@ Pintos Lab3a/3b
u Overview

TA: Zhineng Zhong

Today

* Lab 3 overview
* Lab 3a/3b tasks
* Bitmap and hash
* Tips

¢« Q&A

Today

e Lab 3 overview

Virtual Memory Overview

* a memory management technique

* an idedlized abstraction of the storage resources

* address translation using a combination of hardware and software
* easy to implement linking

* easy to implement loading

* easy to implement sharing

* increased security due to memory isolation

Much of our focus

* Virtual memory management
* Virtual pages

* Physical memory management
* Physical frames
* Replacement policy

* Page table
* Address translation
* Page fault

* Swap Space

Before we dive in ...

* A good design goes a long way towards accomplishing your tasks and has a long way
to go.

* Get your hands on early.

This assighment is an open-ended design problem.

e We are going to say as little as possible about how to do things. Instead we will focus on what
functionality we require your OS to support.

e We will expect you to come up with a design that makes sense. You will have the freedom to
choose how to handle page faults, how to organize the swap partition, how to implement
paging, etc.

Today

« Lab 3a/3b tasks

A brief look at lab 3a tasks

() Exercise 1.1

Implement paging for segments loaded from executables.
* |oad an executable

¢ All of these pages should be loaded lazily, that is, only as the kernel intercepts page
faults for them.

* lazy loading

e Upon eviction:
e Pages modified since load (e.g. as indicated by the "dirty bit") should be written

to swap. * write back
e Unmodified pages, including read-only pages, should never be written to swap
because they can always be read back from the executable. ° SW&P Space
e 1.2

() Exercise 1.2

Implement a global page replacement algorithm that approximates LRU.

* replacement policy

c 1.3

e Your algorithm should perform at least as well as the simple variant of the "second
chance" or "clock" algorithm.

@ Exercise 2.1 . .
* modify previous

Adjust user memory access code in system call handling to deal with potential page

faults. implementation

A brief look at lab 3b tasks

() Exercise 1.1 * I.1

Implement stack growth.

* allocate a new page when

¢ |n project 2, the stack was a single page at the top of the user virtual address space,

and programs were limited to that much stack. StaCk gr'OWS PaSt current
e Now, if the stack grows past its current size, allocate additional pages as age
necessary. P g

1.2

() Exercise 2.1

Implement memory mapped files, including the following system calls. i mmap, munmap
e mapid_t mmap (int fd, void *addr)

e void munmap (mapid_t mapping) ¢ can map many kinds of files

Let’s look at the tasks in another way...

When we execute a program...

* When we load an executable...
* Only build the mappings
* map user pages to file content
* we know clearly that we will map user pages to swap space content later
* Q: How to maintain the mappings?
 first access will trigger page fault and then load the page

* Store disk address in PTE like we have already known!?

63 62 52 51 12 11 B 8 F B .- 8 2 2 B
XD | Unused Page physical base address Unused G D| A |CD|WT|U/SR/W|P=1

Available for OS (page location on disk) P=0

When we execute a program...

* What do we know about Pintos PTE?

e Check lab document
e Macro: PTE_P
e Bit O, the "present" bit.
31 AN 65 210
e e e When this bit is 1, the other bits are interpreted as described below. When this bit

| Physical Address | AVL| ID|A| |U[W|P| is 0, any attempt to access the page will page fault. The remaining bits are then
N R e R not used by the CPU and may be used by the OS for any purpose.

* OK! It is designed as we expected.

[]

Do you think storing information in PTE is a good design and easy to implement
in THIS PINTOS LAB?

* 3I-bit might be a challenge!

 You decide.

When we execute a program...

* When we load an executable...
* Only build the mappings

* map user pages to file content
* we know clearly that we will map user pages to swap space content later

* Q:How to maintain the mappings?
* first access will trigger page fault
* lIdea |:Store disk address in PTE like we have already known?
* ldea 2: You can design other data structures and stored in thread

* Use these newly designed data structures when handling page fault

When we execute a program...

