
Acknowledgments: Ion Stoica, Berkeley CS 162

Xin Jin
Spring 2022

Operating Systems
(Honor Track)

Synchronization 3:
Atomic Instructions, Monitors

2

Motivating Example: “Too Much Milk”
• Great thing about OS’s – analogy between problems in

OS and problems in real life
– Help you understand real life problems better
– But, computers are much stupider than people

• Example: People need to coordinate:

Arrive home, put milk away3:30
Buy milk3:25
Arrive at storeArrive home, put milk away3:20
Leave for storeBuy milk3:15

Leave for store3:05
Look in Fridge. Out of milk3:00

Look in Fridge. Out of milkArrive at store3:10

Person BPerson ATime

3

Too Much Milk: Solution #1
• Use a note to avoid buying too much milk:

– Leave a note before buying (kind of “lock”)
– Remove note after buying (kind of “unlock”)
– Don’t buy if note (wait)

• Suppose a computer tries this (remember, only memory read/write are atomic):
if (noMilk) {

if (noNote) {
leave Note;
buy milk;
remove note;

}
}

• Result?
– Still too much milk but only occasionally!
– Thread can get context switched after checking milk and note but before buying milk!

• Solution makes problem worse since fails intermittently
– Makes it really hard to debug…
– Must work despite what the dispatcher does!

4

Too Much Milk: Solution #1½
• Clearly the Note is not quite blocking enough

– Let’s try to fix this by placing note first
• Another try at previous solution:

leave Note;
if (noMilk) {

if (noNote) {
buy milk;

}
}
remove Note;

• What happens here?
– Well, with human, probably nothing bad
– With computer: no one ever buys milk

5

Too Much Milk Solution #2
• How about labeled notes?

– Now we can leave note before checking
• Algorithm looks like this:

Thread A Thread B
leave note A; leave note B;
if (noNote B) { if (noNoteA) {

if (noMilk) { if (noMilk) {
buy Milk; buy Milk;

} }
} }
remove note A; remove note B;

• Does this work?
• Possible for neither thread to buy milk

– Context switches at exactly the wrong times can lead each to think that the
other is going to buy

• Really insidious:
– Extremely unlikely this would happen, but will at worse possible time
– Probably something like this in UNIX

6

Too Much Milk Solution #3
• Here is a possible two-note solution:

Thread A Thread B
leave note A; leave note B;
while (note B) {\\X if (noNote A) {\\Y

do nothing; if (noMilk) {
} buy milk;
if (noMilk) { }

buy milk; }
} remove note B;
remove note A;

• Does this work? Yes. Both can guarantee that:
– It is safe to buy, or
– Other will buy, ok to quit

• At X:
– If no note B, safe for A to buy,
– Otherwise wait to find out what will happen

• At Y:
– If no note A, safe for B to buy
– Otherwise, A is either buying or waiting for B to quit

7

Case 1

leave note B;
if (noNote A) {\\Y

if (noMilk) {
buy milk;

}
}
remove note B;

happened
before

leave note A;
while (note B) {\\X

do nothing;
};

if (noMilk) {
buy milk;}

}
remove note A;

• “leave note A” happens before “if (noNote A)”

8

leave note A;
while (note B) {\\X

do nothing;
};

if (noMilk) {
buy milk;}

}
remove note A;

Case 1

leave note B;
if (noNote A) {\\Y

if (noMilk) {
buy milk;

}
}
remove note B;

happened
before

• “leave note A” happens before “if (noNote A)”

9

leave note A;
while (note B) {\\X

do nothing;
};

if (noMilk) {
buy milk;}

}
remove note A;

Case 1

leave note B;
if (noNote A) {\\Y

if (noMilk) {
buy milk;

}
}
remove note B;

Wait for
note B to be
removed

happened
before

• “leave note A” happens before “if (noNote A)”

10

Case 2

leave note B;
if (noNote A) {\\Y

if (noMilk) {
buy milk;

