) Linux Kernel Development (4rd Edition) [34]

(b) Understanding the Linux Kernel (3rd Edition) [11]

2

https://riscv.org/wp-content/uploads/2018/05/riscv-privileged-BCN.v7-2.pdf
https://www.youtube.com/watch?v=fxLXvrLN5jA
https://riscv.org/technical/specifications/
https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/fulltext
https://pages.cs.wisc.edu/~remzi/OSTEP/
https://pdos.csail.mit.edu/6.828/2021/xv6.html


(c) Linux Device Drivers (3rd Edition) [35]

(d) Understanding Linux network internals (1st Edition) [9]

(e) Modern Operating Systems (4th Edition) [44]

6. Prerequisites:

• Compulsory:

(a) Computer Architecture: privileged architecture

(b) Data structures and algorithms

• PL

– Java: JVM, GC, Thread, Monitor.

– Go: Goroutine, Channel, CSP (Communication Sequential Process), Asynchrony.

4 Computer Networks

1. Computer Networking: A Top Down Approach (8th Edition) [21]

• I cannot find the reference of the latest version (8th Edition) on Google Scholar, so
this citation refers to older version. Note that the authors do not change.

2. Books by W. Richard Stevens (as supplementary materials)

• UNIX Network Programming

– Volume 1, Third Edition: The Sockets Networking API [39]

– Volume 2, Second Edition: Interprocess Communications [32]

• TCP/IP Illustrated

– Volume 1: The Protocols (2nd Edition) [15]

– Volume 2: The Implementation [41]

– Volume 3: TCP for Transactions, HTTP, NNTP, and the UNIX Domain Proto-
cols [42]

3. Prerequisites:

• Compulsory:

(a) Operating Systems

• PL

– Java.

– Python: Similar but much simpler socket interface than POSIX.

– Go: RPC.

5 Compilers

Compilers should be associated with PL and Computer Architecture.

1. Compilers: Principles, Techniques and Tools (2nd Edition) [1]

• “Dragon Book”.

• Well-known but a little obsolete; still wonderful for new-comers.

2. Modern Compiler Implementation in C (2nd Edition) [6]/Modern Compiler Implementa-
tion in Java (2nd Edition)

• “Tiger Book”.

3. Advanced Compiler Design Implementation [26]

• “Whale Book”.

3



4. Prerequisites:

• Compulsory:

(a) TCS (Theoretical Computer Science)

i. Introduction to the Theory of Computation [38]

(b) Computer Architecture: ILP (Instruction-Level Parallelism), Memory Hierarchy

(c) Data structures and algorithms

• Recommended:

(a) Computer Architecture: DLP (Data-Level Parallelism), TLP (Thread-Level Par-
allelism)

(b) Operating Systems: Thread, Context Switch

• PL

– Java.

6 Programming Languages (PL)

Abbreviations:

• OOP: Object-Oriented Programming

• FP: Functional Programming

Language List

• C/C++ (Do learn the latest version of C++, or at least C++17)

– Tutorials

1. The C Programming Language (2nd Edition) [33]

∗ “K & R”

2. The C++ Programming Language (4th Edition) [43]

– Documentations

1. https://cppreference.com/

– Programming guidelines

∗ Scott Meyers “Effective C++” book series

· Effective C++ [24]

· Effective Modern C++ [25]

· Effective STL [23]

∗ C++ Core Guidelines:
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

– Recommended IDE: VSCode on Linux (especially WSL).

– Compilers (try the latest version!)

∗ Currently, OpenMP support of Clang 13 needs to be installed separately, which
is not the case for Clang 12.

∗ GCC can be built from source.

∗ Clang can by downloaded directly from https://releases.llvm.org/download.html

– Build tool: CMake (also works for CUDA C++).

∗ CMake Tutorial: https://cmake.org/cmake/help/latest/guide/tutorial/

• Java
Prerequisite languages: C++.
Pay attention to the comparison with C++, as well as JVM and JIT.

– Tutorials

1. Oracle online tutorial: https://docs.oracle.com/javase/tutorial/

4

https://cppreference.com/
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://releases.llvm.org/download.html
https://cmake.org/cmake/help/latest/guide/tutorial/
https://docs.oracle.com/javase/tutorial/


2. Core Java (10th Edition). Two volumes:

∗ Volume I: Fundamentals [16]

∗ Volume II: Advanced Features [45]

3. Java 8 in Action: Lambdas, Streams, and Functional-style Programming [46]

– Documentations

1. https://docs.oracle.com/javase/specs/

– Programming guidelines

∗ Effective Java (3rd Edition) [10]

– Recommended IDE: IntelliJ Idea

– Build tool (applying to all languages on JVM) : Maven or Gradle.

