
Building a Distributed File System
for the Cloud-Native Era

Bin Fan, 05-30-2022 @ Peking University

ALLUXIO 1

• Evolution From Hadoop Era to Cloud-native Era

• Design & Implement a Distributed File System

Agenda

2 ALLUXIO 2

ALLUXIO 3

About Me

3

Bin Fan (https://www.linkedin.com/in/bin-fan/)
● Founding Engineer, VP Open Source @ Alluxio
● Alluxio PMC Co-Chair, Presto TSC/committer
● Email: binfan@alluxio.com
● PhD in CS @ Carnegie Mellon University

apc999

https://www.zhihu.com/people/apc999

• Memory-efficient Algorithms for Systems
• Cuckoo Filter CoNext14
• Setsep HotOS13
• SmallCache-based Load balancing SoCC11

• Building Practical Systems
• SILT SOSP11 - Extremely Mem-efficient KV store on SSD
• MemC3 NSDI13 - Mem-efficient KV store on DRAM
• Blizzard NSDI14
• ScaleBricks SIGCOMM15

• Full Publication List (https://scholar.google.com/citations?user=FzoDCpoAAAAJ)

My Research Interests

4 ALLUXIO 4

http://www.cs.cmu.edu/~binfan/papers/conext14_cuckoofilter.pdf
http://www.cs.cmu.edu/~binfan/papers/hotos13_setsep.pdf
http://www.cs.cmu.edu/~binfan/papers/socc11_caching.pdf
http://www.cs.cmu.edu/~binfan/papers/sosp11_silt.pdf
http://www.cs.cmu.edu/~binfan/papers/nsdi13_memc3.pdf
http://research.microsoft.com/apps/pubs/default.aspx?id=206482
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=FzoDCpoAAAAJ&citation_for_view=FzoDCpoAAAAJ:ZuybSZzF8UAC

Joined Google After CMU

The Startup life I was expecting The Startup life I am experiencing

Joined Alluxio as Founding Engineer in 2015

● Originally a research project (Tachyon) in UC Berkeley AMPLab led by by-then PHD student
Haoyuan Li (Alluxio founder CEO)

● Backed by top VCs (e.g., Andreessen Horowitz) with $70M raised in total, Series C ($50M)
announced in 2021

● Deployed in production at large scale in Facebook, Uber, Microsoft, Tencent, Tiktok and etc

● More than 1100 Contributors on Github. In 2021, more than 40% commits in Github were
contributed by the community users

● The 9th most critical Java-based Open-Source projects on Github by Google/OpenSSF[1]

Alluxio Overview

ALLUXIO 7[1] Google Comes Up With A Metric For Gauging Critical Open-Source Projects

https://www.phoronix.com/scan.php?page=news_item&px=OpenSSF-Criticality-Score

ALLUXIO 8

INTERNET

PUBLIC CLOUD PROVIDERS

GENERAL

E-COMMERCE

OTHERSTECHNOLOGY FINANCIAL SERVICES

TELCO & MEDIA

LEARN MORE

Companies Using Alluxio

https://www.alluxio.io/powered-by-alluxio/

From 2015 to 2022

Ecosystem Evolution

9

ALLUXIO 10

7 Years Ago

11

Big Data Ecosystem in 2015

12

AMPLab活动上Tachyon演讲的截图

Alluxio (Tachyon) in 2015

Alluxio(Tachyon) in 2015: Enable Data Sharing Among Spark Jobs

Spark Task1 Spark Task 2

HDFS / Amazon S3

HDFS
disk

block 1

block 3

block 2

block 4
Tachyon
in-memory

RDD

13

HDFS / Amazon S3
block 1

block 3

block 2

block 4
Tachyon
in-memory

block 1

block 3 block 4

Spark Task

Spark memory
block manager

execution engine &
storage engine
same process

Alluxio(Tachyon) in 2015: Fast Checkpoint for job reliability

14

ALLUXIO 15

Today

Topology
● On-prem Hadoop → Cloud-native, Multi- or Hybrid-cloud,

Multi-datacenter

Computation
● MR/Spark → Spark, Presto, Hive, Tensorflow, Pytorch ….
● More mature frameworks (less frequent OOM etc)

