
Xin Jin
Spring 2022

Acknowledgments: Ion Stoica, Berkeley CS 162

Operating Systems
(Honor Track)

Abstractions 1: Threads and Processes
A quick, programmer’s viewpoint

2

Recall: Four fundamental OS concepts
• Thread

– Single unique execution context
– Program Counter, Registers, Execution Flags, Stack

• Address Space w/ translation
– Programs execute in an address space that is distinct from the

memory space of the physical machine
• Process

– An instance of an executing program is a process consisting of an
address space and one or more threads of control

• Dual Mode operation/protection
– Only the “system” has the ability to access certain resources
– The OS and the hardware are protected from user programs and

user programs are isolated from one another by controlling the
translation from program virtual addresses to machine physical
addresses

3

• Operating systems must handle multiple things at once (MTAO)
– Processes, interrupts, background system maintenance

• Networked servers must handle MTAO
– Multiple connections handled simultaneously

• Parallel programs must handle MTAO
– To achieve better performance

• Programs with user interface often must handle MTAO
– To achieve user responsiveness while doing computation

• Network and disk bound programs must handle MTAO
– To hide network/disk latency
– Sequence steps in access or communication

Motivation for Threads

4

Threads Allow Handling MTAO

• Threads are a unit of concurrency provided by the OS
• Each thread can represent one thing or one task

5

Multiprocessing vs. Multiprogramming
• Some Definitions:

– Multiprocessing: Multiple CPUs (cores)
– Multiprogramming: Multiple jobs/processes
– Multithreading: Multiple threads/processes

• What does it mean to run two threads concurrently?
– Scheduler is free to run threads in any order and interleaving
– Thread may run to completion or time-slice in big chunks or small chunks

A B C

BA ACB C BMultiprogramming

A
B
C

Multiprocessing

6

Concurrency is not Parallelism

• Concurrency is about handling multiple things at once (MTAO)
• Parallelism is about doing multiple things simultaneously

• Example: Two threads on a single-core system...
– … execute concurrently …
– … but not in parallel

• Each thread handles or manages a separate thing or task…
• But those tasks are not necessarily executing simultaneously!

7

Silly Example for Threads

• Imagine the following program:
main() {

ComputePI(“pi.txt”);
PrintClassList(“classlist.txt”);

}

• What is the behavior here?
– Program would never print out class list

• Why?
– ComputePI would never finish

8

Adding Threads

• Version of program with threads (loose syntax):
main() {

create_thread(ComputePI, “pi.txt”);
create_thread(PrintClassList, “classlist.txt”);

}
• create_thread: Spawns a new thread running the given procedure

– Should behave as if another CPU is running the given procedure

• Now, you would actually see the
class list

CPU1 CPU2 CPU1 CPU2

Time

CPU1 CPU2

9

Threads Mask I/O Latency

• A thread is in one of the following three states:
– RUNNING – running
– READY – eligible to run, but not currently running
– BLOCKED – ineligible to run

• If a thread is waiting for an I/O to finish, the OS marks it as BLOCKED
• Once the I/O finally finishes, the OS marks it as READY

vCPU1 vCPU2 vCPU1 vCPU2

Time

vCPU1 vCPU2

10

Threads Mask I/O Latency
• If no thread performs I/O:

• If thread 1 performs a blocking I/O operation:

vCPU1 vCPU2 vCPU1 vCPU2

Time

vCPU1 vCPU2

vCPU1 vCPU2

Time

vCPU1 vCPU2

vCPU1 starts I/O operation
I/O operation completes

11

A Better Example for Threads

• Version of program with threads (loose syntax):
main() {

create_thread(ReadLargeFile, “pi.txt”);
create_thread(RenderUserInterface);

}
• What is the behavior here?

– Still respond to user input
– While reading file in the background

12

Multithreaded Programs

• You know how to compile a C program and run the executable
– This creates a process that is executing that program

• Initially, this new process has one thread in its own address space
– With code, global variables, etc. as specified in the executable

• Q: How can we make a multithreaded process?
• A: Once the process starts, it issues system calls to create new threads

– These new threads are part of the process: they share its address space

13

System Calls (“Syscalls”)

Compilers

Web Servers

Web Browsers

Databases
Email

Word Processing

Portable OS Library
System Call

Interface
Portable OS Kernel

Platform support, Device Drivers

x86 ARMPowerPC

Ethernet (1Gbs/10Gbs) 802.11 a/g/n/ac ThunderboltGraphics

PCI
Hardware

Software

System

User
OS

Application / Service

“But, I’ve never seen a
syscall!”
• OS library issues system

call
• Language runtime uses

OS library…

14

OS Library Issues Syscalls

OS

Appln login Window
Manager

…
OS library OS library OS librarylibc

15

OS Library API for Threads: pthreads

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine)(void*), void *arg);