}
}
remove note B;

happen
ed

beforeleave note A;
while (note B) {\\X

do nothing;
};

if (noMilk) {
buy milk;}

}
remove note A;

• “if (noNote A)” happens before “leave note A”

11

Case 2

leave note B;
if (noNote A) {\\Y

if (noMilk) {
buy milk;

}
}
remove note B;

happen
ed

beforeleave note A;
while (note B) {\\X

do nothing;
};

if (noMilk) {
buy milk;}

}
remove note A;

• “if (noNote A)” happens before “leave note A”

12

Case 2

leave note B;
if (noNote A) {\\Y

if (noMilk) {
buy milk;

}
}
remove note B;

happen
ed

beforeleave note A;
while (note B) {\\X

do nothing;
};

if (noMilk) {
buy milk;}

}
remove note A;

• “if (noNote A)” happens before “leave note A”

Wait for
note B to be
removed

13

Solution #3 discussion
• Our solution protects a single “Critical-Section” piece of code for each thread:

if (noMilk) {
buy milk;

}

• Solution #3 works, but it’s really unsatisfactory
– Really complex – even for this simple an example

» Hard to convince yourself that this really works
– A’s code is different from B’s – what if lots of threads?

» Code would have to be slightly different for each thread
– While A is waiting, it is consuming CPU time

» This is called “busy-waiting”
• There’s got to be a better way!

– Have hardware provide higher-level primitives than atomic load & store
– Build even higher-level programming abstractions on this hardware support

14

Too Much Milk: Solution #4?
• Recall our target lock interface:

– acquire(&milklock) – wait until lock is free, then grab
– release(&milklock) – Unlock, waking up anyone waiting
– These must be atomic operations – if two threads are waiting for the lock and both

see it’s free, only one succeeds to grab the lock
• Then, our milk problem is easy:

acquire(&milklock);
if (nomilk)

buy milk;
release(&milklock);

15

Back to: How to Implement Locks?
• Lock: prevents someone from doing something

– Lock before entering critical section and
before accessing shared data

– Unlock when leaving, after accessing shared data
– Wait if locked

» Important idea: all synchronization involves waiting
» Should sleep if waiting for a long time

• Atomic Load/Store: get solution like Milk #3
– Pretty complex and error prone

• Hardware Lock instruction
– Complexity?

» Done in the Intel 432
» Each feature makes HW more complex and slow

16

• How can we build multi-instruction atomic operations?
– Recall: dispatcher gets control in two ways.

» Internal: Thread does something to relinquish the CPU
» External: Interrupts cause dispatcher to take CPU

– On a uniprocessor, can avoid context-switching by:
» Avoiding internal events
» Preventing external events by disabling interrupts

• Consequently, naïve Implementation of locks:
LockAcquire { disable Ints; }
LockRelease { enable Ints; }

• Problems with this approach:
– Can’t let user do this! Consider following:

LockAcquire();
While(TRUE) {;}

– Real-Time system—no guarantees on timing!
» Critical Sections might be arbitrarily long

– What happens with I/O or other important events?
» “Reactor about to meltdown. Help?”

Naïve use of Interrupt Enable/Disable

17

Better Implementation of Locks by Disabling Interrupts

int value = FREE;

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
go to sleep();
// Enable interrupts?

} else {
value = BUSY;

}
enable interrupts;

}

Release() {
disable interrupts;
if (anyone on wait queue) {

take thread off wait queue;
place on ready queue;

} else {
value = FREE;

}
enable interrupts;

}

• Key idea: maintain a lock variable and impose mutual exclusion
only during operations on that variable

18

New Lock Implementation: Discussion
• Why do we need to disable interrupts at all?

– Avoid interruption between checking and setting lock value
– Otherwise two threads could think that they both have lock

• Note: unlike previous solution, the critical section (inside
Acquire()) is very short

– User of lock can take as long as they like in their own critical
section: doesn’t impact global machine behavior

– Critical interrupts taken in time!

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
go to sleep();
// Enable interrupts?

