
Xin Jin
Spring 2022

Acknowledgments: Ion Stoica, Berkeley CS 162

Operating Systems
(Honor Track)

Abstractions 2: Files and I/O
A quick, programmer’s viewpoint

2

Today: The File Abstraction

• High-Level File I/O: Streams
• Low-Level File I/O: File Descriptors
• How and Why of High-Level File I/O
• Process State for File Descriptors
• Common Pitfalls with OS Abstractions [if time]

3

Unix/POSIX Idea: Everything is a “File”

• Identical interface for:
– Files on disk
– Devices (terminals, printers, etc.)
– Networking (sockets)
– Local interprocess communication (pipes, sockets)

• Based on the system calls open(), read(), write(), and close()
• Additional: ioctl() for custom configuration that doesn’t quite fit
• Note that the “Everything is a File” idea was a radical idea when proposed

– Dennis Ritchie and Ken Thompson described this idea in their seminal paper on UNIX
called “The UNIX Time-Sharing System” from 1974

4

Note: What does POSIX stand for?

• POSIX: Portable Operating System Interface (for uniX?)
– Interface for application programmers (mostly)
– Defines the term “Unix,” derived from AT&T Unix
– Created to bring order to many Unix-derived OSes, so applications are portable

» Partially available on non-Unix OSes, like Windows

– Requires standard system call interface

5

The File System Abstraction
• File

– Named collection of data in a file system
– POSIX File data: sequence of bytes

» Could be text, binary, serialized objects, …
– File Metadata: information about the file

» Size, Modification Time, Owner, etc.

• Directory
– “Folder” containing files & directories
– Hierachical (graphical) naming

» Path through the directory graph
» Uniquely identifies a file or directory

• /home/ff/pkuos/public_html/sp22/index.html
– Links and Volumes (later)

6

Connecting Processes, File Systems, and Users
• Every process has a current working directory (CWD)

– Can be set with system call:
int chdir(const char *path); //change CWD

• Absolute paths ignore CWD
– /home/ff/pkuos

• Relative paths are relative to CWD
– index.html, ./index.html

» Refers to index.html in current working directory
– ../index.html

» Refers to index.html in parent of current working directory
– ~/index.html

» Refers to index.html in the home directory

7

I/O and Storage Layers

High Level I/O

Low Level I/O
Syscall

File System

I/O Driver

Application / Service

Streams

File Descriptors
open(), read(), write(), close(), …

Files/Directories/Indexes

Commands and Data Transfers

Disks, Flash, Controllers, DMA

Open File Descriptions

8

C High-Level File API – Streams
• Operates on “streams” – unformatted sequences of bytes (whether text or

binary data), with a position:

• Open stream represented by pointer to a FILE data structure
– Error reported by returning a NULL pointer

#include <stdio.h>
FILE *fopen(const char *filename, const char *mode);
int fclose(FILE *fp);

Mode Text Binary Descriptions

r rb Open existing file for reading
w wb Open for writing; created if does not exist
a ab Open for appending; created if does not exist
r+ rb+ Open existing file for reading & writing.
w+ wb+ Open for reading & writing; truncated to zero if exists, create otherwise
a+ ab+ Open for reading & writing. Created if does not exist. Read from beginning, write as

append

9

C API Standard Streams – stdio.h
• Three predefined streams are opened implicitly when the program is executed.

– FILE *stdin – normal source of input, can be redirected
– FILE *stdout – normal source of output, can too
– FILE *stderr – diagnostics and errors

• STDIN / STDOUT enable composition in Unix

• All can be redirected
– cat hello.txt | grep “World!”
– cat’s stdout goes to grep’s stdin

10

// character oriented
int fputc(int c, FILE *fp); // rtn c or EOF on err
int fputs(const char *s, FILE *fp); // rtn > 0 or EOF

int fgetc(FILE * fp);
char *fgets(char *buf, int n, FILE *fp);

// block oriented
size_t fread(void *ptr, size_t size_of_elements,

size_t number_of_elements, FILE *a_file);
size_t fwrite(const void *ptr, size_t size_of_elements,

size_t number_of_elements, FILE *a_file);