Data access pattern
● Sequential-read (e.g., scanning) on unstructured files → Ad-hoc

read into structured/columnar data
● Hundred to thousand of big files → millions of small files

Whatʼs Different

ALLUXIO 16

Data Storage
● On-prem & colocated HDFS → S3 !!! and other object stores

(possibly across regions like us-east & us-west),
and legacy on-prem HDFS in service

Resource/Job Orchestration
● YARN → K8s

○ Lost focus on data locality

The Evolution from Hadoop to Cloud-native Era

ALLUXIO 17

A Real-world Example

18

v

TEAM BTEAM A

us-west-2us-west-1

MAIN REGION: CENTRAL ANALYTICSus-east-1

Hive

DATA
REPLICATION

Analytics & AI in the Hybrid and
Multi-Cloud Era

Available:
ALLUXIO 19

A Real-world Example

20

v

TEAM BTEAM A

us-west-2us-west-1

MAIN REGION: CENTRAL ANALYTICSus-east-1

Hive

Mount

ALLUXIO 21

A Strongly Consistent Logical File System
Mount individual storage systems to providing users a Unified Namespace

• Extension: Single logical Alluxio path backed by multiple storage systems
○ Example customized data policy: Migrate data older than 7 days from HDFS to S3

ALLUXIO 22

Synchronization of changes across clusters

Old File at path
/file1 ->

New File at path
/file1 ->

Alluxio Master

Metadata Synchronization

Mutation

On-premisesPublic CloudModel
Training

Big Data ETL

Big Data Query

Scalable and Consistent Metadata Locality

Fast &
Cheap

Potentially
Slow and
Costly

ALLUXIO 23

Scale-out Data Caching for Higher Data Locality
Local I/O performance for remote data with intelligent multi-tiering

Hot Warm Cold

RAM SSD HDD

Read & Write Buffering
Transparent to App

Policies for pinning,
promotion/demotion, TTL

On-premisesPublic CloudModel
Training

Big Data ETL

Big Data Query

Challenges & Solutions

Design & Implement a
Distributed File System

24

知乎:设计开源分布式文件系统Alluxio用到了哪些知识?

https://www.zhihu.com/question/299711800/answer/529277982

Alluxio Architecture

25

ALLUXIO 26

Metadata

What is File System Metadata
• Data structure of the Filesystem Hierarchy: Often an Inode tree to represent parent dir, children,

permission bits, ower/group, modification time

• Each node on this inode tree corresponding to one file or directory

• Commonly seen in all file systems

• Can include mounts of other file systems in Alluxio and the size of the tree can be very
large!

• Sub-file blocks information (block ID -> workers)

• Index for a distributed system to point to the data server

27

Factors w.r.t. Design a Scale Metadata Service
• # of Alluxio Servers in a cluster

• Heartbeat:
■ node -> master

• Load balancing
■ Workload skew

• # of concurrent clients
• # of files/dirs in this logical file system
• Throughput of metadata RPCs

• Read ops
• Write ops

• Speed to fail over to other stand-by masters (avoid Single node of failure)

28

ALLUXIO 29

Single Master
Scalability

How to Store File System Metadata
Federating Multiple Storage

=> We need to handle a “logical file system” multiple times bigger

Storing the raw metadata becomes a problem with a large number of files
• On average, each file takes 1KB of on-heap storage
• 1 billion files would take 1 TB of heap space!
• A typical JVM runs with < 64GB of heap space
• GC becomes a big problem when using larger heaps

30

Off-Heap Metadata Storage => 1 Billion Files

31

Alluxio Master

Local Disk

RocksDB (Embedded)
● Inode Tree
● Block Map
● Worker Block Locations

On Heap
● Inode Cache
● Mount Table
● Locks

RocksDB (https://rocksdb.org/) is an
open-source embeddable persistent
key-value store for fast storage

https://rocksdb.org/

Other Metadata Serving Challenges
• Common file operations (ie. getStatus, create) need to be fast

• On heap data structures excel in this case

• Operations need to be optimized for high concurrency
• Generally many readers and few writers for large-scale analytics

• The metadata service also needs to sustain high load
• A cluster of 100 machines can easily house over 5k concurrent clients!