} else {
value = BUSY;

}
enable interrupts;

}

Critical
Section

19

Group Discussion

• Topic: Interrupt Re-enable in Going to Sleep
– What about re-enabling ints when going to sleep?
– Do we need to do it?
– If so, where? If not, why?

• Discuss in groups of two to three students
– Each group chooses a leader to summarize the discussion
– In your group discussion, please do not dominate the discussion, and give

everyone a chance to speak

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
go to sleep();
// Enable interrupts?

} else {
value = BUSY;

}
enable interrupts;

}

20

Interrupt Re-enable in Going to Sleep
• What about re-enabling ints when going to sleep?

• Before Putting thread on the wait queue?

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
go to sleep();

} else {
value = BUSY;

}
enable interrupts;

}

Enable Position

21

Interrupt Re-enable in Going to Sleep
• What about re-enabling ints when going to sleep?

• Before Putting thread on the wait queue?
– Release can check the queue and not wake up thread

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
go to sleep();

} else {
value = BUSY;

}
enable interrupts;

}

Enable Position

22

Interrupt Re-enable in Going to Sleep
• What about re-enabling ints when going to sleep?

• Before Putting thread on the wait queue?
– Release can check the queue and not wake up thread

• After putting the thread on the wait queue

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
go to sleep();

} else {
value = BUSY;

}
enable interrupts;

}

Enable Position

23

Interrupt Re-enable in Going to Sleep
• What about re-enabling ints when going to sleep?

• Before Putting thread on the wait queue?
– Release can check the queue and not wake up thread

• After putting the thread on the wait queue
– Release puts the thread on the ready queue, but the thread still

thinks it needs to go to sleep
– Misses wakeup and still holds lock (deadlock!)

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
go to sleep();

} else {
value = BUSY;

}
enable interrupts;

}

Enable Position

24

Interrupt Re-enable in Going to Sleep
• What about re-enabling ints when going to sleep?

• Before Putting thread on the wait queue?
– Release can check the queue and not wake up thread

• After putting the thread on the wait queue
– Release puts the thread on the ready queue, but the thread still

thinks it needs to go to sleep
– Misses wakeup and still holds lock (deadlock!)

• Want to put it after sleep(). But – how?

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
go to sleep();

} else {
value = BUSY;

}
enable interrupts;

}

Enable Position

25

How to Re-enable After Sleep()?
• In scheduler, since interrupts are disabled when you call sleep:

– Responsibility of the next thread to re-enable ints
– When the sleeping thread wakes up, returns to acquire and

re-enables interrupts
Thread A Thread B

.

.
disable ints

sleep
sleep return
enable ints

.

.

.
disable int

sleep
sleep return
enable ints

.

.

context
switch

context

switch

26

INIT
int value = 0;

Acquire() {
disable interrupts;
if (value == 1) {
put thread on wait-queue;
go to sleep() //??

} else {
value = 1;

}
enable interrupts;

}

In-Kernel Lock: Simulation

Release() {
disable interrupts;
if anyone on wait queue {
take thread off wait-queue
Place on ready queue;

} else {
value = 0;

}
enable interrupts;

}

lock.Acquire();
…
critical section;
…
lock.Release();

lock.Acquire();
…
critical section;
…
lock.Release();

Value: 0 waiters owner

Thread A Thread B
Running

READY

Ready

27

INIT
int value = 0;

Acquire() {
disable interrupts;
if (value == 1) {
put thread on wait-queue;
go to sleep() //??

} else {
value = 1;

}
enable interrupts;

}

In-Kernel Lock: Simulation

Release() {
disable interrupts;
if anyone on wait queue {
take thread off wait-queue
Place on ready queue;

} else {
value = 0;

}
enable interrupts;

}

lock.Acquire();
…
critical section;
…
lock.Release();

lock.Acquire();
…
critical section;
…
lock.Release();

Thread A Thread B

READY

Running
Value: 1 waiters owner

Ready

28

INIT
int value = 0;

Acquire() {
disable interrupts;
if (value == 1) {
put thread on wait-queue;
go to sleep() //??

