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Abstractions 1: Threads and Processes
A quick, programmer’s viewpoint
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Recall: Four fundamental OS concepts
• Thread

– Single unique execution context
– Program Counter, Registers, Execution Flags, Stack

• Address Space w/ translation
– Programs execute in an address space that is distinct from the 

memory space of the physical machine
• Process

– An instance of an executing program is a process consisting of an 
address space and one or more threads of control

• Dual Mode operation/protection
– Only the “system” has the ability to access certain resources
– The OS and the hardware are protected from user programs and 

user programs are isolated from one another by controlling the 
translation from program virtual addresses to machine physical 
addresses
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• Operating systems must handle multiple things at once (MTAO)
– Processes, interrupts, background system maintenance

• Networked servers must handle MTAO
– Multiple connections handled simultaneously

• Parallel programs must handle MTAO
– To achieve better performance

• Programs with user interface often must handle MTAO
– To achieve user responsiveness while doing computation

• Network and disk bound programs must handle MTAO
– To hide network/disk latency
– Sequence steps in access or communication

Motivation for Threads
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Threads Allow Handling MTAO

• Threads are a unit of concurrency provided by the OS
• Each thread can represent one thing or one task
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Multiprocessing vs. Multiprogramming
• Some Definitions:

– Multiprocessing: Multiple CPUs (cores)
– Multiprogramming: Multiple jobs/processes
– Multithreading: Multiple threads/processes

• What does it mean to run two threads concurrently?
– Scheduler is free to run threads in any order and interleaving
– Thread may run to completion or time-slice in big chunks or small chunks

A B C

BA ACB C BMultiprogramming

A
B
C

Multiprocessing
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Concurrency is not Parallelism

• Concurrency is about handling multiple things at once (MTAO)
• Parallelism is about doing multiple things simultaneously

• Example: Two threads on a single-core system...
– … execute concurrently …
– … but not in parallel

• Each thread handles or manages a separate thing or task…
• But those tasks are not necessarily executing simultaneously!
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Silly Example for Threads

• Imagine the following program:
main() {

ComputePI(“pi.txt”);
PrintClassList(“classlist.txt”);

}

• What is the behavior here?
– Program would never print out class list

• Why?
– ComputePI would never finish
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Adding Threads

• Version of program with threads (loose syntax):
main() {

create_thread(ComputePI, “pi.txt”);
create_thread(PrintClassList, “classlist.txt”);

}
• create_thread: Spawns a new thread running the given procedure

– Should behave as if another CPU is running the given procedure

• Now, you would actually see the
class list

CPU1 CPU2 CPU1 CPU2

Time 

CPU1 CPU2
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Threads Mask I/O Latency

• A thread is in one of the following three states:
– RUNNING – running
– READY – eligible to run, but not currently running
– BLOCKED – ineligible to run

• If a thread is waiting for an I/O to finish, the OS marks it as BLOCKED
• Once the I/O finally finishes, the OS marks it as READY

vCPU1 vCPU2 vCPU1 vCPU2

Time 

vCPU1 vCPU2
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Threads Mask I/O Latency
• If no thread performs I/O:

• If thread 1 performs a blocking I/O operation: 

vCPU1 vCPU2 vCPU1 vCPU2

Time 

vCPU1 vCPU2

vCPU1 vCPU2

Time 

vCPU1 vCPU2

vCPU1 starts I/O operation
I/O operation completes
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A Better Example for Threads

• Version of program with threads (loose syntax):
main() {

create_thread(ReadLargeFile, “pi.txt”);
create_thread(RenderUserInterface);

}
• What is the behavior here?