– thread is created executing start_routine with arg as its sole argument.
– return is implicit call to pthread_exit

void pthread_exit(void *value_ptr);
– terminates the thread and makes value_ptr available to any successful join

int pthread_join(pthread_t thread, void **value_ptr);
– suspends execution of the calling thread until the target thread terminates.
– On return with a non-NULL value_ptr the value passed to pthread_exit() by the

terminating thread is made available in the location referenced by value_ptr.

prompt% man pthread
https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread.h.html

https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread_exit.html

16

Peeking Ahead: System Call Example

• What happens when pthread_create(…) is called in a process?
Library:

int pthread_create(…) {
Do some work like a normal fn…

asm code … syscall # into %eax
put args into registers %ebx, …
special trap instruction

get return values from regs
Do some more work like a normal fn…

};

get args from regs
dispatch to system func
Do the work to spawn the new thread
Store return value in %eax

Kernel:

17

New Idea: Fork-Join Pattern

• Main thread creates (forks) collection of sub-threads passing them args to work
on…

• … and then joins with them, collecting results.

create

exit

join

18

Group Discussion:
pThreads Example

• How many threads are in this program?
• Does the main thread join with the threads in

the same order that they were created?
• Do the threads exit in the same order they

were created?
• If we run the program again, would the result

change?

Discuss in groups of two to three students

19

Thread State

• State shared by all threads in process/address space
– Content of memory (global variables, heap)
– I/O state (file descriptors, network connections, etc.)

• State “private” to each thread
– Kept in TCB º Thread Control Block
– CPU registers (including, program counter)
– Execution stack – what is this?

• Execution Stack
– Parameters, temporary variables
– Return PCs are kept while called procedures are executing

20

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

21

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=1
ret=exitStack

PointerA:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

22

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=1
ret=exitStack

PointerA:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

23

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=1
ret=exitStack

PointerA:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

24

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=1
ret=exit

Stack
Pointer

B: ret=A+2
A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

25

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=1
ret=exit

Stack
Pointer

B: ret=A+2
A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

26

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=1
ret=exit

Stack
Pointer

B: ret=A+2

C: ret=B+1

A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

27

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=1
ret=exit

Stack
Pointer

B: ret=A+2

C: ret=B+1

A: tmp=2
ret=C+1

Stack Growth

A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

28

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=1
ret=exit

Stack
Pointer

B: ret=A+2

C: ret=B+1

A: tmp=2
ret=C+1

Stack Growth

Output: >2

A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

29

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=1
ret=exit

Stack
Pointer

B: ret=A+2

C: ret=B+1

A: tmp=2
ret=C+1

Stack Growth

Output: >2

A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

30

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=1
ret=exit

Stack
Pointer

B: ret=A+2

C: ret=B+1

Output: >2

A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

31

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=1
ret=exit

Stack
Pointer

B: ret=A+2

Output: >2

A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

32

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=1
ret=exitStack

Pointer

Output: >2 1

A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

33

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=1
ret=exitStack

Pointer

Output: >2 1

A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

34

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

Output: >2 1

35

Memory Layout with Two Threads

Code

Global Data

Heap

Stack 1

Stack 2

A
ddress Space

0x000…

0xFFF…

36

INTERLEAVING AND NONDETERMINISM
(The beginning of a long discussion!)

37

Thread Abstraction

• Illusion: Infinite number of processors
• Reality: Threads execute with variable “speed”

– Programs must be designed to work with any schedule

Programmer Abstraction Physical Reality

Threads

Processors
1 2 3 4 5 1 2

Running
Threads

Ready
Threads

1 2 3 4 5 1 2 3 4 5

38

Programmer vs. Processor View

Programmer’s
View

.

.

.
x = x + 1;
y = y + x;
z = x +5y;

.

.

.

Possible
Execution

#1
.
.
.

x = x + 1;
y = y + x;

z = x + 5y;
.
.
.

Possible
Execution

#2
.
.
.

x = x + 1
..............

thread is suspended
other thread(s) run
thread is resumed

...............
y = y + x

z = x + 5y

Possible
Execution

#3
.
.
.

x = x + 1
y = y + x
...............

thread is suspended
other thread(s) run
thread is resumed

................
z = x + 5y

Programmer’s
View

.

.

.
x = x + 1;
y = y + x;
z = x +5y;

.

.

.

Possible
Execution

#1
.
.
.

x = x + 1;
y = y + x;

z = x + 5y;
.
.
.

