
Acknowledgments: Ion Stoica, Berkeley CS 162

Xin Jin
Spring 2022

Operating Systems
(Honor Track)

Synchronization 1: Concurrency

3

Recap: I/O and Storage Layers

High Level I/O

Low Level I/O
Syscall

File System

I/O Driver

Application / Service

Streams

File Descriptors
open(), read(), write(), close(), …

Files/Directories/Indexes

Commands and Data Transfers

Disks, Flash, Controllers, DMA

Open File Descriptions

4

Recap: Why Buffer in Userspace? Overhead!

• Syscalls are more expensive than function calls
• read/write a file byte by byte? Max throughput of ~10MB/second
• With fgetc? Keeps up with your SSD

5

Recap: Why Buffer in Userspace? Functionality!

• System call operations less capable
– Simplifies kernel

• Example: No “read until new line” operation in kernel
–Why? Kernel agnostic about formatting!
– Solution: Make a big read syscall, find first new line in userspace

» i.e. use one of the following high-level options:

char *fgets(char *s, int size, FILE *stream);
ssize_t getline(char **lineptr, size_t *n, FILE *stream);

6

Recap: State Maintained by the Kernel
• Recall: On a successful call to open():

– A file descriptor (int) is returned to the user
– An open file description is created in the kernel

• For each process, kernel maintains mapping from file descriptor to open file
description

– On future system calls (e.g., read()), kernel looks up open file description using file
descriptor and uses it to service the system call:

char buffer1[100];
char buffer2[100];
int fd = open(“foo.txt”, O_RDONLY);
read(fd, buffer1, 100);
read(fd, buffer2, 100);

The kernel remembers that the int it
receives (stored in fd) corresponds to
foo.txt

The kernel picks up where it left off in
the file

7

Recap: Instead of Closing, let’s fork()!

User Space

Kernel Space

Address
Space

(Memory)

Thread’s
Regs

File Descriptors

Not shown: Initially
contains 0, 1, and 2
(stdin, stdout, stderr)

3
File: foo.txt
Position: 100

Process 1

Address
Space

(Memory)

Thread’s
Regs

File Descriptors
3

Process 2

… …

Open File Description

• File descriptor is copied
• Open file description is

aliased

8

Recap: Communication Between Processes
• Suppose we ask Kernel to help?

– Consider an in-memory queue
– Accessed via system calls (for security reasons):

• Data written by A is held in memory until B reads it
– Same interface as we use for files!
– Internally more efficient, since nothing goes to disk

• Some questions:
– How to set up?
– What if A generates data faster than B can consume it?
– What if B consumes data faster than A can produce it?

write(wfd, wbuf, wlen);

n = read(rfd, rbuf, rmax);

Process A Process BIn-Memory
Queue

9

Recap: The Socket Abstraction: Endpoint for Communication
• Key Idea: Communication across the world looks like File I/O

• Sockets: Endpoint for Communication
– Queues to temporarily hold results

• Connection: Two Sockets Connected Over the network Þ IPC over network!
– How to open()?
– What is the namespace?
– How are they connected in time?

write(wfd, wbuf, wlen);

n = read(rfd, rbuf, rmax);

SocketProcess

Socket Process

10

Recap: Sockets in concept
Client Server

read response

Close Client Socket

Create Client Socket

Connect it to server (host:port)

Create Server Socket

Bind it to an Address
(host:port)

Listen for Connection

Close Connection Socket

Close Server Socket

write request

write response

Accept syscall()
Connection SocketConnection Socket

read request

11

char *host_name, *port_name;

// Create a socket
struct addrinfo *server = lookup_host(host_name, port_name);
int sock_fd = socket(server->ai_family, server->ai_socktype,

server->ai_protocol);

// Connect to specified host and port
connect(sock_fd, server->ai_addr, server->ai_addrlen);

// Carry out Client-Server protocol
run_client(sock_fd);

/* Clean up on termination */
close(sock_fd);

Client Protocol
Address family, e.g.,
- AF_INET (IPv4)
- AF_INET6 (IPv6)

Socket type, e.g.,
- SOCK_STEAM
- SOCK_DGRAM

Protocol type, e.g.,
- IPPROTO_TC
- 0 (any protocol)

12

// Create socket to listen for client connections
char *port_name;
struct addrinfo *server = setup_address(port_name);
int server_socket = socket(server->ai_family,

server->ai_socktype, server->ai_protocol);
// Bind socket to specific port
bind(server_socket, server->ai_addr, server->ai_addrlen);
// Start listening for new client connections
listen(server_socket, MAX_QUEUE);

while (1) {
// Accept a new client connection, obtaining a new socket
int conn_socket = accept(server_socket, NULL, NULL);
serve_client(conn_socket);
close(conn_socket);

}
close(server_socket);

Server Protocol (v1)

13

How Could the Server Protect Itself?

