
Lab2: User Programs

TA : zhongyinmin
Email : zhongyinmin@pku.edu.cn
Github : PKUFlyingPig

TA Session

Prepare1 : Open up Pintos in your IDE/Text Editor
Prepare2 : Launch Pintos container

mailto:zhongyinmin@pku.edu.cn

Some announcements:

ØLab 2 Code will due two weeks later

ØNo grace day

ØStart early, Start early, Start early

ØYou can complete Lab2 from a clean codebase

Contents

Ø Pintos Disk and File System

Ø System Call

Ø Interrupt Handling

Ø Lab2 tasks and suggestions

Where are the User Programs?

• Source files are under /src/examples/ directory

• Run `make` under /src/examples/

Host File System
Host Disk

Pintos File System
Pintos Disk

ELF files

Debug example:

• Run `make && cd build` under /src/userprog/ directory

• pintos --gdb --filesys-size=2 -p ../../examples/echo -a echo -- -f -q run 'echo iloveos’

• Details on Lab Document

2MB Disk Put Host File Pintos File
Format FS

Quit ActionsDebug mode

Action: run 'echo iloveos’

Lab0 Shell

Lab2 User Program

pintos_init():

Action: extract run 'echo iloveos’
run_actions():

Action: extract run 'echo iloveos’
run_task():

Q1: What is ARGV[0] ?

Q2: What does run_test() do ?

Action: run 'echo iloveos’
process_execute():

Main Thread:

T1 T2

Ready List:

start_process

Main Thread
run_task():

Return Immediately !!

start_process:

• Load the ELF file from Disk into memory

• We are still in the kernel !!

• Initialize interrupt frame (eip, esp, segment registers, eflags)

• Start the user process by simulating a return from an interrupt

https://www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html

load:

Virtual Address Space

Kernel Mappings

PHYS_BASE + 64MB

struct thread:

Create a new page directory:

t->pagedir =

NULL init_page_dir

Others Move t->pagedir into register CR3

load:

Virtual Address Space

Kernel Mappings

PHYS_BASE + 64MB

• Read and verify ELF executable header

• Read ELF program header and load segments (code, data ……)

• Set up if_->stack (You will fix this in Exercise2: Argument Passing)

• Set up if_->eip with the entry point in executable header

• After loading, start the user process by simulating a return from
an interrupt with interrupt frame if_

Code

Data

BSS
/src/lib/user/entry.c:

if_->esp
argv
argc

if_->esp

Wow, your process is running in User Space!

• But, we want system call support !!
/src/lib/user/syscall.h: /src/lib/user/syscall.c:

Wow, your process is running in User Space!

• But, we want system call support !!
/src/lib/user/syscall.h: /src/lib/user/syscall.c:

80x86 Calling Convention !!

System Call Numbers:

/src/lib/syscall-nr.h

Now, all the magic is behind `int 0x30`

User Space

Kernel Space

Interrupt Handler

• save the context of the interrupted process into intr_frame

Hardware (CPU) && Software (OS)

Details in Lecture Notes

/src/threads/interrupt.c: /src/userprog/syscall.c:

Implement in Lab2 ~~

Contents

Ø Pintos Disk and File System

Ø System Call

Ø Interrupt Handling

Ø Lab2 tasks and suggestions

Some useful tips:

• Pintos exec == Unix fork + exec

• You can use malloc in kernel (#include “threads/malloc.h”)

• Useful GDB command: loadusersymbols

• Reference to xv6 implementation

• multi-oom testcase will take some time, be patient

https://github.com/mit-pdos/xv6-riscv/blob/riscv/kernel/syscall.c

Suggested Order of Implementation:

Step1: Argument Passing
/src/tests/main.c:

Page Fault !!

• Set up the stack after loading

• Argument Passing details in Lab Doc

• Pass all the args-xxx tests

Why stack ?

Suggested Order of Implementation:

Step2: Halt System Call

• Argument Passing

• System Call Infrastructure

Suggested Order of Implementation:

Step3: Some temporal workaround

• The exit system call (barely work is fine)

• The write system call for writing to fd 1, the system console

• change process_wait() to an infinite loop (one that waits forever)

Suggested Order of Implementation:

Step4: Accessing User Memory

• User programs will pass arguments (char*, int, unsigned) into kernel

• These arguments are on the user stack (esp is saved in intr_frame)

• Ensure the address validity (in user page table)

• Avoid repeating code !!

• Two implementation suggestion (in Lab Doc)

Suggested Order of Implementation:

Step4: Process Control System Call

Step5: FS System Call

• exit, exec, wait

• Design all at first, they may share some data structures

• No need to understand file system implementation

• Read the interfaces in /src/filesys/file.c, /src/filesys/filesys.c

• Pass all tests but rox-simple, rox-child, rox-multichild

Suggested Order of Implementation:

Step7: Denying Writes to Executables

• Why?

• Close a file will re-enable writes

• Keep the executable file open during execution

Suggested Order of Implementation:

Step8: Cheers !!!

Enjoy Your Pintos Journey ~~

Any Problem ?