// formatted
int fprintf(FILE *restrict stream, const char *restrict format, ...);
int fscanf(FILE *restrict stream, const char *restrict format, ...);

C High-Level File API

11

C Streams: Char-by-Char I/O
int main(void) {

FILE* input = fopen(“input.txt”, “r”);
FILE* output = fopen(“output.txt”, “w”);
int c;

c = fgetc(input);
while (c != EOF) {
fputc(c, output);
c = fgetc(input);

}
fclose(input);
fclose(output);

}

12

// character oriented
int fputc(int c, FILE *fp); // rtn c or EOF on err
int fputs(const char *s, FILE *fp); // rtn > 0 or EOF

int fgetc(FILE * fp);
char *fgets(char *buf, int n, FILE *fp);

// block oriented
size_t fread(void *ptr, size_t size_of_elements,

size_t number_of_elements, FILE *a_file);
size_t fwrite(const void *ptr, size_t size_of_elements,

size_t number_of_elements, FILE *a_file);

// formatted
int fprintf(FILE *restrict stream, const char *restrict format, ...);
int fscanf(FILE *restrict stream, const char *restrict format, ...);

C High-Level File API

13

C Streams: Block-by-Block I/O
#define BUFFER_SIZE 1024
int main(void) {

FILE* input = fopen("input.txt", "r");
FILE* output = fopen("output.txt", "w");
char buffer[BUFFER_SIZE];
size_t length;
length = fread(buffer, BUFFER_SIZE, sizeof(char), input);
while (length > 0) {
fwrite(buffer, length, sizeof(char), output);
length = fread(buffer, BUFFER_SIZE, sizeof(char), input);

}
fclose(input);
fclose(output);

}

14

Aside: System Programming
• Systems programmers should always be paranoid!

– Otherwise you get intermittently buggy code
• We should really be writing things like:

FILE* input = fopen(“input.txt”, “r”);
if (input == NULL) {
// Prints our string and error msg.
perror(“Failed to open input file”);

}

• Be thorough about checking return values!
– Want failures to be systematically caught and dealt with

• I may be a bit loose with error checking for examples in class (to keep short)
– Do as I say, not as I show in class!

15

C High-Level File API: Positioning The Pointer
int fseek(FILE *stream, long int offset, int whence); // Reposition stream
position indicator
long int ftell (FILE *stream) // Get current position in stream
void rewind (FILE *stream) // Set position of stream to the beginning

• For fseek(), the offset is interpreted based on the whence argument
(constants in stdio.h):
– SEEK_SET: Then offset interpreted from beginning (position 0)
– SEEK_END: Then offset interpreted backwards from end of file
– SEEK_CUR: Then offset interpreted from current position

• Overall preserves high-level abstraction of a uniform stream of objects
offset (SEEK_CUR)

offset (SEEK_SET) offset (SEEK_END)

whence

16

Today: The File Abstraction

• High-Level File I/O: Streams
• Low-Level File I/O: File Descriptors
• How and Why of High-Level File I/O
• Process State for File Descriptors
• Common Pitfalls with OS Abstractions

17

Key Unix I/O Design Concepts
• Uniformity – everything is a file

– file operations, device I/O, and interprocess communication through open, read/write, close
– Allows simple composition of programs

» find | grep | wc …
• Open before use

– Provides opportunity for access control and arbitration
– Sets up the underlying machinery, i.e., data structures

• Byte-oriented
– Even if blocks are transferred, addressing is in bytes

• Kernel buffered reads
– Streaming and block devices looks the same, read blocks yielding processor to other task

• Kernel buffered writes
– Completion of out-going transfer decoupled from the application, allowing it to continue

• Explicit close

18

Low-Level File I/O: The RAW system-call interface

• Integer return from open() is a file descriptor
– Error indicated by return < 0: the global errno variable set with error (see man pages)

• Operations on file descriptors:
– Open system call created an open file description entry in system-wide table of open files
– Open file description object in the kernel represents an instance of an open file
– Why give user an integer instead of a pointer to the file description in kernel?