• Handle each connection in a separate process

14

Sockets With Protection (each connection has own process)
Client Server

Create Client Socket

Connect it to server (host:port)

Create Server Socket

Bind it to an Address
(host:port)

Listen for Connection

Accept syscall()

Connection SocketConnection Socket

write request

read response

Close Client Socket

read request

write response

Close Connection Socket

Close Server Socket

Child

Close Connection SocketClose Listen Socket

Parent

Wait for child

15

// Socket setup code elided…
while (1) {

// Accept a new client connection, obtaining a new socket
int conn_socket = accept(server_socket, NULL, NULL);
pid_t pid = fork();
if (pid == 0) {

close(server_socket);
serve_client(conn_socket);
close(conn_socket);
exit(0);

} else {
close(conn_socket);
wait(NULL);

}
}
close(server_socket);

Server Protocol (v2)

16

Concurrent Server

• So far, in the server:
– Listen will queue requests
– Buffering present elsewhere
– But server waits for each connection to terminate before servicing the next

• A concurrent server can handle and service a new connection before the
previous client disconnects

17

Sockets With Protection and Concurrency
Client Server

Create Client Socket

Connect it to server (host:port)

Create Server Socket

Bind it to an Address
(host:port)

Listen for Connection

Accept syscall()

Connection SocketConnection Socket

write request

read response

Close Client Socket

read request

write response

Close Connection Socket Close Server Socket

Child

Close Connection SocketClose Listen Socket

Parent

18

// Socket setup code elided…
while (1) {

// Accept a new client connection, obtaining a new socket
int conn_socket = accept(server_socket, NULL, NULL);
pid_t pid = fork();
if (pid == 0) {

close(server_socket);
serve_client(conn_socket);
close(conn_socket);
exit(0);

} else {
close(conn_socket);
//wait(NULL);

}
}
close(server_socket);

Server Protocol (v3)

19

Concurrent Server without Protection

• Spawn a new thread to handle each connection
• Main thread initiates new client connections without waiting for previously

spawned threads
• Why give up the protection of separate processes?

– More efficient to create new threads
– More efficient to switch between threads

20

Client Server

Create Client Socket

Connect it to server (host:port)

Create Server Socket

Bind it to an Address
(host:port)

Listen for Connection

Accept syscall()

Connection SocketConnection Socket

write request

read response

Close Client Socket

read request

write response

Close Connection Socket
Close Server Socket

Spawned Thread

Main Thread

Sockets with Concurrency, without Protection

pthread_create

21

Thread Pools
• Problem with previous version: Unbounded Threads

– When web-site becomes too popular – throughput sinks
• Instead, allocate a bounded “pool” of worker threads, representing the

maximum level of multiprogramming

master() {
allocThreads(worker,queue);
while(TRUE) {

con=AcceptCon();
Enqueue(queue,con);
wakeUp(queue);

}
}

worker(queue) {
while(TRUE) {

con=Dequeue(queue);
if (con==null)

sleepOn(queue);
else

ServiceWebPage(con);
}

}

Master
Thread

Thread Pool

queue

22

Group Discussion

• Topic: Pipes vs. Sockets
– What is a pipe? What is a socket?
– What are similar between pipes and sockets?
– What are different between pipes and sockets?

• Discuss in groups of two to three students
– Each group chooses a leader to summarize the discussion
– In your group discussion, please do not dominate the discussion, and give

everyone a chance to speak

23

Agenda: Synchronization
• How does an OS provide concurrency through threads?