* When we access it...
* Trigger page fault on first access
* Turn to page fault handler to load the page
* Q:How can we know it’s time to load the page instead of other cases?
* Q:How to load the page?
* Read the page into memory
* Replacement policy
* Ubpdate pte etc.

* Interfaces in threads/pte.h, userprog/pagedir.h, userprog/pagedir.c ...

Replacement policy

* Require one that approximates LRU

 second chance, clock, ...

* some interfaces may be useful: userprogl/pagedir.h

bool pagedir_is_dirty (uint32_t =#pd, void *upage);
void pagedir_set_dirty (uint32_t =*pd, void *upage, bool dirty);

bool pagedir_is_accessed (uint32_t =*pd, void *upage);
void pagedir_set_accessed (uint32_t *pd, void *upage, bool accessed);

* All algorithms have a common thing to do...

* Q:How to manage the frames and their related information?

* Frame management

Frame management

° . ?
Q:What frames do we need to manage: the end of RAM te == == == =
. . user pool
* Claim:In lab3, you only need to manage frames in . Ip % e
ernel poo
user pool. 0x00100000 (IMB)
BIOS ROM
. Why? 0x000F0000 (960kB) »
0x000a0000 (640kB) »
* Let’s look at the definitions of the two pools again. Pintos Kernel
0x00020000 (128kB) »
page tables

for startup

0x00010000 (64kB) » —
OXOOOOfOOO (60kB) > for startup

kernel stack

0x0000e000 (56kB) > and initial thread struct
0x00007e00 (31.5kB) »

0x00007c00 (31kB) »
0x00000600 (1536B) »

BIOS Data
0x00000400 (1024B) »

CPU-owned
0x00000000 (0B) »
Physical Address Space

Pintos Loader

Frame management

The user pool should be used for allocating memory for user processes and the kernel pool

for all other allocations. This will only become important starting with project 3. Until then,
all allocations should be made from the kernel pool.

* The fact that an executable or another kind of file is mapped to user space indicate
that you can only load it or reload it into user pool.

* No allocation in user pool before lab3 means that if you manage all frames in user
pool you don’t need to worry about evicting a frame that you don’t know.

Frame management

° o ?
Q:What frames do we need to manage! the end of RAM = == == == =
. . user pool
* Claim:In lab3, you only need to manage frames in . |p % iy
ernel poo
user pool. 0x00100000 (1MB)
0x000F0000 (960kB BIOS RO™
. . >
* So there will be no replacement in kernel pool? X (960kB)
0x00020000 (640kB) »
* We use palloc to allocate memory in kernel pool. Pintos Kernel
. 0x00020000 (128kB) »
* At least our tests will not ask for that much memory page tables

for startup

0x00010000 (64kB) »

allocation in kernel pool. So you don’t need to

page directory

consider that. 0x0000f000 (60kB) *T——==25
OXOOOOGOOO (56kB) > and initial thread struct
 BUTTHIS ISACTUALLY A PROBLEM. 0x00007e00 (31.5kB) =

Pintos Loader

0x00007c00 (31kB) »
0x00000600 (1536B) »

BIOS Data
0x00000400 (1024B) »

CPU-owned
0x00000000 (0B) »
Physical Address Space

Frame management

e O: ?
Q:What frames do we need to manage! the end of RAM = == == == =

user pool

* Claim:In lab3, you only need to manage frames in ——
kernel pOOI | info about user frames |
user pool. 0x00100000 (IMB)
0x000F0000 (960kB BIOS RO™
] . . >
* So what’s good about this claim? x (960kE)
0x000a0000 (640kB) »
* The data not in user pool resides in physical memory Pintos Kernel
. 0x00020000 (128kB) »
* Feel free to allocate your global data structures in g
0x00010000 (64kB) *————"
kernel pool and use them to manage all the user i
frames! 0x0000f000 (60kB) +—— 225
OXOOOOGOOO (56kB) > and initial thread struct
* Initialization can be done in pintos_init 0x00007e00 (31.5kB) »1—
Pintos Loader

0x00007c00 (31kB) »
0x00000600 (1536B) »

BIOS Data
0x00000400 (1024B) »

CPU-owned
0x00000000 (0B) »
Physical Address Space

Replacement policy

* Require one that approximates LRU

 second chance, clock, ...