#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>

int open (const char *filename, int flags [, mode_t mode])
int creat (const char *filename, mode_t mode)
int close (int filedes)

Bit vector of:
• Access modes (Rd, Wr, …)
• Open Flags (Create, …)
• Operating modes (Appends, …)

Bit vector of Permission Bits:
• User|Group|Other X R|W|X

19

C Low-Level (pre-opened) Standard Descriptors

#include <unistd.h>
STDIN_FILENO - macro has value 0
STDOUT_FILENO - macro has value 1
STDERR_FILENO - macro has value 2

// Get file descriptor inside FILE *
int fileno (FILE *stream)

// Make FILE * from descriptor
FILE * fdopen (int filedes, const char *opentype)

20

Low-Level File API
• Read data from open file using file descriptor:

ssize_t read (int filedes, void *buffer, size_t maxsize)

– Reads up to maxsize bytes – might actually read less!
– returns bytes read, 0 => EOF, -1 => error

• Write data to open file using file descriptor

ssize_t write (int filedes, const void *buffer, size_t size)

– returns number of bytes written

• Reposition file offset within kernel (this is independent of any position held by high-
level FILE descriptor for this file!

off_t lseek (int filedes, off_t offset, int whence)

21

Example: lowio.c

int main() {
char buf[1000];
int fd = open("lowio.c", O_RDONLY, S_IRUSR | S_IWUSR);
ssize_t rd = read(fd, buf, sizeof(buf));
int err = close(fd);
ssize_t wr = write(STDOUT_FILENO, buf, rd);

}

• How many bytes does this program read?

22

POSIX I/O: Design Patterns

• Open before use
– Access control check, setup happens here

• Byte-oriented
– Least common denominator
– OS responsible for hiding the fact that real devices may not work this way (e.g. hard

drive stores data in blocks)

• Explicit close

23

POSIX I/O: Kernel Buffering

• Reads are buffered inside kernel
– Part of making everything byte-oriented
– Process is blocked while waiting for device
– Let other processes run while gathering result

• Writes are buffered inside kernel
– Complete in background (more later on)
– Return to user when data is “handed off” to kernel

• This buffering is part of global buffer management and caching for block devices
(such as disks)

– Items typically cached in quanta of disk block sizes
– We will have many interesting things to say about this buffering when we dive into

the kernel

24

Low-Level I/O: Other Operations
• Operations specific to terminals, devices, networking, …

– e.g., ioctl

• Duplicating descriptors
– int dup2(int old, int new);
– int dup(int old);

• Pipes – channel
– int pipe(int pipefd[2]);
– Writes to pipefd[1] can be read from pipefd[0]

• File Locking
• Memory-Mapping Files
• Asynchronous I/O

25

Today: The File Abstraction

• High-Level File I/O: Streams
• Low-Level File I/O: File Descriptors
• How and Why of High-Level File I/O
• Process State for File Descriptors
• Some Pitfalls with OS Abstractions [if time]

26

High-Level vs. Low-Level File API

High-Level Operation:
size_t fread(…) {

Do some work like a normal fn…

asm code … syscall # into %eax
put args into registers %ebx, …
special trap instruction

get return values from regs
Do some more work like a normal fn…

};

Kernel:
get args from regs
dispatch to system func
Do the work to read from the file
Store return value in %eax

Low-Level Operation:
ssize_t read(…) {

asm code … syscall # into %eax
put args into registers %ebx, …
special trap instruction

get return values from regs

};

Kernel:
get args from regs
dispatch to system func
Do the work to read from the file
Store return value in %eax

27

High-Level vs. Low-Level File API

printf("Beginning of line ");
sleep(10); // sleep for 10 seconds
printf("and end of line\n");

write(STDOUT_FILENO, "Beginning of line ", 18);
sleep(10);
write("and end of line \n", 16);

Program 1 Program 2

• Group discussion
– What are the behaviors of the two programs? Why?

• Program 1
– Streams are buffered in user memory
– Prints out everything at once

• Program 2
– Operations on file descriptors are visible immediately
– Outputs "Beginning of line" 10 seconds earlier than “and end of line”

28

Conclusion

• POSIX idea: “everything is a file”
• All sorts of I/O managed by open/read/write/close