∗ Maven in 5 Minutes:
https://maven.apache.org/guides/getting-started/maven-in-five-minutes.html

∗ All documentations can be found at:
https://maven.apache.org/

∗ Try Maven with IntelliJ Idea.

• Scala
Prerequisite languages: Java.
Notable core features: FP.

– Tutorials

1. Tour of Scala: https://docs.scala-lang.org/tour/tour-of-scala.html

2. Scala Book: https://docs.scala-lang.org/overviews/scala-book/introduction.html

– Documentations

∗ Guides and Overviews: https://docs.scala-lang.org/overviews/index.html

∗ All documentations: https://docs.scala-lang.org/

· Scala 3 documentations can also be found here!

– Recommended IDE & build tool: same as Java

• Kotlin
Prerequisite languages: Java, Scala.
Notable core features: null safety, modest FP.

– Tutorials

1. Get started with Kotlin: https://kotlinlang.org/docs/getting-started.html

2. Kotlin Coroutines:
https://github.com/Kotlin/KEEP/blob/master/proposals/coroutines.md

∗ Wonderful article about the design of stackless coroutines!

– Documentations

1. https://kotlinlang.org/docs/

– Recommended IDE & build tool: same as Java

• Go
Prerequisite languages: C++, Java.
Notable core features: concurrent programming (goroutine + channel + asynchrony), mod-
est OOP.

– Turorials

1. A Tour of Go: https://go.dev/tour/welcome/1

2. Effective Go: https://go.dev/doc/effective go

3. The Go Blog: https://go.dev/blog/

∗ Lots of wonderful articles about the design of Go!

– Documentations

5

https://docs.oracle.com/javase/specs/
https://maven.apache.org/guides/getting-started/maven-in-five-minutes.html
https://maven.apache.org/
https://docs.scala-lang.org/tour/tour-of-scala.html
https://docs.scala-lang.org/overviews/scala-book/introduction.html
https://docs.scala-lang.org/overviews/index.html
https://docs.scala-lang.org/
https://kotlinlang.org/docs/getting-started.html
https://github.com/Kotlin/KEEP/blob/master/proposals/coroutines.md
https://kotlinlang.org/docs/
https://go.dev/tour/welcome/1
https://go.dev/doc/effective_go
https://go.dev/blog/


1. https://go.dev/doc/

– Recommended IDE: GoLand

– Build tool: https://go.dev/blog/using-go-modules

• Rust
Prerequisite languages: C++17, Go, a functional language (e.g., Scala, OCaml, Haskell).
Notable core features: ownership, borrow checker, various safety, modest OOP.

– Tutorials

1. The Rust Programming Language: https://doc.rust-lang.org/book/

∗ Also a good book about the design of programming languages!

2. Rust by Example: https://doc.rust-lang.org/stable/rust-by-example/

3. Asynchronous Programming in Rust: https://rust-lang.github.io/async-book/

– Documentations

1. https://doc.rust-lang.org/beta/

– Recommended IDE: IntelliJ Idea

– Build Tool: Cargo.

∗ Its tutorial can be found in “The Rust Programming Language”.

• Haskell
Reckless as it may be to recommend this language, however, it is so elegant...

– Tutorials

1. Get Started: https://www.haskell.org/

– All the books, courses, tutorials, documentations and various kinds of resources can
be found at: https://www.haskell.org/documentation/

• Prerequisites (for understanding the design of programming languages):

– Compulsory:

1. Computer Architecture

2. Operating Systems

3. Compilers

– Recommended:

1. Computer Networks

• Suggestions:

– There is no need to master an entire PL in one shot; instead, study part of it every
time you need it.

– PLs develop rapidly. To catch up with the latest development, refer to online docu-
mentations/tutorials/blogs besides books.

– Be sure you have mastered at least one modern language in each of the following
paradigms:

∗ Procedural

∗ Object-Oriented

∗ Functional

Note that modern languages likeGo, Scala,Kotlin andRust can be greatly different
than old ones like Java and Python. As a special case, although modern C++
(C++11 and later) is really modern, but there are inevitably a great number of
legacies, so C++ can be considered as a mixture.

