
Acknowledgments: Ion Stoica, Berkeley CS 162

Xin Jin
Spring 2022

Operating Systems
(Honor Track)

Synchronization 4: Monitors and Readers/Writers

2

Recall: Too Much Milk Solution #3
• Here is a possible two-note solution:

Thread A Thread B
leave note A; leave note B;
while (note B) {\\X if (noNote A) {\\Y

do nothing; if (noMilk) {
} buy milk;
if (noMilk) { }

buy milk; }
} remove note B;
remove note A;

• Does this work? Yes. Both can guarantee that:
– It is safe to buy, or
– Other will buy, ok to quit

• At X:
– If no note B, safe for A to buy,
– Otherwise wait to find out what will happen

• At Y:
– If no note A, safe for B to buy
– Otherwise, A is either buying or waiting for B to quit

3

• How can we build multi-instruction atomic operations?
– Recall: dispatcher gets control in two ways.

» Internal: Thread does something to relinquish the CPU
» External: Interrupts cause dispatcher to take CPU

– On a uniprocessor, can avoid context-switching by:
» Avoiding internal events
» Preventing external events by disabling interrupts

• Consequently, naïve Implementation of locks:
LockAcquire { disable Ints; }
LockRelease { enable Ints; }

• Problems with this approach:
– Can’t let user do this! Consider following:

LockAcquire();
While(TRUE) {;}

– Real-Time system—no guarantees on timing!
» Critical Sections might be arbitrarily long

– What happens with I/O or other important events?
» “Reactor about to meltdown. Help?”

Recall: Naïve use of Interrupt Enable/Disable

4

Recall: Better Implementation of Locks by Disabling Interrupts

int value = FREE;

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
go to sleep();
// Enable interrupts?

} else {
value = BUSY;

}
enable interrupts;

}

Release() {
disable interrupts;
if (anyone on wait queue) {

take thread off wait queue;
place on ready queue;

} else {
value = FREE;

}
enable interrupts;

}

• Key idea: maintain a lock variable and impose mutual exclusion
only during operations on that variable

5

Recall: Implementing Locks with test&set
• Another flawed, but simple solution:

int value = 0; // Free
Acquire() {

while (test&set(value)); // while busy
}
Release() {

value = 0;
}

• Simple explanation:
– If lock is free, test&set reads 0 and sets value=1, so lock is now busy.

It returns 0 so while exits.
– If lock is busy, test&set reads 1 and sets value=1 (no change)

It returns 1, so while loop continues.
– When we set value = 0, someone else can get lock.

• Busy-Waiting: thread consumes cycles while waiting
– For multiprocessors: every test&set() is a write, which makes value ping-pong

around in cache (using lots of network BW)

6

Recall: Better Locks using test&set
• Can we build test&set locks without busy-waiting?

– Can’t entirely, but can minimize!
– Idea: only busy-wait to atomically check lock value

• Note: sleep has to be sure to reset the guard variable
– Why can’t we do it just before or just after the sleep?

Release() {
// Short busy-wait time
while (test&set(guard));
if anyone on wait queue {

take thread off wait queue
Place on ready queue;

} else {
value = FREE;

}
guard = 0;

}

int guard = 0;
int value = FREE;

Acquire() {
// Short busy-wait time
while (test&set(guard));
if (value == BUSY) {

put thread on wait queue;
go to sleep() & guard = 0;

} else {
value = BUSY;
guard = 0;

}
}

7

Recall: Semaphores are good but…Monitors are better!
• Semaphores are a huge step up; just think of trying to do the bounded buffer

with only loads and stores or even with locks!
• Problem is that semaphores are dual purpose:

– They are used for both mutex and scheduling constraints
– Example: the fact that flipping of P’s in bounded buffer gives deadlock is not

immediately obvious. How do you prove correctness to someone?
• Cleaner idea: Use locks for mutual exclusion and condition variables for

scheduling constraints
• Definition: Monitor: a lock and zero or more condition variables for managing

concurrent access to shared data
– Some languages like Java provide this natively
– Most others use actual locks and condition variables

• A “Monitor” is a paradigm for concurrent programming!
– Some languages support monitors explicitly

8

Recall: Condition Variables
• How do we change the consumer() routine to wait until something is on the

queue?
– Could do this by keeping a count of the number of things on the queue (with

semaphores), but error prone
• Condition Variable: a queue of threads waiting for something inside a critical

section
– Key idea: allow sleeping inside critical section by atomically releasing lock at time

we go to sleep
– Contrast to semaphores: Can’t wait inside critical section

• Operations:
– Wait(&lock): Atomically release lock and go to sleep.

Re-acquire lock later, before returning.
– Signal(): Wake up one waiter, if any
– Broadcast(): Wake up all waiters

• Rule: Must hold lock when doing condition variable ops!

9

Recall: Synchronized Buffer (with condition variable)
• Here is an (infinite) synchronized queue:

lock buf_lock; // Initially unlocked
condition buf_CV; // Initially empty
queue queue;

Producer(item) {
acquire(&buf_lock); // Get Lock
enqueue(&queue,item); // Add item
cond_signal(&buf_CV); // Signal any waiters
release(&buf_lock); // Release Lock

}

Consumer() {
acquire(&buf_lock); // Get Lock
while (isEmpty(&queue)) {

cond_wait(&buf_CV, &buf_lock); // If empty, sleep
}
item = dequeue(&queue); // Get next item
release(&buf_lock); // Release Lock
return(item);

}

10

Mesa vs. Hoare monitors
• Need to be careful about precise definition of signal and wait.