– Still respond to user input
– While reading file in the background
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Multithreaded Programs

• You know how to compile a C program and run the executable
– This creates a process that is executing that program

• Initially, this new process has one thread in its own address space
– With code, global variables, etc. as specified in the executable

• Q: How can we make a multithreaded process?
• A: Once the process starts, it issues system calls to create new threads

– These new threads are part of the process: they share its address space
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System Calls (“Syscalls”)

Compilers

Web Servers

Web Browsers

Databases
Email

Word Processing

Portable OS Library
System Call 

Interface
Portable OS Kernel

Platform support,  Device Drivers

x86 ARMPowerPC

Ethernet (1Gbs/10Gbs) 802.11 a/g/n/ac ThunderboltGraphics

PCI
Hardware

Software

System

User
OS

Application / Service

“But, I’ve never seen a 
syscall!”
• OS library issues system 

call
• Language runtime uses 

OS library…
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OS Library Issues Syscalls

OS

Appln login Window 
Manager

…
OS library OS library OS librarylibc



15

OS Library API for Threads: pthreads

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine)(void*), void *arg);

– thread is created executing start_routine with arg as its sole argument.
– return is implicit call to pthread_exit

void pthread_exit(void *value_ptr);
– terminates the thread and makes value_ptr available to any successful join

int pthread_join(pthread_t thread, void **value_ptr);
– suspends execution of the calling thread until the target thread terminates.
– On return with a non-NULL value_ptr the value passed to pthread_exit() by the 

terminating thread is made available in the location referenced by value_ptr.

prompt% man pthread
https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread.h.html

https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread_exit.html
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Peeking Ahead: System Call Example

• What happens when pthread_create(…) is called in a process?
Library:

int pthread_create(…) {
Do some work like a normal fn…

asm code … syscall # into %eax
put args into registers %ebx, …
special trap instruction

get return values from regs
Do some more work like a normal fn…

};

get args from regs
dispatch to system func
Do the work to spawn the new thread
Store return value in %eax

Kernel:
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New Idea: Fork-Join Pattern

• Main thread creates (forks) collection of sub-threads passing them args to work 
on…

• … and then joins with them, collecting results.

create

exit

join
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Group Discussion:
pThreads Example

• How many threads are in this program?
• Does the main thread join with the threads in 

the same order that they were created?
• Do the threads exit in the same order they 

were created?
• If we run the program again, would the result 

change?

Discuss in groups of two to three students
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Thread State

• State shared by all threads in process/address space
– Content of memory (global variables, heap)
– I/O state (file descriptors, network connections, etc.)

• State “private” to each thread 
– Kept in TCB º Thread Control Block
– CPU registers (including, program counter)
– Execution stack – what is this?

• Execution Stack
– Parameters, temporary variables
– Return PCs are kept while called procedures are executing
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Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:
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Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=1
ret=exitStack

PointerA:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:
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Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=1
ret=exitStack

PointerA:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:
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Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=1
ret=exitStack

PointerA:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:
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Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=1
ret=exit

Stack
Pointer

B: ret=A+2
A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:
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Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=1
ret=exit

Stack
Pointer

B: ret=A+2
A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:
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Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=1
ret=exit

Stack
Pointer

B: ret=A+2

C: ret=B+1

A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:
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Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=1
ret=exit

Stack
Pointer

B: ret=A+2

C: ret=B+1

A: tmp=2
ret=C+1

Stack Growth

A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:
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Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=1
ret=exit

Stack
Pointer

B: ret=A+2

C: ret=B+1

A: tmp=2
ret=C+1

Stack Growth

Output: >2

A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:
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Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=1
ret=exit

Stack
Pointer

B: ret=A+2

C: ret=B+1

A: tmp=2
ret=C+1

Stack Growth

Output: >2

A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:
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Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=1
ret=exit

Stack
Pointer

B: ret=A+2

C: ret=B+1

Output: >2

A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:
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Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=1
ret=exit

Stack
Pointer

B: ret=A+2

Output: >2

A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:
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Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=1
ret=exitStack

Pointer

Output: >2 1  

A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:
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Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=1
ret=exitStack

Pointer

Output: >2 1  

A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:
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Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

Output: >2 1  
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Memory Layout with Two Threads

Code

Global Data

Heap

Stack 1

Stack 2

A
ddress Space

0x000…

0xFFF…
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INTERLEAVING AND NONDETERMINISM
(The beginning of a long discussion!)
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Thread Abstraction

• Illusion: Infinite number of processors
• Reality: Threads execute with variable “speed”

– Programs must be designed to work with any schedule

Programmer Abstraction Physical Reality

Threads

Processors
1 2 3 4 5 1 2

Running 
Threads

Ready 
Threads

1       2          3        4        5 1       2         3        4        5
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Programmer vs. Processor View