Possible
Execution

#2
.
.
.

x = x + 1
..............

thread is suspended
other thread(s) run
thread is resumed

...............
y = y + x

z = x + 5y

Possible
Execution

#3
.
.
.

x = x + 1
y = y + x
...............

thread is suspended
other thread(s) run
thread is resumed

................
z = x + 5y

Programmer’s
View

.

.

.
x = x + 1;
y = y + x;
z = x +5y;

.

.

.

Possible
Execution

#1
.
.
.

x = x + 1;
y = y + x;

z = x + 5y;
.
.
.

Possible
Execution

#2
.
.
.

x = x + 1
..............

thread is suspended
other thread(s) run
thread is resumed

...............
y = y + x

z = x + 5y

Possible
Execution

#3
.
.
.

x = x + 1
y = y + x
...............

thread is suspended
other thread(s) run
thread is resumed

................
z = x + 5y

Programmer’s
View

.

.

.
x = x + 1;
y = y + x;
z = x +5y;

.

.

.

Possible
Execution

#1
.
.
.

x = x + 1;
y = y + x;

z = x + 5y;
.
.
.

Possible
Execution

#2
.
.
.

x = x + 1
..............

thread is suspended
other thread(s) run
thread is resumed

...............
y = y + x

z = x + 5y

Possible
Execution

#3
.
.
.

x = x + 1
y = y + x
...............

thread is suspended
other thread(s) run
thread is resumed

................
z = x + 5y

39

Possible Executions

Thread 1
Thread 2
Thread 3

Thread 1
Thread 2
Thread 3

Thread 1
Thread 2
Thread 3

a) One execution b) Another execution

c) Another execution

40

Correctness with Concurrent Threads

• Non-determinism:
– Scheduler can run threads in any order
– Scheduler can switch threads at any time
– This can make testing very difficult

• Independent Threads
– No state shared with other threads
– Deterministic, reproducible conditions

• Cooperating Threads
– Shared state between multiple threads

• Goal: Correctness by Design

41

Race Conditions

• Initially x == 0 and y == 0

• What are the possible values of x below after all threads finish?
• Must be 1. Thread B does not interfere

Thread A
x = 1;

Thread B
y = 2;

42

Race Conditions

• Initially x == 0 and y == 0

• What are the possible values of x below?
• 1 or 3 or 5 (non-deterministically)
• Race Condition: Thread A races against Thread B!

Thread A
x = y + 1;

Thread B
y = 2;
y = y * 2;

43

Example: Shared Data Structure

Thread A
Insert(3)

Thread B
Insert(4)
Get(6)

Tree-Based Set Data Structure

44

Relevant Definitions

• Synchronization: Coordination among threads, usually regarding shared data

• Mutual Exclusion: Ensuring only one thread does a particular thing at a time (one
thread excludes the others)

– Type of synchronization

• Critical Section: Code exactly one thread can execute at once
– Result of mutual exclusion

• Lock: An object only one thread can hold at a time
– Provides mutual exclusion

45

Locks

• Locks provide two atomic operations:
– Lock.acquire() – wait until lock is free; then mark it as busy

» After this returns, we say the calling thread holds the lock
– Lock.release() – mark lock as free

» Should only be called by a thread that currently holds the lock
» After this returns, the calling thread no longer holds the lock

• For now, don’t worry about how to implement locks!
– We’ll cover that in substantial depth later on in the class

46

Thread A
Insert(3)
• Lock.acquire()
• Insert 3 into

the data
structure

• Lock.release()

Thread B
Insert(4)
• Lock.acquire()
• Insert 4 into

the data
structure

• Lock.release()

Get(6)
• Lock.acquire()
• Check for

membership
• Lock.release()

Tree-Based Set Data Structure

47

OS Library Locks: pthreads

int pthread_mutex_init(pthread_mutex_t *mutex,
const pthread_mutexattr_t *attr)

int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);

48

Our Example

Critical section

49

Semaphores: A quick look

• Semaphores are a kind of generalized lock
– First defined by Dijkstra in late 60s
– Main synchronization primitive used in original UNIX (& Pintos)

• Definition: a Semaphore has a non-negative integer value and supports the
following two operations:
– P() or down(): atomic operation that waits for semaphore to become positive,

then decrements it by 1
– V() or up(): an atomic operation that increments the semaphore by 1, waking up

a waiting P, if any

P() stands for “proberen” (to test) and V() stands for “verhogen” (to increment) in Dutch

50

Two Semaphore Patterns

• Mutual Exclusion: (like lock)
– Called a "binary semaphore“ or “mutex”

initial value of semaphore = 1;
semaphore.down();

// Critical section goes here
semaphore.up();

• Signaling other threads, e.g. ThreadJoin

Initial value of semaphore = 0

ThreadJoin {
semaphore.down();