Consider a piece of our dequeue code:
while (isEmpty(&queue)) {

cond_wait(&buf_CV,&buf_lock); // If nothing, sleep
}
item = dequeue(&queue); // Get next item

– Why didn’t we do this?
if (isEmpty(&queue)) {

cond_wait(&buf_CV,&buf_lock); // If nothing, sleep
}
item = dequeue(&queue); // Get next item

• Answer: depends on the type of scheduling
– Mesa-style: Named after Xerox-Park Mesa Operating System

» Most OSes use Mesa Scheduling!
– Hoare-style: Named after British logician Tony Hoare

11

Hoare monitors
• Signaler gives up lock, CPU to waiter; waiter runs immediately
• Then, Waiter gives up lock, processor back to signaler when it exits

critical section or if it waits again

• On first glance, this seems like good semantics
– Waiter gets to run immediately, condition is still correct!

• Most textbooks talk about Hoare scheduling
– However, hard to do, not really necessary!
– Forces a lot of context switching (inefficient!)

acquire(&buf_lock);
…
if (isEmpty(&queue)) {
cond_wait(&buf_CV,&buf_lock);

}
…
release(&buf_lock);

…
acquire(&buf_lock);
…
cond_signal(&buf_CV);
…
release(&buf_lock);

Lock, CPU
Lock, CPU

12

Mesa monitors
• Signaler keeps lock and processor
• Waiter placed on ready queue with no special priority

• Practically, need to check condition again after wait
– By the time the waiter gets scheduled, condition may be false again – so,

just check again with the “while” loop
• Most real operating systems do this!

– More efficient, easier to implement
– Signaler’s cache state, etc. still good

acquire(&buf_lock);
…
while (isEmpty(&queue)) {
cond_wait(&buf_CV,&buf_lock);

}
…
lock.Release();

…
acquire(&buf_lock)
…
cond_signal(&buf_CV);
…
release(&buf_lock));

schedule thread

(sometime later!)

Put waiting
thread on

ready queue

13

lock buf_lock = <initially unlocked>
condition producer_CV = <initially empty>
condition consumer_CV = <initially empty>

Producer(item) {
acquire(&buf_lock);
while (buffer full) { cond_wait(&producer_CV, &buf_lock); }
enqueue(item);
cond_signal(&consumer_CV);
release(&buf_lock);

}

Consumer() {
acquire(buf_lock);
while (buffer empty) { cond_wait(&consumer_CV, &buf_lock); }
item = dequeue();
cond_signal(&producer_CV);
release(buf_lock);
return item

}

Circular Buffer – 3rd cut (Monitors, pthread-like)

What does thread do
when it is waiting?
- Sleep, not busywait!

14

Group Discussion

• Topic: synchronization APIs
– How to implement producer-consumer with a circular buffer with locks,

semaphores and monitors?
– What are the pros and cons of each solution?

• Discuss in groups of two to three students
– Each group chooses a leader to summarize the discussion
– In your group discussion, please do not dominate the discussion, and give

everyone a chance to speak

15

Readers/Writers Problem

• Motivation: Consider a shared database
– Two classes of users:

» Readers – never modify database
» Writers – read and modify database

– Is using a single lock on the whole database sufficient?
» Like to have many readers at the same time
» Only one writer at a time

R
R

R

W

16

Basic Readers/Writers Solution
• Correctness Constraints:

– Readers can access database when no writers
– Writers can access database when no readers or writers
– Only one thread manipulates state variables at a time

• Basic structure of a solution:
– Reader()

Wait until no writers
Access database
Check out – wake up a waiting writer

– Writer()
Wait until no active readers or writers
Access database
Check out – wake up waiting readers or writer

– State variables (Protected by a lock called “lock”):
» int AR: Number of active readers; initially = 0
» int WR: Number of waiting readers; initially = 0
» int AW: Number of active writers; initially = 0
» int WW: Number of waiting writers; initially = 0
» Condition okToRead = NIL
» Condition okToWrite = NIL

17

Code for a Reader
Reader() {
// First check self into system
acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
cond_wait(&okToRead,&lock);// Sleep on cond var
WR--; // No longer waiting

}
AR++; // Now we are active!
release(&lock);
// Perform actual read-only access
AccessDatabase(ReadOnly);
// Now, check out of system
acquire(&lock);
AR--; // No longer active
if (AR == 0 && WW > 0) // No other active readers

cond_signal(&okToWrite);// Wake up one writer
release(&lock);

}

18

Writer() {
// First check self into system
acquire(&lock);
while ((AW + AR) > 0) { // Is it safe to write?