* some interfaces may be useful: userprogl/pagedir.h

bool pagedir_is_dirty (uint32_t =#pd, void *upage);
void pagedir_set_dirty (uint32_t =*pd, void *upage, bool dirty);

bool pagedir_is_accessed (uint32_t =*pd, void *upage);
void pagedir_set_accessed (uint32_t *pd, void *upage, bool accessed);

* All algorithms have a common thing to do...
* Q:How to manage the frames and their related information?
* Frame management

* Swap space management

Swap space management

* Swap space is a space on a hard disk that is a substitute for physical memory.
* In pintos, swap space is a block device.

* The interfaces of block device have been provided.

struct block
{

struct list_elem list_elem;

char name[16];
enum block_type type;

block_sector_t size;

struct block_operations *ops;
void *aux;

unsigned long long read_cnt;
unsigned long long write_cnt;

Swap space management

 Block device

 devices/block.h, devices/block.c

struct block *block_get_role (enum block_type);

void block_set_role (enum block_type, struct block *);

¢ Inltlallzed in Pintos_init struct block *block_get_by name (char *name);
* Get a block device o buack e
25\ Good!
o BLOCK_KERNEL, -
block get role BLOCK FLESYe. <

BLOCK_SCRATCH,

o BLOCK_SWAP,
* Read from a block device sy
d bIock_read block_sector_t block _size (struct block *);
void block_read (struct block *, block_sector_t, void *);
° Wl‘lte tO a bIOCk dev'ce void block _write (struct block *, block_sector_t, void *);

char *block_name (struct block *);
enum block_type block_type (struct block *);

* block write

* Other interfaces you may use

Swap space management

* Are all these interfaces enough for our task?

* How to manage swap space!

When we execute a program...

* When we access it...
* Trigger page fault on first access
* Turn to page fault handler to load the page
* Q:How can we know it’s time to load the page instead of other cases?
* Q:How to load the page?
* Read the page into memory
* Replacement policy
* Update pte

* Interfaces in threads/pte.h, userprog/pagedir.h, userprog/pagedir.c ...

When we execute a program...

* When we read it...

* When we write it...
* write back instead of write through
* dirty bit

* some interfaces may be useful: userprogl/pagedir.h

bool pagedir_is_dirty (uint32_t =*pd, void *upage);
void pagedir_set_dirty (uint32_t =*pd, void *upage, bool dirty);

bool pagedir_is_accessed (uint32_t *pd, void *upage);
void pagedir_set_accessed (uint32_t *pd, void *upage, bool accessed);

Revisit lab 3a tasks

() Exercise 1.1

Implement paging for segments loaded from executables.
* |oad an executable

e All of these pages should be loaded lazily, that is, only as the kernel intercepts page
faults for them.

* lazy loading

e Upon eviction:
e Pages modified since load (e.g. as indicated by the "dirty bit") should be written

to swap. e write back
e Unmodified pages, including read-only pages, should never be written to swap
because they can always be read back from the executable. ° SW&P SPace
e 1.2

() Exercise 1.2

Implement a global page replacement algorithm that approximates LRU.

* replacement policy

c 1.3

e Your algorithm should perform at least as well as the simple variant of the "second
chance" or "clock" algorithm.

@ Exercise 2.1 . .
* modify previous

Adjust user memory access code in system call handling to deal with potential page

faults. implementation

Revisit lab 3b tasks

() Exercise 1.1 * I.1
Implement stack growth. ” h
[J
¢ |n project 2, the stack was a single page at the top of the user virtual address space, allocate a new Page when
and programs were limited to that much stack. StaCk gr'OWS PaSt current
e Now, if the stack grows past its current size, allocate additional pages as age
necessary. P g

1.2

() Exercise 2.1

Implement memory mapped files, including the following system calls. * Mmmap, munmap
e mapid_t mmap (int fd, void *addr)

e void munmap (mapid_t mapping) ¢ can map many kinds of files

Key parts

* User pages mapping maintenance
* Frame management

* Swap space management

Today

* Bitmap and hash

Bitmap

* liblkernellbitmap.h, lib/kernel/bitmap.c
* Bitmap is an effective way to make marks.