}

ThreadFinish {
semaphore.up();

}

51

Processes
• Definition: execution environment with

restricted rights
– One or more threads executing in a single

address space
– Owns file descriptors, network connections

• Instance of a running program
– When you run an executable, it runs in its

own process
– Application: one or more processes

working together
• Protected from each other; OS protected from them
• In modern OSes, anything that runs outside of the kernel runs in a process

52

Creating Processes

• pid_t fork() – copy the current process
– New process has different pid
– New process contains a single thread

• Return value from fork(): pid (like an integer)
– When > 0:

» Running in (original) Parent process
» return value is pid of new child

– When = 0:
» Running in new Child process

– When < 0:
» Error! Must handle somehow
» Running in original process

• State of original process duplicated in both Parent and Child!
– Address Space (Memory), File Descriptors (covered later), etc…

53

fork_race.c
int i;
pid_t cpid = fork();
if (cpid > 0) {
for (i = 0; i < 10; i++) {
printf("Parent: %d\n", i);
// sleep(1);

}
} else if (cpid == 0) {
for (i = 0; i > -10; i--) {
printf("Child: %d\n", i);
// sleep(1);

}
} else { /* ERROR! */ }

• Group discussion
– What does this print?
– Would adding the calls to sleep() matter?

Parent Process
Runs HERE!

Child Process
Runs HERE!

54

Start new Program with exec
…
cpid = fork();
if (cpid > 0) { /* Parent Process */
tcpid = wait(&status);

} else if (cpid == 0) { /* Child Process */
char *args[] = {“ls”, “-l”, NULL};
execv(“/bin/ls”, args);

/* execv doesn’t return when it works.
So, if we got here, it failed! */

perror(“execv”);
exit(1);

}
…

55

main() {

…

}

exec

wait

Starting New Program (for instance in Shell)

pid=fork();
if (pid==0)
exec(…);

else
wait(&stat)

parent

child
pid=fork();
if (pid==0)
exec(…);

else
wait(&stat)

fork

fork

pid=fork();
if (pid==0)
exec(…);

else
wait(&stat)

56

Finishing up: Process Management API

• exit – terminate a process

• fork – copy the current process

• exec – change the program being run by the current process

• wait – wait for a process to finish

• kill – send a signal (interrupt-like notification) to another process

• sigaction – set handlers for signals

57

fork2.c – parent waits for child to finish
int status;
pid_t tcpid;
…
cpid = fork();
if (cpid > 0) { /* Parent Process */
mypid = getpid();
printf("[%d] parent of [%d]\n", mypid, cpid);
tcpid = wait(&status);
printf("[%d] bye %d(%d)\n", mypid, tcpid, status);

} else if (cpid == 0) { /* Child Process */
mypid = getpid();
printf("[%d] child\n", mypid);
exit(42);

}
…

58

Finishing up: Process Management API

• exit – terminate a process

• fork – copy the current process

• exec – change the program being run by the current process

• wait – wait for a process to finish

• kill – send a signal (interrupt-like notification) to another process

• sigaction – set handlers for signals

59

inf_loop.c
#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <signal.h>

void signal_callback_handler(int signum) {
printf(“Caught signal!\n”);
exit(1);

}
int main() {
struct sigaction sa;
sa.sa_flags = 0;
sigemptyset(&sa.sa_mask);
sa.sa_handler = signal_callback_handler;
sigaction(SIGINT, &sa, NULL);
while (1) {}

}

61

Process vs. Thread APIs

• Why have fork() and exec() system calls for processes, but just a
pthread_create() function for threads?

– Convenient to fork without exec: put code for parent and child in one executable
instead of multiple

– It will allow us to programmatically control child process’ state
» By executing code before calling exec() in the child

– We’ll see this in the case of File I/O later

• Windows uses CreateProcess() instead of fork()
– Also works, but a more complicated interface

62

Group Discussion

• Topic: Threads vs. Processes
– If we have two tasks to run concurrently, do we run them in separate threads,

or do we run them in separate processes?
– What are the pros and cons?

• Discuss in groups of two to three students
– Each group chooses a leader to summarize the discussion
– In your group discussion, please do not dominate the discussion, and give

everyone a chance to speak

63

Conclusion

• Threads are the OS unit of concurrency
– Abstraction of a virtual CPU core
– Can use pthread_create, etc., to manage threads within a process
– They share data → need synchronization to avoid data races

• Processes consist of one or more threads in an address space
– Abstraction of the machine: execution environment for a program
– Can use fork, exec, etc. to manage threads within a process

• We saw the role of the OS library
– Provide API to programs
– Interface with the OS to request services