WW++; // No. Active users exist
cond_wait(&okToWrite,&lock); // Sleep on cond var
WW--; // No longer waiting

}
AW++; // Now we are active!
release(&lock);
// Perform actual read/write access
AccessDatabase(ReadWrite);
// Now, check out of system
acquire(&lock);
AW--; // No longer active
if (WW > 0){ // Give priority to writers

cond_signal(&okToWrite);// Wake up one writer
} else if (WR > 0) { // Otherwise, wake reader

cond_broadcast(&okToRead); // Wake all readers
}
release(&lock);

}

Code for a Writer

broadcast()

19

Simulation of Readers/Writers Solution

• Use an example to simulate the solution

• Consider the following sequence of operators:
– R1, R2, W1, R3

• Initially: AR = 0, WR = 0, AW = 0, WW = 0

20

Simulation of Readers/Writers Solution
• R1 comes along (no waiting threads)
• AR = 0, WR = 0, AW = 0, WW = 0

Reader() {
acquire(&lock)
while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
cond_wait(&okToRead,&lock);// Sleep on cond var
WR--; // No longer waiting

}
AR++; // Now we are active!
release(&lock);

AccessDBase(ReadOnly);

acquire(&lock);
AR--;
if (AR == 0 && WW > 0)

cond_signal(&okToWrite);
release(&lock);

}

21

Simulation of Readers/Writers Solution
• R1 comes along (no waiting threads)
• AR = 0, WR = 0, AW = 0, WW = 0

Reader() {
acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
cond_wait(&okToRead,&lock);// Sleep on cond var
WR--; // No longer waiting

}
AR++; // Now we are active!
release(&lock);

AccessDBase(ReadOnly);

acquire(&lock);
AR--;
if (AR == 0 && WW > 0)

cond_signal(&okToWrite);
release(&lock);

}

22

Simulation of Readers/Writers Solution
• R1 comes along (no waiting threads)
• AR = 1, WR = 0, AW = 0, WW = 0

Reader() {
acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
cond_wait(&okToRead,&lock);// Sleep on cond var
WR--; // No longer waiting

}
AR++; // Now we are active!
release(&lock);

AccessDBase(ReadOnly);

acquire(&lock);
AR--;
if (AR == 0 && WW > 0)

cond_signal(&okToWrite);
release(&lock);

}

23

Simulation of Readers/Writers Solution
• R1 comes along (no waiting threads)
• AR = 1, WR = 0, AW = 0, WW = 0

Reader() {
acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
cond_wait(&okToRead,&lock);// Sleep on cond var
WR--; // No longer waiting

}
AR++; // Now we are active!
release(&lock);

AccessDBase(ReadOnly);

acquire(&lock);
AR--;
if (AR == 0 && WW > 0)

cond_signal(&okToWrite);
release(&lock);

}

24

Simulation of Readers/Writers Solution
• R1 accessing dbase (no other threads)
• AR = 1, WR = 0, AW = 0, WW = 0

Reader() {
acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
cond_wait(&okToRead,&lock);// Sleep on cond var
WR--; // No longer waiting

}
AR++; // Now we are active!
release(&lock);

AccessDBase(ReadOnly);

acquire(&lock);
AR--;
if (AR == 0 && WW > 0)

cond_signal(&okToWrite);
release(&lock);

}

25

Simulation of Readers/Writers Solution
• R2 comes along (R1 accessing dbase)
• AR = 1, WR = 0, AW = 0, WW = 0

Reader() {
acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
cond_wait(&okToRead,&lock);// Sleep on cond var
WR--; // No longer waiting

}
AR++; // Now we are active!
release(&lock);

AccessDBase(ReadOnly);

acquire(&lock);
AR--;
if (AR == 0 && WW > 0)

cond_signal(&okToWrite);
release(&lock);

}

26

Simulation of Readers/Writers Solution
• R2 comes along (R1 accessing dbase)
• AR = 1, WR = 0, AW = 0, WW = 0

Reader() {
acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
cond_wait(&okToRead,&lock);// Sleep on cond var
WR--; // No longer waiting

}
AR++; // Now we are active!
release(&lock);

AccessDBase(ReadOnly);

acquire(&lock);
AR--;
if (AR == 0 && WW > 0)

cond_signal(&okToWrite);
release(&lock);

}

27

Simulation of Readers/Writers Solution
• R2 comes along (R1 accessing dbase)
• AR = 2, WR = 0, AW = 0, WW = 0

Reader() {
acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
cond_wait(&okToRead,&lock);// Sleep on cond var
WR--; // No longer waiting

}
AR++; // Now we are active!
release(&lock);

AccessDBase(ReadOnly);

acquire(&lock);
AR--;
if (AR == 0 && WW > 0)

cond_signal(&okToWrite);
release(&lock);

}

28

Simulation of Readers/Writers Solution
• R2 comes along (R1 accessing dbase)
• AR = 2, WR = 0, AW = 0, WW = 0

Reader() {
acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
cond_wait(&okToRead,&lock);// Sleep on cond var
WR--; // No longer waiting

}
AR++; // Now we are active!
release(&lock);

AccessDBase(ReadOnly);

acquire(&lock);
AR--;
if (AR == 0 && WW > 0)

cond_signal(&okToWrite);
release(&lock);

}

29

Simulation of Readers/Writers Solution
• R1 and R2 accessing dbase
• AR = 2, WR = 0, AW = 0, WW = 0

Reader() {
acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
cond_wait(&okToRead,&lock);// Sleep on cond var
WR--; // No longer waiting

}
AR++; // Now we are active!
release(&lock);

AccessDBase(ReadOnly);

acquire(&lock);
AR--;
if (AR == 0 && WW > 0)

cond_signal(&okToWrite);
release(&lock);

}
Assume readers take a while to access database

Situation: Locks released, only AR is non-zero

30

Simulation of Readers/Writers Solution
• W1 comes along (R1 and R2 are still accessing dbase)
• AR = 2, WR = 0, AW = 0, WW = 0

Writer() {
acquire(&lock);
while ((AW + AR) > 0) { // Is it safe to write?