• Connection life cycles need to be managed well
• Connection handshake is expensive
• Holding an idle connection is also detrimental

32

ALLUXIO 33

High Availability

Built-in Fault Tolerance
• Alluxio cluster can recover from restarts, and avoid single-point of

failure
• File system status must be able to be recovered
• This was previously done utilizing an external fault tolerance storage

• Our approach: Self-Managed Quorum for Leader Election and Journal
Fault Tolerance Using Raft

• Raft is a consensus algorithm that is designed to be easy to understand. It's
equivalent to Paxos in fault-tolerance and performance

• Enables hot standbys for rapid recovery in case of single node failure

34

拓展阅读：知乎：漫话分布式系统共识协议: Paxos篇

https://zhuanlan.zhihu.com/p/35737689

• Consensus achieved
internally

• Leading masters commits state
change

• Benefits
• Local disk for journal

• Challenges
• Performance tuning

35

Standby
Master

Leading
Master

Standby
Master

Raft

State Change

State
Change

State
Change

Built-in Self-Managed Quorum-based Journal

Alluxio + Raft architecture

36

ALLUXIO 37

Consistency

• If clients only query and modify Alluxio File System through Alluxio
masters, the semantics is strongly consistent

Consider Alluxio File System Alone

38

Primary Master

Standby Master Standby Master

Application Application Application

• When clients can modify UFS, Alluxio masters provide synchronization
between Alluxio namespace and UFS

Consider Alluxio File System + UFS

39

Primary Master

Standby Master Standby Master

Application ApplicationApplication

Application

ALLUXIO 40

Serving Data

RPC System in Alluxio 1.x
• Master RPC using Thrift

• Filesystem metadata operations

• Worker RPC using Netty
• Data operations

• Problems
• Hard to maintain and extend

two systems
• Thrift is not maintained, no

streaming RPC support

Alluxio
Master

Alluxio
Worker

Application

Alluxio
Client

Thrift
RPC

Thrift
RPC

Netty
RPC

41

gRPC
• https://grpc.io/
• gRPC is a modern open source high

performance RPC framework that can run in
any environment

• Works well with Protobuf for serialization

42

https://grpc.io/

Unified RPC Framework in Alluxio 2.0
• Unify all RPC interfaces

using gRPC

• Benefits
• Streaming I/O
• Protobuf everywhere
• Well maintained & documented

• Challenges
• Performance tuning

Alluxio
Master

Alluxio
Worker

Application

Alluxio
Client

gRPC

gRPC

gRPC

43

gRPC Transport Layer
• Connection multiplexing to reduce the number of connections from # of application threads to #

of applications
• Solves the connection life cycle management problem

• Threading model enables the master to serve concurrent requests at scale
• Solves the high load problem

• High metadata throughput needs to be matched with efficient IO
• Consolidated Thrift (Metadata) and Netty (IO)

Check out this blog for more details:
https://www.alluxio.com/blog/moving-from-apache-thrift-to-grpc-a-perspective-from-alluxio

44

https://www.alluxio.com/blog/moving-from-apache-thrift-to-grpc-a-perspective-from-alluxio

ALLUXIO 45

Corner Cases

Implement a Prototype is Easy
• Make it production ready is HARD
• All sorts of corner cases are the enemy

• AWS S3 outage can happen every year
• Race conditions: Concurrent reader/write, write/write
• Resource-leaking can be unintentional
• HDFS is considered reliable; when writing critical information (e.g., journals) be careful (and

good luck)
• Disk can fail without warning
• External service can behave really weird
• Human errors (mis-configuration)

46

ALLUXIO 47

Summary

Summary
• Designing & Implementing a distributed system is hard but also fun
• First you need to well understand the design requirements
• Consistency, Scalability, Reliability – We spent most of our time to fight for
• Do not reinvent the wheel, but also be cautious when introducing new

building blocks
• Building a good open-source system is hard, building a thriving

open-source community is hard^2

• Interested in 👆? Contact me and let’s work on an intern project

48

拓展阅读：知乎：为什么在中国搞不出 Spark 和 Hadoop 这种东西？

https://www.zhihu.com/question/35548022/answer/287626287

Twitter.com/alluxio

Linkedin.com/alluxio

Website
www.alluxio.io

Slack
https://alluxio.io/slack

@

Social Media

Questions?

49