Programmer’s 
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Possible Executions

Thread 1
Thread 2
Thread 3

Thread 1
Thread 2
Thread 3

Thread 1
Thread 2
Thread 3

a) One execution b) Another execution

c) Another execution
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Correctness with Concurrent Threads

• Non-determinism:
– Scheduler can run threads in any order
– Scheduler can switch threads at any time
– This can make testing very difficult

• Independent Threads
– No state shared with other threads
– Deterministic, reproducible conditions

• Cooperating Threads
– Shared state between multiple threads

• Goal: Correctness by Design
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Race Conditions

• Initially x == 0 and y == 0

• What are the possible values of x below after all threads finish?
• Must be 1. Thread B does not interfere

Thread A
x = 1;

Thread B
y = 2;
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Race Conditions

• Initially x == 0 and y == 0

• What are the possible values of x below? 
• 1 or 3 or 5 (non-deterministically)
• Race Condition: Thread A races against Thread B!

Thread A
x = y + 1;

Thread B
y = 2;
y = y * 2;
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Example: Shared Data Structure

Thread A
Insert(3)

Thread B
Insert(4)
Get(6)

Tree-Based Set Data Structure
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Relevant Definitions

• Synchronization: Coordination among threads, usually regarding shared data

• Mutual Exclusion: Ensuring only one thread does a particular thing at a time (one 
thread excludes the others)

– Type of synchronization

• Critical Section: Code exactly one thread can execute at once
– Result of mutual exclusion

• Lock: An object only one thread can hold at a time
– Provides mutual exclusion
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Locks

• Locks provide two atomic operations:
– Lock.acquire() – wait until lock is free; then mark it as busy

» After this returns, we say the calling thread holds the lock
– Lock.release() – mark lock as free

» Should only be called by a thread that currently holds the lock
» After this returns, the calling thread no longer holds the lock

• For now, don’t worry about how to implement locks!
– We’ll cover that in substantial depth later on in the class
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Thread A
Insert(3)
• Lock.acquire()
• Insert 3 into 

the data 
structure

• Lock.release()

Thread B
Insert(4)
• Lock.acquire()
• Insert 4 into 

the data 
structure

• Lock.release()

Get(6)
• Lock.acquire()
• Check for 

membership
• Lock.release()

Tree-Based Set Data Structure
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OS Library Locks: pthreads

int pthread_mutex_init(pthread_mutex_t *mutex,
const pthread_mutexattr_t *attr)

int pthread_mutex_lock(pthread_mutex_t *mutex);  
int pthread_mutex_unlock(pthread_mutex_t *mutex);
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Our Example

Critical section
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Semaphores: A quick look

• Semaphores are a kind of generalized lock
– First defined by Dijkstra in late 60s
– Main synchronization primitive used in original UNIX (& Pintos)

• Definition: a Semaphore has a non-negative integer value and supports the 
following two operations:
– P() or down(): atomic operation that waits for semaphore to become positive, 

then decrements it by 1 
– V() or up(): an atomic operation that increments the semaphore by 1, waking up 

a waiting P, if any

P() stands for “proberen” (to test) and V() stands for “verhogen” (to increment) in Dutch
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Two Semaphore Patterns

• Mutual Exclusion: (like lock)
– Called a "binary semaphore“ or “mutex”

initial value of semaphore = 1; 
semaphore.down(); 

// Critical section goes here
semaphore.up();

• Signaling other threads, e.g.  ThreadJoin

Initial value of semaphore = 0

ThreadJoin {
semaphore.down();

}

ThreadFinish {
semaphore.up();

}
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Processes
• Definition: execution environment with

restricted rights
– One or more threads executing in a single

address space
– Owns file descriptors, network connections

• Instance of a running program
– When you run an executable, it runs in its

own process
– Application: one or more processes

working together
• Protected from each other; OS protected from them
• In modern OSes, anything that runs outside of the kernel runs in a process
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Creating Processes

• pid_t fork() – copy the current process
– New process has different pid
– New process contains a single thread