– Concrete examples always help a lot for understanding abstract concepts, and this is
also one of the reasons why you should master several languages.

– Pay attention to the interoperation between a certain language with C (and languages
on JVM with Java).

– Only IDEs I have used will be listed here, so there may be other wonderful IDEs.

6

https://go.dev/doc/
https://go.dev/blog/using-go-modules
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/stable/rust-by-example/
https://rust-lang.github.io/async-book/
https://doc.rust-lang.org/beta/
https://www.haskell.org/
https://www.haskell.org/documentation/


7 Parallel Computing

Special Notes:

1. Do read Computer Architecture: A Quantitative Approach (CAAQA) before
diving into this, and revisit that masterpiece after having some hands-on experience of
parallel computing!

2. Parallel Computing without Memory Optimization is ridiculous!

Platforms

• CUDA

– CUDA by Example [36]

∗ A little obsolete, but the ideas are still well-presented. If your foundation is good
enough, go to the following two documentations directly, and these two are highly
recommended.

– CUDA C++ Programming Guide
https://docs.nvidia.com/cuda/cuda-c-programming-guide/

– CUDA C++ Best Practices Guide
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/

– All documentations can be found at
https://docs.nvidia.com/cuda/

CUDA is also fantastic for Asynchronous Programming and Heterogeneous Pro-
gramming! You can also have a taste of Compute Hierarchy with CUDA!

• CPU intrinsics

– x86 intrinsics
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html

– ARM SVE2 intrinsics
https://developer.arm.com/documentation/102340/0001/Program-with-SVE2

– ARM Neon intrinsics
https://developer.arm.com/documentation/102467/0100/Why-Neon-Intrinsics-

• MPI

– MPI Tutorial: https://mpitutorial.com/tutorials/

– YouTube video

∗ MPI Basics: https://www.youtube.com/watch?v=c0C9mQaxsD4

∗ MPI Advanced: https://www.youtube.com/watch?v=q9OfXis50Rg

• OpenMP

– Tim Mattson’s (Intel) “Introduction to OpenMP” (2013) on YouTube

∗ Video:
https://www.youtube.com/playlist?list=PLLX-Q6B8xqZ8n8bwjGdzBJ25X2utwnoEG

∗ Slides:
https://www.openmp.org/wp-content/uploads/Intro To OpenMP Mattson.pdf

Categories
The essence of parallel computing is the lack of dependencies.

• ILP (Instruction-Level Parallelism)
Mathematical model of ILP – DAG (Directed Acyclic Graph):

– Node: a stage of a instruction.

– Edge: dependency (data dependency, control dependency, name dependency) between
a pair of nodes.

7

https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
https://docs.nvidia.com/cuda/
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://developer.arm.com/documentation/102340/0001/Program-with-SVE2
https://developer.arm.com/documentation/102467/0100/Why-Neon-Intrinsics-
https://mpitutorial.com/tutorials/
https://www.youtube.com/watch?v=c0C9mQaxsD4
https://www.youtube.com/watch?v=q9OfXis50Rg
https://www.youtube.com/playlist?list=PLLX-Q6B8xqZ8n8bwjGdzBJ25X2utwnoEG
https://www.openmp.org/wp-content/uploads/Intro_To_OpenMP_Mattson.pdf


Goal: eliminate dependencies (edges), and exploit the lack of dependencies between nodes.

• DLP (Data-Level Parallelism)
The essence of DLP programming: Vectorization.

– To get some hands-on experiences with this, you may start with PyTorch, since
this relieves you from some low-level details like remaining elements and memory
hierarchy.

∗ Official tutorial: https://pytorch.org/tutorials/

∗ Also, PyTorch is a convenient tool to exploit GPU for parallel computing.

• TLP (Thread-Level Parallelism)
The essence of TLP programming: async (concurrent control flow), await (synchroniza-
tion).

– Concurrency mechanisms

1. Thread: C++, Java

2. Future/Promise: Scala

3. Stackful Coroutine: Go

4. Stackless Coroutine: Kotlin, Rust (async/await)

Aside:

1. In essence, every kind of Concurrency is an encapsulation of Asynchrony. There-
fore, Concurrent Programming can be seen as a subset of Asynchronous Program-
ming.