WW++; // No. Active users exist
cond_wait(&okToWrite,&lock);// Sleep on cond var
WW--; // No longer waiting

}
AW++;
release(&lock);

AccessDBase(ReadWrite);

acquire(&lock);
AW--;
if (WW > 0){

cond_signal(&okToWrite);
} else if (WR > 0) {

cond_broadcast(&okToRead);
}
release(&lock);

}

31

Writer() {
acquire(&lock);
while ((AW + AR) > 0) { // Is it safe to write?

WW++; // No. Active users exist
cond_wait(&okToWrite,&lock);// Sleep on cond var
WW--; // No longer waiting

}
AW++;
release(&lock);

AccessDBase(ReadWrite);

acquire(&lock);
AW--;
if (WW > 0){

cond_signal(&okToWrite);
} else if (WR > 0) {

cond_broadcast(&okToRead);
}
release(&lock);

}

Simulation of Readers/Writers Solution
• W1 comes along (R1 and R2 are still accessing dbase)
• AR = 2, WR = 0, AW = 0, WW = 0

32

Writer() {
acquire(&lock);
while ((AW + AR) > 0) { // Is it safe to write?

WW++; // No. Active users exist
cond_wait(&okToWrite,&lock);// Sleep on cond var
WW--; // No longer waiting

}
AW++;
release(&lock);

AccessDBase(ReadWrite);

acquire(&lock);
AW--;
if (WW > 0){

cond_signal(&okToWrite);
} else if (WR > 0) {

cond_broadcast(&okToRead);
}
release(&lock);

}

Simulation of Readers/Writers Solution
• W1 comes along (R1 and R2 are still accessing dbase)
• AR = 2, WR = 0, AW = 0, WW = 1

33

Simulation of Readers/Writers Solution
• R3 comes along (R1 and R2 accessing dbase, W1 waiting)
• AR = 2, WR = 0, AW = 0, WW = 1

Reader() {
acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
cond_wait(&okToRead,&lock);// Sleep on cond var
WR--; // No longer waiting

}
AR++; // Now we are active!
release(&lock);

AccessDBase(ReadOnly);

acquire(&lock);
AR--;
if (AR == 0 && WW > 0)

cond_signal(&okToWrite);
release(&lock);

}

34

Simulation of Readers/Writers Solution
• R3 comes along (R1 and R2 accessing dbase, W1 waiting)
• AR = 2, WR = 0, AW = 0, WW = 1

Reader() {
acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
cond_wait(&okToRead,&lock);// Sleep on cond var
WR--; // No longer waiting

}
AR++; // Now we are active!
release(&lock);

AccessDBase(ReadOnly);

acquire(&lock);
AR--;
if (AR == 0 && WW > 0)

cond_signal(&okToWrite);
release(&lock);

}

35

Simulation of Readers/Writers Solution
• R3 comes along (R1 and R2 accessing dbase, W1 waiting)
• AR = 2, WR = 1, AW = 0, WW = 1

Reader() {
acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
cond_wait(&okToRead,&lock);// Sleep on cond var
WR--; // No longer waiting

}
AR++; // Now we are active!
release(&lock);

AccessDBase(ReadOnly);

acquire(&lock);
AR--;
if (AR == 0 && WW > 0)

cond_signal(&okToWrite);
release(&lock);

}

36

Reader() {
acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
cond_wait(&okToRead,&lock);// Sleep on cond var
WR--; // No longer waiting

}
AR++; // Now we are active!
release(&lock);

AccessDBase(ReadOnly);

acquire(&lock);
AR--;
if (AR == 0 && WW > 0)

cond_signal(&okToWrite);
release(&lock);

}

Simulation of Readers/Writers Solution
• R3 comes along (R1 and R2 accessing dbase, W1 waiting)
• AR = 2, WR = 1, AW = 0, WW = 1

37

Simulation of Readers/Writers Solution
• R1 and R2 accessing dbase, W1 and R3 waiting
• AR = 2, WR = 1, AW = 0, WW = 1

Reader() {
acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
cond_wait(&okToRead,&lock);// Sleep on cond var
WR--; // No longer waiting

}
AR++; // Now we are active!
release(&lock);

AccessDBase(ReadOnly);

acquire(&lock);
AR--;
if (AR == 0 && WW > 0)

cond_signal(&okToWrite);
release(&lock);

}
Status:
• R1 and R2 still reading
• W1 and R3 waiting on okToWrite and okToRead, respectively

38

Simulation of Readers/Writers Solution
• R2 finishes (R1 accessing dbase, W1 and R3 waiting)
• AR = 2, WR = 1, AW = 0, WW = 1

Reader() {
acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
cond_wait(&okToRead,&lock);// Sleep on cond var
WR--; // No longer waiting

}
AR++; // Now we are active!
release(&lock);