} else {
value = 1;

}
enable interrupts;

}

Release() {
disable interrupts;
if anyone on wait queue {
take thread off wait-queue
Place on ready queue;

} else {
value = 0;

}
enable interrupts;

}

lock.Acquire();
…
critical section;
…
lock.Release();

lock.Acquire();
…
critical section;
…
lock.Release();

Thread A Thread B

In-Kernel Lock: Simulation

READY

Running Running
Value: 1 waiters owner

ReadyReady

29

INIT
int value = 0;

Acquire() {
disable interrupts;
if (value == 1) {
put thread on wait-queue;
go to sleep() //??

} else {
value = 1;

}
enable interrupts;

}

lock.Acquire();
…
critical section;
…
lock.Release();

Release() {
disable interrupts;
if anyone on wait queue {
take thread off wait-queue
Place on ready queue;

} else {
value = 0;

}
enable interrupts;

}

lock.Acquire();
…
critical section;
…
lock.Release();

Thread A Thread B

In-Kernel Lock: Simulation

READY

RunningRunning
Value: 1 waiters owner

WaitingReady

30

INIT
int value = 0;

Acquire() {
disable interrupts;
if (value == 1) {
put thread on wait-queue;
go to sleep() //??

} else {
value = 1;

}
enable interrupts;

}

lock.Acquire();
…
critical section;
…
lock.Release();

Release() {
disable interrupts;
if anyone on wait queue {
take thread off wait-queue
Place on ready queue;

} else {
value = 0;

}
enable interrupts;

}

lock.Acquire();
…
critical section;
…
lock.Release();

Thread A Thread B

In-Kernel Lock: Simulation

READY

Running
Value: 1 waiters owner

WaitingReady

31

INIT
int value = 0;

Acquire() {
disable interrupts;
if (value == 1) {
put thread on wait-queue;
go to sleep() //??

} else {
value = 1;

}
enable interrupts;

}

Running

Release() {
disable interrupts;
if anyone on wait queue {
take thread off wait-queue
Place on ready queue;

} else {
value = 0;

}
enable interrupts;

}

lock.Acquire();
…
critical section;
…
lock.Release();

lock.Acquire();
…
critical section;
…
lock.Release();

Thread A Thread B

In-Kernel Lock: Simulation

READY

Running
Value: 1 waiters owner

Ready Ready

32

Atomic Read-Modify-Write Instructions
• Problems with previous solution:

– Can’t give lock implementation to users
– Doesn’t work well on multiprocessor

» Disabling interrupts on all processors requires messages and would be
very time consuming

• Alternative: atomic instruction sequences
– These instructions read a value and write a new value atomically
– Hardware is responsible for implementing this correctly

» on both uniprocessors (not too hard)
» and multiprocessors (requires help from cache coherence protocol)

– Unlike disabling interrupts, can be used on both uniprocessors and
multiprocessors

33

Examples of Read-Modify-Write
• test&set (&address) { /* most architectures */

result = M[address]; // return result from “address” and
M[address] = 1; // set value at “address” to 1
return result;

}

• swap (&address, register) { /* x86 */
temp = M[address]; // swap register’s value to
M[address] = register; // value at “address”
register = temp;

}

• compare&swap (&address, reg1, reg2) { /* 68000 */
if (reg1 == M[address]) { // If memory still == reg1,

M[address] = reg2; // then put reg2 => memory
return success;

} else { // Otherwise do not change memory
return failure;

}
}

34

• compare&swap (&address, reg1, reg2) { /* 68000 */
if (reg1 == M[address]) {

M[address] = reg2;
return success;

} else {
return failure;

}
}

Here is an atomic add to linked-list function:
addToQueue(&object) {

do { // repeat until no conflict
ld r1, M[root] // Get ptr to current head
st r1, M[object] // Save link in new object

} until (compare&swap(&root,r1,object));
}

Using of Compare&Swap for queues

root next next

next
New

Object

35

Implementing Locks with test&set
• Another flawed, but simple solution:

int value = 0; // Free
Acquire() {

while (test&set(value)); // while busy
}
Release() {

value = 0;
}

• Simple explanation:
– If lock is free, test&set reads 0 and sets value=1, so lock is now busy.