∗ Here is a good summary of Asynchronous programming techniques provided in
the tutorial of Kotlin: https://kotlinlang.org/docs/async-programming.html

2. The essence of Asynchronous Programming is async/await, as well as suspen-
sion points.

∗ For Threads and Stackful Coroutines, every point is a suspension point, while
for Stackless Coroutines, only a fraction of points can be suspension points
and they are declared explicitly.

3. For implementations, figure out what is “continuation” and how it varies in
Processes, Threads, Stackful Coroutines, and Stackless Coroutines. Also think
about the relation between continuation and suspension points.

– Synchronization mechanisms

∗ Shared memory

1. Mutex, Condition Variable: most languages.

2. Monitor: Java. For C++, this can be readily emulated by RAII.

3. Atomic variables/operations: most languages.

4. Barrier: most languages, as well as CUDA.

5. Read Write Lock: most languages. This is especially useful in DLP.

Many widely used mechanisms are not listed here.

∗ Message passing

1. Channel + Select: Go, Kotlin.

2. Actor Model:

· Akka (with Java/Scala interface):
https://doc.akka.io/docs/akka/current/typed/guide/introduction.html

· Kotlin:
https://kotlinlang.org/docs/shared-mutable-state-and-concurrency.html#actors

∗ High-level encapsulations

1. Thread-safe collections

· Java: java.util.concurrent:
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/package-
summary.html

8

https://pytorch.org/tutorials/
https://kotlinlang.org/docs/async-programming.html
https://doc.akka.io/docs/akka/current/typed/guide/introduction.html
https://kotlinlang.org/docs/shared-mutable-state-and-concurrency.html#actors
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/package-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/package-summary.html


• Prerequisites:

– Compulsory:

1. Computer Architecture

2. Compilers

– Recommended:

1. Operating Systems

8 Database

1. Database System Concepts (Seventh Edition) [37]

2. CMU 15-445/645 Intro to Database Systems
https://15445.courses.cs.cmu.edu/fall2019/schedule.html

3. CMU 15-721 Advanced Database Systems
https://15721.courses.cs.cmu.edu/spring2020/schedule.html

4. Prerequisites:

• Compulsory

(a) Data structures and algorithms

9 Distributed Computing/Distributed Systems

1. MIT 6.824: Distributed Systems: https://pdos.csail.mit.edu/6.824/schedule.html

2. Prerequisites:

• Compulsory:

(a) Operating Systems

(b) Computer Networks

• Recommended:

(a) Computer Architecture

(b) Programming Languages

10 Cloud Computing

1. CMU 15-719 Advanced Cloud Computing:
https://www.cs.cmu.edu/ 15719/old/spring2019/syllabus.html

2. Prerequisites:

• Compulsory:

(a) Computer Architecture

(b) Operating Systems

(c) Computer Networks

(d) Distributed Systems

• Recommended:

(a) Parallel Computing

(b) Database

9

https://15445.courses.cs.cmu.edu/fall2019/schedule.html
https://15721.courses.cs.cmu.edu/spring2020/schedule.html
https://pdos.csail.mit.edu/6.824/schedule.html
https://www.cs.cmu.edu/~15719/old/spring2019/syllabus.html


11 Recommended ISA

All of the following ISA can be learned by CSAPP & “Computer Organization and Design: The
Hardware/Software Interface”. However, the following materials help you go further.

• x86

– Intel® 64 and IA-32 Architectures Software Developer Manuals:
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

Make sure you are able to read both the “Intel” format and the “AT&T” format.

• RISC-V

– RISC-V Specifications: https://riscv.org/technical/specifications/

∗ Wonderful textbooks on computer architecture!

• ARM

– ARM® CPU Architecture Key Documents:
https://developer.arm.com/architectures/cpu-architecture

– Arm® Architecture Reference Manual Supplement Armv9, for Armv9-A architecture
profile: https://developer.arm.com/documentation/ddi0608/latest

• PTX

– PTX ISA :: CUDA Toolkit Documentation:
https://docs.nvidia.com/cuda/parallel-thread-execution/

• Java Bytecode

– Java Language and Virtual Machine Specifications:
https://docs.oracle.com/javase/specs/

12 Linux Programming

1. Linux man pages

• “man” command in Linux shell, like “man fork” or “man 2 fork” where “2” specifies
the volume.