AccessDBase(ReadOnly);

acquire(&lock);
AR--;
if (AR == 0 && WW > 0)

cond_signal(&okToWrite);
release(&lock);

}

39

Simulation of Readers/Writers Solution
• R2 finishes (R1 accessing dbase, W1 and R3 waiting)
• AR = 1, WR = 1, AW = 0, WW = 1

Reader() {
acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
cond_wait(&okToRead,&lock);// Sleep on cond var
WR--; // No longer waiting

}
AR++; // Now we are active!
release(&lock);

AccessDBase(ReadOnly);

acquire(&lock);
AR--;
if (AR == 0 && WW > 0)

cond_signal(&okToWrite);
release(&lock);

}

40

Simulation of Readers/Writers Solution
• R2 finishes (R1 accessing dbase, W1 and R3 waiting)
• AR = 1, WR = 1, AW = 0, WW = 1

Reader() {
acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
cond_wait(&okToRead,&lock);// Sleep on cond var
WR--; // No longer waiting

}
AR++; // Now we are active!
release(&lock);

AccessDBase(ReadOnly);

acquire(&lock);
AR--;
if (AR == 0 && WW > 0)

cond_signal(&okToWrite);
release(&lock);

}

41

Simulation of Readers/Writers Solution
• R2 finishes (R1 accessing dbase, W1 and R3 waiting)
• AR = 1, WR = 1, AW = 0, WW = 1

Reader() {
acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
cond_wait(&okToRead,&lock);// Sleep on cond var
WR--; // No longer waiting

}
AR++; // Now we are active!
release(&lock);

AccessDBase(ReadOnly);

acquire(&lock);
AR--;
if (AR == 0 && WW > 0)

cond_signal(&okToWrite);
release(&lock);

}

42

Simulation of Readers/Writers Solution
• R1 finishes (W1 and R3 waiting)
• AR = 1, WR = 1, AW = 0, WW = 1

Reader() {
acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
cond_wait(&okToRead,&lock);// Sleep on cond var
WR--; // No longer waiting

}
AR++; // Now we are active!
release(&lock);

AccessDBase(ReadOnly);

acquire(&lock);
AR--;
if (AR == 0 && WW > 0)

cond_signal(&okToWrite);
release(&lock);

}

43

Simulation of Readers/Writers Solution
• R1 finishes (W1 and R3 waiting)
• AR = 0, WR = 1, AW = 0, WW = 1

Reader() {
acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
cond_wait(&okToRead,&lock);// Sleep on cond var
WR--; // No longer waiting

}
AR++; // Now we are active!
release(&lock);

AccessDBase(ReadOnly);

acquire(&lock);
AR--;
if (AR == 0 && WW > 0)

cond_signal(&okToWrite);
release(&lock);

}

44

Simulation of Readers/Writers Solution
• R1 finishes (W1 and R3 waiting)
• AR = 0, WR = 1, AW = 0, WW = 1

Reader() {
acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
cond_wait(&okToRead,&lock);// Sleep on cond var
WR--; // No longer waiting

}
AR++; // Now we are active!
release(&lock);

AccessDBase(ReadOnly);

acquire(&lock);
AR--;
if (AR == 0 && WW > 0)

cond_signal(&okToWrite);
release(&lock);

}

45

Reader() {
acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
cond_wait(&okToRead,&lock);// Sleep on cond var
WR--; // No longer waiting

}
AR++; // Now we are active!
release(&lock);

AccessDBase(ReadOnly);

acquire(&lock);
AR--;
if (AR == 0 && WW > 0)

cond_signal(&okToWrite);
release(&lock);

}

Simulation of Readers/Writers Solution
• R1 signals a writer (W1 and R3 waiting)
• AR = 0, WR = 1, AW = 0, WW = 1

46

Writer() {
acquire(&lock);
while ((AW + AR) > 0) { // Is it safe to write?

WW++; // No. Active users exist
cond_wait(&okToWrite,&lock);// Sleep on cond var
WW--; // No longer waiting

}
AW++;
release(&lock);

AccessDBase(ReadWrite);

acquire(&lock);
AW--;
if (WW > 0){

cond_signal(&okToWrite);
} else if (WR > 0) {

cond_broadcast(&okToRead);
}
release(&lock);

}

Simulation of Readers/Writers Solution
• W1 gets signal (R3 still waiting)
• AR = 0, WR = 1, AW = 0, WW = 1

47

Writer() {
acquire(&lock);
while ((AW + AR) > 0) { // Is it safe to write?

WW++; // No. Active users exist
cond_wait(&okToWrite,&lock);// Sleep on cond var
WW--; // No longer waiting

}
AW++;
release(&lock);

AccessDBase(ReadWrite);

acquire(&lock);
AW--;
if (WW > 0){

cond_signal(&okToWrite);
} else if (WR > 0) {

cond_broadcast(&okToRead);
}
release(&lock);

}

Simulation of Readers/Writers Solution
• W1 gets signal (R3 still waiting)
• AR = 0, WR = 1, AW = 0, WW = 0

48

Writer() {
acquire(&lock);
while ((AW + AR) > 0) { // Is it safe to write?