* Bitmap is used in memory pool to mark whether the pages in pool are used.

struct pool bitmap_set (struct bitmap *, size_t idx, bool);
{ bitmap_mark (struct bitmap *, size_t idx);

bitmap_reset (struct bitmap #*, size_t idx);
bitmap_flip (struct bitmap *, size_t idx);
bitmap_test (struct bitmap *, size_t idx);

struct lock lock;
struct bitmap *used_map;
uint8_t +base;
};
void bitmap_set_all (struct bitmap *, bool);
void bitmap_set_multiple (struct bitmap *, size_t start, size_t cnt, bool);
size_t bitmap_count (struct bitmap *, size_t start, size_t cnt, bool);
bool bitmap_contains (struct bitmap *, size_t start, size_t cnt, bool);
bool bitmap_any (struct bitmap *, size_t start, size_t cnt);
bool bitmap_none (struct bitmap *, size_t start, size_t cnt);
bool bitmap_all (struct bitmap *, size_t start, size_t cnt);

struct bitmap *bitmap_create (size_t bit_cnt);

struct bitmap *bitmap_create_in_buf (size_t bit_cnt, void *, size_t byte_cnt);
size_t bitmap_buf_size (size_t bit_cnt);

void bitmap_destroy (struct bitmap *);

size_t bitmap_size (struct bitmap *);

Hash

* Jiblkernellhash.h, lib/kernellhash.c
* The element stored in the hash table can be quickly retrieved.

e Like list elem for List, hash_elem is used in hash.

bool hash_init (struct hash *, hash_hash_func *, hash_less_func *, void *aux);
void hash_clear (struct hash #*, hash_action_func *); unsigned hash_hash_func (struct hash_elem *e, void *aux);
void hash_destroy (struct hash *, hash_action_func *);

struct hash_elem *hash_insert (struct hash *, struct hash_elem);

struct hash_elem *+hash_replace (struct hash %, struct hash_elem *); bool hash_less_func (struct hash_elem *a,
struct hash_elem +hash_find (struct hash %, struct hash_elem *); struct hash_elem *b,
struct hash_elem +hash_delete (struct hash *, struct hash_elem *); void *aux);

void hash_apply (struct hash *, hash_action_func *);
void hash_first (struct hash_iterator *, struct hash *); struct hash_elem
struct hash_elem *hash_next (struct hash_iterator *); {
struct hash_elem *hash_cur (struct hash_iterator *);

struct list_elem list_elem;

size_t hash_size (struct hash *);
bool hash_empty (struct hash *);

How to use hash table to implement a fast mapping (hash map)

* Given a key k, get its correspondent value v effectively

* This is quite helpful in implementing our mapping from user pages to swap space
content or file content.

* Just use hash table to maintain keys, and combine correspondent values
with keys.

* e.g.put key and value in a struct, and use key as the hash key

0 0
Hash(k)=1 Hash(k)=1

\ 4

\ 4

\ 4

\ 4
~

(kl, vI) (k)

I ki
insert k = Hash /

2 insert (k,v) = Hash /
3 < LS
4

| (k3.13)

AN jJw |

k2 o k4 M (k2v3) | (k4v4)

Today

* Lab 3 overview
* Lab 3a/3b tasks
* Bitmap and hash
* Tips

¢« Q&A

Other things you may need to give attention to...

Synchronization problem

* especially when accessing some global variables
Remember to free the resources when the process exits
Note that a disk sector is 51/2B while a page is 4096B

Read requirements in document carefully

Today

c Q&A

@ Thanks for
@ your listening.