– Brief discussion of process/thread states and scheduling
– High-level discussion of how stacks contribute to concurrency

• Introduce needs for synchronization
• Discussion of Locks and Semaphores

24

• Kernel represents each process as a process control
block (PCB)

– Status (running, ready, blocked, …)
– Register state (when not ready)
– Process ID (PID), User, Executable, Priority, …
– Execution time, …
– Memory space, translation, …

• Kernel Scheduler maintains a data structure
containing the PCBs

– Give out CPU to different processes
– This is a Policy Decision

• Give out non-CPU resources
– Memory/IO
– Another policy decision

Process
Control
Block

Multiplexing Processes: The Process Control Block

25

Context Switch

Privilege Level: 0 - sysPrivilege Level: 3 - user Privilege Level: 3 - user

26

Lifecycle of a Process or Thread

• As a process executes, it changes state:
– new: The process/thread is being created
– ready: The process is waiting to run
– running: Instructions are being executed
– waiting: Process waiting for some event to occur
– terminated: The process has finished execution

27

Scheduling: All About Queues

• PCBs move from queue to queue
• Scheduling: which order to remove from queue

– Much more on this soon

28

Ready Queue And Various I/O Device Queues
• Process not running Þ PCB is in some scheduler queue

– Separate queue for each device/signal/condition
– Each queue can have a different scheduler policy

Other
State
PCB9

Link
Registers

Other
State
PCB6

Link
Registers

Other
State
PCB16

Link
Registers

Other
State
PCB8

Link
Registers

Other
State
PCB2

Link
Registers

Other
State
PCB3

Link
Registers

Head
Tail

Head
Tail

Head
Tail

Head
Tail

Head
Tail

Ready
Queue

USB
Unit 0

Disk
Unit 0

Disk
Unit 2

Ether
Netwk 0

29

Scheduler

• Scheduling: Mechanism for deciding which processes/threads
receive the CPU

• Lots of different scheduling policies provide …
– Fairness or
– Realtime guarantees or
– Latency optimization or ..

if (readyProcesses(PCBs)) {
nextPCB = selectProcess(PCBs);
run(nextPCB);

} else {
run_idle_process();

}

30

Recall: Single and Multithreaded Processes

• Threads encapsulate concurrency
• Address spaces encapsulate protection

– Keeps buggy program from trashing the system
• Why have multiple threads per address space?

31

Shared vs. Per-Thread State

State

Global
Variables

Heap

Code

Per−Thread
State

Stack

Saved
Registers

Thread Control
Block (TCB)

Thread
Metadata

Stack
Information

Per−Thread
State

Stack

Saved
Registers

Thread Control
Block (TCB)

Thread
Metadata

Stack
Information

Shared

32

The Core of Concurrency: the Dispatch Loop

• Conceptually, the scheduling loop of the operating system looks as follows:

Loop {
RunThread();
ChooseNextThread();
SaveStateOfCPU(curTCB);
LoadStateOfCPU(newTCB);

}

• This is an infinite loop
– One could argue that this is all that the OS does

33

Running a thread

Consider first portion: RunThread()

• How do I run a thread?
– Load its state (registers, PC, stack pointer) into CPU
– Load environment (virtual memory space, etc)
– Jump to the PC

• How does the dispatcher get control back?
– Internal events: thread returns control voluntarily
– External events: thread gets preempted

34

Internal Events

• Blocking on I/O
– The act of requesting I/O implicitly yields the CPU

• Waiting on a “signal” from other thread
– Thread asks to wait and thus yields the CPU

• Thread executes a yield()
– Thread volunteers to give up CPU

computePI() {

while(TRUE) {
ComputeNextDigit();

yield();

}

}

35

Stack for Yielding Thread

• How do we run a new thread?
run_new_thread() {

newThread = PickNewThread();
switch(curThread, newThread);
ThreadHouseKeeping(); /* Do any cleanup */

}

• How does dispatcher switch to a new thread?
– Save anything next thread may trash: PC, regs, stack pointer
– Maintain isolation for each thread

yield

ComputePI

Stack grow
thrun_new_thread

kernel_yield
Trap to OS

switch

36

What Do the Stacks Look Like?
• Consider the following

code blocks:
proc A() {

B();

}

proc B() {
while(TRUE) {

yield();

}

}

• Suppose we have 2
threads:

– Threads S and T

Thread S

St
ac
k
gr
ow
th

A

B(while)

yield

run_new_thread

switch

Thread T

A

B(while)

yield

run_new_thread

switch

Thread S's switch returns to
Thread T's (and vice versa)

37

Conclusion

• Concurrency accomplished by multiplexing CPU time:
– Unloading current thread (PC, registers)
– Loading new thread (PC, registers)
– Such context switching may be voluntary (yield(), I/O) or involuntary (interrupts)

• TCB + Stacks hold complete state of thread for restarting