WW++; // No. Active users exist
cond_wait(&okToWrite,&lock);// Sleep on cond var
WW--; // No longer waiting

}
AW++;
release(&lock);

AccessDBase(ReadWrite);

acquire(&lock);
AW--;
if (WW > 0){

cond_signal(&okToWrite);
} else if (WR > 0) {

cond_broadcast(&okToRead);
}
release(&lock);

}

Simulation of Readers/Writers Solution
• W1 gets signal (R3 still waiting)
• AR = 0, WR = 1, AW = 1, WW = 0

49

Writer() {
acquire(&lock);
while ((AW + AR) > 0) { // Is it safe to write?

WW++; // No. Active users exist
cond_wait(&okToWrite,&lock);// Sleep on cond var
WW--; // No longer waiting

}
AW++;
release(&lock);

AccessDBase(ReadWrite);

acquire(&lock);
AW--;
if (WW > 0){

cond_signal(&okToWrite);
} else if (WR > 0) {

cond_broadcast(&okToRead);
}
release(&lock);

}

Simulation of Readers/Writers Solution
• W1 accessing dbase (R3 still waiting)
• AR = 0, WR = 1, AW = 1, WW = 0

50

Writer() {
acquire(&lock);
while ((AW + AR) > 0) { // Is it safe to write?

WW++; // No. Active users exist
cond_wait(&okToWrite,&lock);// Sleep on cond var
WW--; // No longer waiting

}
AW++;
release(&lock);

AccessDBase(ReadWrite);

acquire(&lock);
AW--;
if (WW > 0){

cond_signal(&okToWrite);
} else if (WR > 0) {

cond_broadcast(&okToRead);
}
release(&lock);

}

Simulation of Readers/Writers Solution
• W1 finishes (R3 still waiting)
• AR = 0, WR = 1, AW = 1, WW = 0

51

Writer() {
acquire(&lock);
while ((AW + AR) > 0) { // Is it safe to write?

WW++; // No. Active users exist
cond_wait(&okToWrite,&lock);// Sleep on cond var
WW--; // No longer waiting

}
AW++;
release(&lock);

AccessDBase(ReadWrite);

acquire(&lock);
AW--;
if (WW > 0){

cond_signal(&okToWrite);
} else if (WR > 0) {

cond_broadcast(&okToRead);
}
release(&lock);

}

Simulation of Readers/Writers Solution
• W1 finishes (R3 still waiting)
• AR = 0, WR = 1, AW = 0, WW = 0

52

Writer() {
acquire(&lock);
while ((AW + AR) > 0) { // Is it safe to write?

WW++; // No. Active users exist
cond_wait(&okToWrite,&lock);// Sleep on cond var
WW--; // No longer waiting

}
AW++;
release(&lock);

AccessDBase(ReadWrite);

acquire(&lock);
AW--;
if (WW > 0){

cond_signal(&okToWrite);
} else if (WR > 0) {

cond_broadcast(&okToRead);
}
release(&lock);

}

Simulation of Readers/Writers Solution
• W1 finishes (R3 still waiting)
• AR = 0, WR = 1, AW = 0, WW = 0

53

Writer() {
acquire(&lock);
while ((AW + AR) > 0) { // Is it safe to write?

WW++; // No. Active users exist
cond_wait(&okToWrite,&lock);// Sleep on cond var
WW--; // No longer waiting

}
AW++;
release(&lock);

AccessDBase(ReadWrite);

acquire(&lock);
AW--;
if (WW > 0){

cond_signal(&okToWrite);
} else if (WR > 0) {

cond_broadcast(&okToRead);
}
release(&lock);

}

Simulation of Readers/Writers Solution
• W1 signaling readers (R3 still waiting)
• AR = 0, WR = 1, AW = 0, WW = 0

54

Reader() {
acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
cond_wait(&okToRead,&lock);// Sleep on cond var
WR--; // No longer waiting

}
AR++; // Now we are active!
release(&lock);

AccessDBase(ReadOnly);

acquire(&lock);
AR--;
if (AR == 0 && WW > 0)

cond_signal(&okToWrite);
release(&lock);

}

Simulation of Readers/Writers Solution
• R3 gets signal (no waiting threads)
• AR = 0, WR = 1, AW = 0, WW = 0

55

Reader() {
acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
cond_wait(&okToRead,&lock);// Sleep on cond var
WR--; // No longer waiting

}
AR++; // Now we are active!
release(&lock);

AccessDBase(ReadOnly);

acquire(&lock);
AR--;
if (AR == 0 && WW > 0)

cond_signal(&okToWrite);
release(&lock);

}

Simulation of Readers/Writers Solution
• R3 gets signal (no waiting threads)
• AR = 0, WR = 0, AW = 0, WW = 0

56

Simulation of Readers/Writers Solution
• R3 accessing dbase (no waiting threads)
• AR = 1, WR = 0, AW = 0, WW = 0

Reader() {
acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
cond_wait(&okToRead,&lock);// Sleep on cond var
WR--; // No longer waiting

}
AR++; // Now we are active!
release(&lock);

AccessDBase(ReadOnly);

acquire(&lock);
AR--;
if (AR == 0 && WW > 0)

cond_signal(&okToWrite);
release(&lock);

}

57

Simulation of Readers/Writers Solution
• R3 finishes (no waiting threads)
• AR = 1, WR = 0, AW = 0, WW = 0