• Linux man pages online: https://man7.org/linux/man-pages/

2. Advanced programming in the UNIX environment [40]

13 Linking and Loading

1. 程序员的自我修养: 链接, 装载与库 [8]

2. Linkers and Loaders [22]

14 Software Engineering

• The Mythical Man-Month: Essays on Software Engineering [12]

10

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://riscv.org/technical/specifications/
https://developer.arm.com/architectures/cpu-architecture
https://developer.arm.com/documentation/ddi0608/latest
https://docs.nvidia.com/cuda/parallel-thread-execution/
https://docs.oracle.com/javase/specs/
https://man7.org/linux/man-pages/


15 Tools

1. Git

• Git Magic: http://www-cs-students.stanford.edu/ blynn/gitmagic/book.pdf

• Official documentations: https://git-scm.com/doc

2. UNIX Makefile

• Makefile Tutorial By Example: https://makefiletutorial.com/

3. Docker

• Official tutorials and documentations: https://docs.docker.com/

4. Shell Script

• Shell Scripting Tutorial: https://www.shellscript.sh/

• The following two tutorials are basically the same and are written by the same author,
with the former being more newbie-friendly:

– Bash Scripting Tutorial for Beginners:
https://linuxconfig.org/bash-scripting-tutorial-for-beginners

– Bash Scripting Tutorial: https://linuxconfig.org/bash-scripting-tutorial

• GNU Bash manual: https://www.gnu.org/software/bash/manual/

16 Coding Style

• Google Style Guides: https://google.github.io/styleguide/

• Clang-Format Style Options: https://clang.llvm.org/docs/ClangFormatStyleOptions.html

– VS Code can automatically format your code with a “.clang-format” file without
installing anything!

17 Miscellaneous

1. Intel® Product Specifications: https://ark.intel.com

2. GCC online documentation: https://gcc.gnu.org/onlinedocs/

• Optimize Options: https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

• Option Summary: https://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html

• Instrumentation Summary (including sanitizer and profiler):
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html

3. GNU Manuals Online: https://www.gnu.org/manual/

References

[1] A. Aho, M. Lam, R. Sethi, J. Ullman, K. Cooper, L. Torczon, and S. Muchnick. Compilers:
Principles, techniques and tools. 2007.

[2] T. Anderson and M. Dahlin. Operating systems principles & practice volume ii: Concur-
rency.

[3] T. Anderson and M. Dahlin. Operating systems principles & practice volume iii: Memory
management.

[4] T. Anderson and M. Dahlin. Operating systems principles & practice volume iv: Persistent
storage.

11

http://www-cs-students.stanford.edu/~blynn/gitmagic/book.pdf
https://git-scm.com/doc
https://makefiletutorial.com/
https://docs.docker.com/
https://www.shellscript.sh/
https://linuxconfig.org/bash-scripting-tutorial-for-beginners
https://linuxconfig.org/bash-scripting-tutorial
https://www.gnu.org/software/bash/manual/
https://google.github.io/styleguide/
https://clang.llvm.org/docs/ClangFormatStyleOptions.html
https://ark.intel.com
https://gcc.gnu.org/onlinedocs/
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://www.gnu.org/manual/


[5] T. Anderson and M. Dahlin. Operating Systems Principles & Practice Volume I: Kernels
and Processes. Recursive books, 2014.

[6] A. W. Appel. Modern compiler implementation in C. Cambridge university press, 2004.

[7] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau. Operating systems: Three easy pieces.
Arpaci-Dusseau Books LLC, 2018.

[8] 俞甲子, 石凡. 程序员的自我修养: 链接, 装载与库. 电子工业出版社, 2009.

[9] C. Benvenuti. Understanding Linux network internals. ” O’Reilly Media, Inc.”, 2006.

[10] J. Bloch. Effective java (the java series). Prentice Hall PTR, 2008.

[11] D. P. Bovet and M. Cesati. Understanding the Linux Kernel: from I/O ports to process
management. ” O’Reilly Media, Inc.”, 2005.

[12] F. P. Brooks Jr. The mythical man-month: essays on software engineering. Pearson Edu-
cation, 1995.

[13] R. E. Bryant and D. R. O’Hallaron. Computer systems: A programmer’s perspective, 2015.

[14] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms. MIT
press, 2009.

[15] K. R. Fall and W. R. Stevens. TCP/IP illustrated, volume 1: The protocols. addison-Wesley,
2011.