It returns 0 so while exits.
– If lock is busy, test&set reads 1 and sets value=1 (no change)

It returns 1, so while loop continues.
– When we set value = 0, someone else can get lock.

• Busy-Waiting: thread consumes cycles while waiting
– For multiprocessors: every test&set() is a write, which makes value ping-pong

around in cache (using lots of network BW)

36

Problem: Busy-Waiting for Lock
• Positives for this solution

– Machine can receive interrupts
– User code can use this lock
– Works on a multiprocessor

• Negatives
– This is very inefficient as thread will consume cycles waiting
– Waiting thread may take cycles away from thread holding lock (no one wins!)
– Priority Inversion: If busy-waiting thread has higher priority than thread holding lock Þ

no progress!
– Priority Inversion problem with original Martian rover

37

Group Discussion

• Topic: Better Locks using test&set
– Can you come up with a better solution that

avoids or minimizes busy-awaiting

• Discuss in groups of two to three students
– Each group chooses a leader to summarize the discussion
– In your group discussion, please do not dominate the discussion, and give

everyone a chance to speak

int value = 0; // Free
Acquire() {
// while busy
while (test&set(value));

}
Release() {
value = 0;

}

38

Better Locks using test&set
• Can we build test&set locks without busy-waiting?

– Can’t entirely, but can minimize!
– Idea: only busy-wait to atomically check lock value

• Note: sleep has to be sure to reset the guard variable
– Why can’t we do it just before or just after the sleep?

Release() {
// Short busy-wait time
while (test&set(guard));
if anyone on wait queue {

take thread off wait queue
Place on ready queue;

} else {
value = FREE;

}
guard = 0;

}

int guard = 0;
int value = FREE;

Acquire() {
// Short busy-wait time
while (test&set(guard));
if (value == BUSY) {

put thread on wait queue;
go to sleep() & guard = 0;

} else {
value = BUSY;
guard = 0;

}
}

39

Recall: Locks using Interrupts vs. test&set
Compare to “disable interrupt” solution

Basically we replaced:
– disable interrupts à while (test&set(guard));
– enable interrupts à guard = 0;

int value = FREE;

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
Go to sleep();
// Enable interrupts?

} else {
value = BUSY;

}
enable interrupts;

}

Release() {
disable interrupts;
if (anyone on wait queue) {

take thread off wait queue
Place on ready queue;

} else {
value = FREE;

}
enable interrupts;

}

40

Recap: Locks using interrupts
int value = 0;
Acquire() {

// Short busy-wait time
disable interrupts;
if (value == 1) {

put thread on wait-queue;
go to sleep() //??

} else {
value = 1;
enable interrupts;

}
}

Release() {
// Short busy-wait time
disable interrupts;
if anyone on wait queue {

take thread off wait-queue
Place on ready queue;

} else {
value = 0;

}
enable interrupts;

}

lock.Acquire();
…
critical section;
…

lock.Release();

Acquire() {
disable interrupts;

}

Release() {
enable interrupts;

}

If one thread in critical
section, no other
activity (including OS)
can run!

41

Recap: Locks using test & set
int guard = 0;
int value = 0;
Acquire() {

// Short busy-wait time
while(test&set(guard));
if (value == 1) {

put thread on wait-queue;
go to sleep()& guard = 0;

} else {
value = 1;
guard = 0;

}
}

Release() {
// Short busy-wait time
while (test&set(guard));
if anyone on wait queue {

take thread off wait-queue
Place on ready queue;

} else {
value = 0;

}
guard = 0;

}

lock.Acquire();
…
critical section;
…

lock.Release();

int value = 0;
Acquire() {

while(test&set(value));
}

Release() {
value = 0;

}

Threads waiting to
enter critical section
busy-wait

42

Hardware

Higher-
level
API

Programs

Recall: Where are we going with synchronization?