Reader() {
acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
cond_wait(&okToRead,&lock);// Sleep on cond var
WR--; // No longer waiting

}
AR++; // Now we are active!
release(&lock);

AccessDBase(ReadOnly);

acquire(&lock);
AR--;
if (AR == 0 && WW > 0)

cond_signal(&okToWrite);
release(&lock);

}

58

Simulation of Readers/Writers Solution
• R3 finishes (no waiting threads)
• AR = 0, WR = 0, AW = 0, WW = 0

Reader() {
acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
cond_wait(&okToRead,&lock);// Sleep on cond var
WR--; // No longer waiting

}
AR++; // Now we are active!
release(&lock);

AccessDbase(ReadOnly);

acquire(&lock);
AR--;
if (AR == 0 && WW > 0)

cond_signal(&okToWrite);
release(&lock);

}

59

Group Discussion
• Can readers starve? Consider Reader() entry code:

while ((AW + WW) > 0) { // Is it safe to read?
WR++; // No. Writers exist
cond_wait(&okToRead,&lock);// Sleep on cond var
WR--; // No longer waiting

}
AR++; // Now we are active!

• What if we erase the condition check in Reader exit?
AR--; // No longer active
if (AR == 0 && WW > 0) // No other active readers

cond_signal(&okToWrite);// Wake up one writer

• Further, what if we turn the signal() into broadcast()
AR--; // No longer active
cond_broadcast(&okToWrite); // Wake up sleepers

• Finally, what if we use only one condition variable (call it
“okContinue”) instead of two separate ones?

– Both readers and writers sleep on this variable
– Must use broadcast() instead of signal()

60

Use of Single CV: okContinue
Reader() {

// check into system
acquire(&lock);
while ((AW + WW) > 0) {

WR++;
cond_wait(&okContinue,&lock);
WR--;

}
AR++;
release(&lock);

// read-only access
AccessDbase(ReadOnly);

// check out of system
acquire(&lock);
AR--;
if (AR == 0 && WW > 0)

cond_signal(&okContinue);
release(&lock);

}

Writer() {
// check into system
acquire(&lock);
while ((AW + AR) > 0) {

WW++;
cond_wait(&okContinue,&lock);
WW--;

}
AW++;
release(&lock);

// read/write access
AccessDbase(ReadWrite);

// check out of system
acquire(&lock);
AW--;
if (WW > 0){

cond_signal(&okContinue);
} else if (WR > 0) {

cond_broadcast(&okContinue);
}
release(&lock);

}
What if we turn okToWrite and okToRead into okContinue

(i.e. use only one condition variable instead of two)?

61

Use of Single CV: okContinue
Reader() {

// check into system
acquire(&lock);
while ((AW + WW) > 0) {

WR++;
cond_wait(&okContinue,&lock);
WR--;

}
AR++;
release(&lock);

// read-only access
AccessDbase(ReadOnly);

// check out of system
acquire(&lock);
AR--;
if (AR == 0 && WW > 0)

cond_signal(&okContinue);
release(&lock);

}

Writer() {
// check into system
acquire(&lock);
while ((AW + AR) > 0) {

WW++;
cond_wait(&okContinue,&lock);
WW--;

}
AW++;
release(&lock);

// read/write access
AccessDbase(ReadWrite);

// check out of system
acquire(&lock);
AW--;
if (WW > 0){

cond_signal(&okContinue);
} else if (WR > 0) {

cond_broadcast(&okContinue);
}
release(&lock);

}Consider this scenario:
• R1 arrives
• W1, R2 arrive while R1 still reading à W1 and R2 wait for R1 to finish
• Assume R1’s signal is delivered to R2 (not W1)

62

Use of Single CV: okContinue
Reader() {

// check into system
acquire(&lock);
while ((AW + WW) > 0) {

WR++;
cond_wait(&okContinue,&lock);

WR--;
}
AR++;
release(&lock);

// read-only access
AccessDbase(ReadOnly);

// check out of system
acquire(&lock);
AR--;
if (AR == 0 && WW > 0)

cond_broadcast(&okContinue);
release(&lock);

}

Writer() {
// check into system
acquire(&lock);
while ((AW + AR) > 0) {

WW++;
cond_wait(&okContinue,&lock);

WW--;
}
AW++;
release(&lock);

// read/write access
AccessDbase(ReadWrite);

// check out of system
acquire(&lock);
AW--;
if (WW > 0 || WR > 0){

cond_broadcast(&okContinue);
}
release(&lock);

}Need to change to
broadcast()!

Must broadcast()
to sort things out!

63

Can we construct Monitors from Semaphores?
• Locking aspect is easy: Just use a mutex
• Can we implement condition variables this way?

Wait(Semaphore *thesema) { semaP(thesema); }
Signal(Semaphore *thesema) { semaV(thesema); }

– Doesn’t work: Wait() may sleep with lock held
• Does this work better?

Wait(Lock *thelock, Semaphore *thesema) {
release(thelock);
semaP(thesema);
acquire(thelock);

}
Signal(Semaphore *thesema) {
semaV(thesema);

}
– No: Condition vars have no history, semaphores have history:

» What if thread signals and no one is waiting? NO-OP
» What if thread later waits? Thread Waits
» What if thread V’s and no one is waiting? Increment
» What if thread later does P? Decrement and continue

64

Construction of Monitors from Semaphores (con’t)
• Problem with previous try:

– P and V are commutative – result is the same no matter what order
they occur

– Condition variables are NOT commutative
• Does this fix the problem?