[16] I. Gvero. Core java volume i: Fundamentals, by cay s. horstmann and gary cornell. ACM
Sigsoft Software Engineering Notes, 38(3):33–33, 2013.

[17] S. Harris and D. Harris. Digital design and computer architecture: Arm edition, 2015.

[18] S. L. Harris and D. Harris. Digital design and computer architecture. Morgan Kaufmann,
2015.

[19] S. L. Harris and D. Harris. Digital Design and Computer Architecture, RISC-V Edition.
Morgan Kaufmann, 2021.

[20] J. L. Hennessy and D. A. Patterson. Computer architecture: a quantitative approach, 2018.

[21] J. Kurose, K. Ross, and J. Addison-Wesley. Computer networking: A top down approach.

[22] J. Levine. Linkers and loaders,. 1999.

[23] S. Meyers. Effective STL: 50 specific ways to improve your use of the standard template
library. Pearson Education, 2001.

[24] S. Meyers. Effective C++: 55 specific ways to improve your programs and designs. Pearson
Education, 2005.

[25] S. Meyers. Effective modern C++: 42 specific ways to improve your use of C++ 11 and
C++ 14. ” O’Reilly Media, Inc.”, 2014.

[26] S. Muchnick et al. Advanced compiler design implementation. Morgan kaufmann, 1997.

[27] D. Patterson and A. Waterman. The RISC-V Reader: an open architecture Atlas. Straw-
berry Canyon, 2017.

[28] D. A. Patterson and J. L. Hennessy. Computer organization and design risc-v edition: The
hardware software interface (the morgan kaufmann).

[29] D. A. Patterson and J. L. Hennessy. Computer organization and design: The hard-
ware/software interface, 2013.

[30] D. A. Patterson and J. L. Hennessy. Computer organization and design ARM edition: the
hardware software interface. Morgan kaufmann, 2016.

12



[31] J. L. Peterson and A. Silberschatz. Operating system concepts. Addison-Wesley Longman
Publishing Co., Inc., 1985.

[32] W. Richard. Unix network programming, volume 2: Interprocess communications, 1999.

[33] D. M. Ritchie, B. W. Kernighan, and M. E. Lesk. The C programming language. Prentice
Hall Englewood Cliffs, 1988.

[34] L. Robert. Linux kernel development. Pearson Education India, 2018.

[35] A. Rubini and J. Corbet. Linux device drivers. ” O’Reilly Media, Inc.”, 2001.

[36] J. Sanders and E. Kandrot. CUDA by example: an introduction to general-purpose GPU
programming. Addison-Wesley Professional, 2010.

[37] A. Silberschatz, H. F. Korth, S. Sudarshan, et al. Database system concepts, volume 5.

[38] M. Sipser. Introduction to the theory of computation. ACM Sigact News, 27(1):27–29,
1996.

[39] W. R. Stevens, B. Fenner, and A. M. Rudoff. UNIX Network Programming Volume 1.
SMIT-SMU, 2018.

[40] W. R. Stevens, S. A. Rago, and D. M. Ritchie. Advanced programming in the UNIX envi-
ronment, volume 4. Addison-Wesley New York., 1992.

[41] W. R. Stevens and G. R. Wright. TCP/IP Illustrated: volume 2. Addison-wesley, 1996.

[42] W. R. Stevens and G. R. Wright. TCP for transactions, HTTP, NNTP, and the UNIX
domain protocols. Addison-Wesley, 2000.

[43] B. Stroustrup. The c++ programming language (hardcover), 2013.

[44] A. Tanenbaum and H. Bos. Modern operating systems. 2015.

[45] A. B. Tarımcı. Core java® volume ii: advanced features by cay s. horstmann and gary
cornell. ACM SIGSOFT Software Engineering Notes, 39(3):24–25, 2014.

[46] R.-G. Urma, M. Fusco, and A. Mycroft. Java 8 in action. Manning publications, 2014.

13


	Preliminary
	Computer Architecture
	Operating Systems (OS)
	Computer Networks
	Compilers
	Programming Languages (PL)
	Parallel Computing
	Database
	Distributed Computing/Distributed Systems
	Cloud Computing
	Recommended ISA
	Linux Programming
	Linking and Loading
	Software Engineering
	Tools
	Coding Style
	Miscellaneous