• Return value from fork(): pid (like an integer)
– When > 0: 

» Running in (original) Parent process
» return value is pid of new child

– When = 0: 
» Running in new Child process

– When < 0:
» Error!  Must handle somehow
» Running in original process

• State of original process duplicated in both Parent and Child!
– Address Space (Memory), File Descriptors (covered later), etc…
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fork_race.c
int i;
pid_t cpid = fork();
if (cpid > 0) {
for (i = 0; i < 10; i++) {
printf("Parent: %d\n", i);
// sleep(1);

}
} else if (cpid == 0) {
for (i = 0; i > -10; i--) {
printf("Child: %d\n", i);
// sleep(1);

}
} else { /* ERROR! */ }

• Group discussion
– What does this print?
– Would adding the calls to sleep() matter?

Parent Process
Runs HERE!

Child Process
Runs HERE!
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Start new Program with exec
…
cpid = fork();
if (cpid > 0) {               /* Parent Process */
tcpid = wait(&status);

} else if (cpid == 0) {      /* Child Process */
char *args[] = {“ls”, “-l”, NULL};
execv(“/bin/ls”, args);

/* execv doesn’t return when it works.
So, if we got here, it failed! */

perror(“execv”);
exit(1);

}
…
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main() {

…

}

exec

wait

Starting New Program (for instance in Shell)

pid=fork();
if (pid==0)
exec(…);

else
wait(&stat)

parent

child
pid=fork();
if (pid==0)
exec(…);

else
wait(&stat)

fork

fork

pid=fork();
if (pid==0)
exec(…);

else
wait(&stat)
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Finishing up: Process Management API

• exit – terminate a process

• fork – copy the current process

• exec – change the program being run by the current process

• wait – wait for a process to finish

• kill – send a signal (interrupt-like notification) to another process

• sigaction – set handlers for signals
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fork2.c – parent waits for child to finish
int status;
pid_t tcpid;
…
cpid = fork();
if (cpid > 0) {               /* Parent Process */
mypid = getpid();
printf("[%d] parent of [%d]\n", mypid, cpid);
tcpid = wait(&status);
printf("[%d] bye %d(%d)\n", mypid, tcpid, status);

} else if (cpid == 0) {      /* Child Process */
mypid = getpid();
printf("[%d] child\n", mypid);
exit(42);

}
…
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Finishing up: Process Management API

• exit – terminate a process

• fork – copy the current process

• exec – change the program being run by the current process

• wait – wait for a process to finish

• kill – send a signal (interrupt-like notification) to another process

• sigaction – set handlers for signals
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inf_loop.c
#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <signal.h>

void signal_callback_handler(int signum) {
printf(“Caught signal!\n”);
exit(1);

}
int main() {
struct sigaction sa;
sa.sa_flags = 0;
sigemptyset(&sa.sa_mask);
sa.sa_handler = signal_callback_handler;
sigaction(SIGINT, &sa, NULL);
while (1) {}

}
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Process vs. Thread APIs

• Why have fork() and exec() system calls for processes, but just a 
pthread_create() function for threads?

– Convenient to fork without exec: put code for parent and child in one executable 
instead of multiple

– It will allow us to programmatically control child process’ state
» By executing code before calling exec() in the child

– We’ll see this in the case of File I/O later

• Windows uses CreateProcess() instead of fork()
– Also works, but a more complicated interface
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Group Discussion

• Topic: Threads vs. Processes
– If we have two tasks to run concurrently, do we run them in separate threads, 

or do we run them in separate processes?
– What are the pros and cons?

• Discuss in groups of two to three students
– Each group chooses a leader to summarize the discussion
– In your group discussion, please do not dominate the discussion, and give 

everyone a chance to speak
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Conclusion

• Threads are the OS unit of concurrency
– Abstraction of a virtual CPU core
– Can use pthread_create, etc., to manage threads within a process
– They share data → need synchronization to avoid data races

• Processes consist of one or more threads in an address space
– Abstraction of the machine: execution environment for a program
– Can use fork, exec, etc. to manage threads within a process

• We saw the role of the OS library
– Provide API to programs
– Interface with the OS to request services