Wait(Lock *thelock, Semaphore *thesema) {
release(thelock);
semaP(thesema);
acquire(thelock);

}
Signal(Semaphore *thesema) {

if semaphore queue is not empty
semaV(thesema);

}
– Not legal to look at contents of semaphore queue
– There is a race condition – signaler can slip in after lock release and

before waiter executes semaphore.P()
• It is actually possible to do this correctly

– Complex solution for Hoare scheduling in book
– Can you come up with simpler Mesa-scheduled solution?

65

Mesa Monitor Conclusion
• Monitors represent the synchronization logic of the program

– Wait if necessary
– Signal when change something so any waiting threads can proceed

• Typical structure of monitor-based program:
lock
while (need to wait) {

condvar.wait();
}
unlock

do something so no need to wait

lock

condvar.signal();

unlock

Check and/or update
state variables

Wait if necessary

Check and/or update
state variables

66

C-Language Support for Synchronization
• C language: Pretty straightforward synchronization

– Just make sure you know all the code paths out of a critical section
int Rtn() {

acquire(&lock);
…
if (exception) {

release(&lock);
return errReturnCode;

}
…
release(&lock);
return OK;

}
– Watch out for setjmp/longjmp!

» Can cause a non-local jump out of procedure
» In example, procedure E calls longjmp, poping stack back to procedure B
» If Procedure C had lock.acquire, problem!

Proc A

Proc B
Calls setjmp

Proc C
acquire(&lock)

Proc D

Proc E
Calls longjmp

S
tack growth

67

• Harder with more locks
void Rtn() {
lock1.acquire();
…
if (error) {
lock1.release();
return;

}
…
lock2.acquire();
…
if (error) {
lock2.release()
lock1.release();
return;

}
…
lock2.release();
lock1.release();

}

• Is goto a solution???
void Rtn() {
lock1.acquire();
…
if (error) {

goto release_lock1_and_return;
}
…
lock2.acquire();
…
if (error) {

goto release_both_and_return;
}
…

release_both_and_return:
lock2.release();

release_lock1_and_return:
lock1.release();

}

Concurrency and Synchronization in C

68

C++ Language Support for Synchronization
• Languages with exceptions like C++

– Languages that support exceptions are problematic (easy to make a non-local
exit without releasing lock)

– Consider:
void Rtn() {

lock.acquire();
…
DoFoo();
…
lock.release();

}
void DoFoo() {

…
if (exception) throw errException;
…

}
– Notice that an exception in DoFoo() will exit without releasing the lock!

69

C++ Language Support for Synchronization (con’t)
• Must catch all exceptions in critical sections

– Catch exceptions, release lock, and re-throw exception:
void Rtn() {

lock.acquire();
try {

…
DoFoo();
…

} catch (…) { // catch exception
lock.release(); // release lock
throw; // re-throw the exception

}
lock.release();

}
void DoFoo() {

…
if (exception) throw errException;
…

}

70

Much better: C++ Lock Guards

#include <mutex>
int global_i = 0;
std::mutex global_mutex;

void safe_increment() {
std::lock_guard<std::mutex> lock(global_mutex);
…
global_i++;
// Mutex released when ‘lock’ goes out of scope

}

71

Python with Keyword

• More versatile than we show here (can be used to close files, database
connections, etc.)

lock = threading.Lock()
…
with lock: # Automatically calls acquire()

some_var += 1
…

release() called however we leave block

72

Java synchronized Keyword
• Every Java object has an associated lock:

– Lock is acquired on entry and released on exit from a synchronized method
– Lock is properly released if exception occurs inside a synchronized method
– Mutex execution of synchronized methods (beware deadlock)

class Account {
private int balance;

// object constructor
public Account (int initialBalance) {

balance = initialBalance;
}
public synchronized int getBalance() {

return balance;
}
public synchronized void deposit(int amount) {

balance += amount;
}

}

73

Java Support for Monitors

• Along with a lock, every object has a single condition variable
associated with it

• To wait inside a synchronized method:
– void wait();
– void wait(long timeout);

• To signal while in a synchronized method:
– void notify();
– void notifyAll();

74

(OSDI 06) The Chubby lock service for loosely-coupled
distributed systems

• Lock service
• Loosely-coupled distributed system

–Coarse-grained synchronization
• UNIX-link file system interface
• Availability and reliability
• Open-source counterparts: Apache ZooKeeper, etcd

“Building Chubby was an engineering effort required to fill the needs
mentioned above; it was not research. We claim no new algorithms or
techniques. The purpose of this paper is to describe what we did and
why, rather than to advocate it. ”

75

Conclusion
• Monitors: A lock plus one or more condition variables

– Always acquire lock before accessing shared data
– Use condition variables to wait inside critical section

» Three Operations: Wait(), Signal(), and Broadcast()
• Monitors represent the logic of the program

– Wait if necessary
– Signal when change something so any waiting threads can proceed
– Monitors supported natively in a number of languages

• Readers/Writers Monitor example
– Shows how monitors allow sophisticated controlled entry to protected code