• We are going to implement various higher-level synchronization
primitives using atomic operations

– Everything is pretty painful if only atomic primitives are load and store
– Need to provide primitives useful at user-level

Load/Store Disable Ints Test&Set Compare&Swap

Locks Semaphores Monitors Send/Receive

Shared Programs

43

Semaphores are good but…Monitors are better!
• Semaphores are a huge step up; just think of trying to do the bounded buffer

with only loads and stores or even with locks!
• Problem is that semaphores are dual purpose:

– They are used for both mutex and scheduling constraints
– Example: the fact that flipping of P’s in bounded buffer gives deadlock is not

immediately obvious. How do you prove correctness to someone?
• Cleaner idea: Use locks for mutual exclusion and condition variables for

scheduling constraints
• Definition: Monitor: a lock and zero or more condition variables for managing

concurrent access to shared data
– Some languages like Java provide this natively
– Most others use actual locks and condition variables

• A “Monitor” is a paradigm for concurrent programming!
– Some languages support monitors explicitly

44

Condition Variables
• How do we change the consumer() routine to wait until something is on the

queue?
– Could do this by keeping a count of the number of things on the queue (with

semaphores), but error prone
• Condition Variable: a queue of threads waiting for something inside a critical

section
– Key idea: allow sleeping inside critical section by atomically releasing lock at time

we go to sleep
– Contrast to semaphores: Can’t wait inside critical section

• Operations:
– Wait(&lock): Atomically release lock and go to sleep.

Re-acquire lock later, before returning.
– Signal(): Wake up one waiter, if any
– Broadcast(): Wake up all waiters

• Rule: Must hold lock when doing condition variable ops!

45

Monitor with Condition Variables

• Lock: the lock provides mutual exclusion to shared data
– Always acquire before accessing shared data structure
– Always release after finishing with shared data
– Lock initially free

• Condition Variable: a queue of threads waiting for something inside a critical
section

– Key idea: make it possible to go to sleep inside critical section by atomically releasing
lock at time we go to sleep

– Contrast to semaphores: Can’t wait inside critical section

46

Synchronized Buffer (with condition variable)
• Here is an (infinite) synchronized queue:

lock buf_lock; // Initially unlocked
condition buf_CV; // Initially empty
queue queue;

Producer(item) {
acquire(&buf_lock); // Get Lock
enqueue(&queue,item); // Add item
cond_signal(&buf_CV); // Signal any waiters
release(&buf_lock); // Release Lock

}

Consumer() {
acquire(&buf_lock); // Get Lock
while (isEmpty(&queue)) {

cond_wait(&buf_CV, &buf_lock); // If empty, sleep
}
item = dequeue(&queue); // Get next item
release(&buf_lock); // Release Lock
return(item);

}

47

Summary (1/2)
• Important concept: Atomic Operations

– An operation that runs to completion or not at all
– These are the primitives on which to construct various synchronization

primitives
• Talked about hardware atomicity primitives:

– Disabling of Interrupts, test&set, swap, compare&swap,

• Showed several constructions of Locks
– Must be very careful not to waste/tie up machine resources

» Shouldn’t disable interrupts for long
» Shouldn’t spin wait for long

– Key idea: Separate lock variable, use hardware mechanisms to protect
modifications of that variable

• Showed primitives for constructing user-level locks
– Packages up functionality of sleeping

48

Summary (2/2)
• Semaphores: Like integers with restricted interface

– Two operations:
» P(): Wait if zero; decrement when becomes non-zero
» V(): Increment and wake a sleeping task (if exists)
» Can initialize value to any non-negative value

– Use separate semaphore for each constraint
• Monitors: A lock plus one or more condition variables

– Always acquire lock before accessing shared data
– Use condition variables to wait inside critical section

» Three Operations: Wait(), Signal(), and Broadcast()
• Monitors represent the logic of the program

– Wait if necessary
– Signal when change something so any waiting threads can proceed

