
File System
Pintos lab4 session(by Ivory E.Si)

Filesystem: A layer of indirection over the disk

syscall

File system

Disk blocks

open(), read(), close(), remove(), mkdir(), chdir()…

filesys_open(), file_read(), file_close()…
filesys.c, file.c, directory.c,inode.c…

block_read(), block_write()

filesys (filesys.c, filesys.h)

Some subtle
design philosophy
in pintos:
interfaces are in .h
files
implementations
are in .c files

directory
(directory.c, directory.h)

file (file.c, file.h)

block (block.c, block.h)

inode
(inode.c, inode.h)

only use root
directory

offer a struct file*
pointer

syscall

Bring a sector of
metadata on disk
(inode_disk) to
memory (inode)

Generate a file abstract from a
string (filename)
e.g. filesys_open(), filesys_create()

Operation on file
content. Use file
descriptor(fd).
e.g. file_read(),
file_write(), file_close()

So, you may understand why the open
is in filesys.c and close is in file.c now…

filesys (filesys.c, filesys.h)

directory
(directory.c, directory.h)

file (file.c, file.h)

block (block.c, block.h)

inode
(inode.c, inode.h)

offer a struct file*
pointer

Bring a sector of
metadata on disk
(inode_disk) to
memory (inode)

Why cache is
the simplest to
implement?

inode module is where we
actually do the block read and
write

cache (cache.c cache.h, your job)
So, all problems in computer science
can be solved by another level of
indirection, my friends.

What is the entity of file?
Structure in inode.c

The sector to save
inode_disk

length

start sector

But you should implement a file
entity with discontinuous blocks
assignmentHint: use these fields.

Indexed Files

As you may have guessed, use place in the
sector to save index entries.

inode
sector

direct
block

indirect
block

doubly
indirect
block

Subdirectories
Actually, directory is a FILE which saves entries of files or
subdirectories.
But we still need to identify type of an inode.(So, what mark will
you use to indicate it and where to save this information?) Is this
inode a common file or a directory?

directory entry in directory.c

About adding some new system calls
If you treat your directory as “file”, there is a design parttern. (It
is a bit tricky in readdir)

From directory name to a file
abstraction.
bool chdir (const char *dir)
bool mkdir (const char *dir)

filesys(filesys.c, filesys.h)

From “file” (directory?)
descriptor to operate the directory
bool readdir (int fd, char *name)
bool isdir (int fd)
int inumber (int fd)

file(file.c, file.h)

About adding some new system calls
Another way is to use directory module to serve these system calls.
It may need some changes on your file descriptor structure.

From directory name to a file
abstraction.
bool chdir (const char *dir)
bool mkdir (const char *dir)

filesys(filesys.c, filesys.h)

From “file” (directory?)
descriptor to operate the directory
bool readdir (int fd, char *name)
bool isdir (int fd)
int inumber (int fd)

directory(directory.c, directory.h)

About adding some new system calls

You can design your file system freely!
I’d like to know about your elegant design pattern!

Object-Oriented in C language(?)
• In the thread lab, the details of the thread structure are exposed

to all other source code files.

Then, you may have
noticed that your
code in the previous
three labs are highly-
coupled.

Object-Oriented in C language(?)
• But in this lab there is some tricks about modular design.

The directory and file modules only know that “there is a inode structure”.
But they do not know the specific definition of the inode structure.

So you can take the advantage of this segregation to..............
…………implement synchronization

Synchronization

filesys (filesys.c, filesys.h)

directory
(directory.c, directory.h)

file (file.c, file.h)

inode
(inode.c, inode.h)

syscall

Some implementation may
have this dependency

The essence of concurrency is the maintenance
of shared global states.
Files or directories opened by processes are
owned by processes themselves.
What we really share is the in-memory inode

Well, you may have noticed that if we
make inode a race-free black box, our
task is finished.

What the inode module have

A inodes list. (It is global! Watch out!)

Some in-memory
information are
shared.

The index sectors or content sectors are
also shared. (As a file or a directory
abstraction offered to users)

All the variables shared with two or more threads
need to be protected.

You may encounter a similar setting like the reader-writer problem.

Don’t forget your cache module

• If you treat cache module as a indenpent part like me, try to find
some ways to make it a race-free black box with the knowledge in
the OS class.

At last

• If you don’t have enough confidence on your code in previous
three labs, I don’t suggest you do this lab for PF…

• I once deeply believed my code in previous labs, but after finishing this lab, I think that my previous implementation
sucks.

• Well, I do not think my code writing ability is outstanding. You can
have a try anyway.

Q&A

• If you have any question, you can add me from the wx group or
send email to sigongzi@stu.pku.edu.cn (?)

• Well…I also know that I am notorious and you may do not want to
talk with me. Anyway, have fun with your system design.

mailto:sigongzi@stu.pku.edu.cn

