
Acknowledgments: Ion Stoica, Berkeley CS 162

Xin Jin
Spring 2022

Operating Systems
(Honor Track)

Scheduling 1: Concepts and Classic Policies

7

Goal for Today

• Discussion of Scheduling:
– Which thread should run on the CPU next?

• Scheduling goals, policies
• Look at a number of different schedulers

if (readyThreads(TCBs)) {
nextTCB = selectThread(TCBs);
run(nextTCB);

} else {
run_idle_thread();

}

run_new_thread() {

}

8

Scheduling: All About Queues

9

Scheduling Assumptions
• CPU scheduling big area of research in early 70’s
• Many implicit assumptions for CPU scheduling:

– One program per user
– One thread per program
– Programs are independent

• Clearly, these are unrealistic but they simplify the problem so it
can be solved

– For instance: is “fair” about fairness among users or programs?
» If I run one compilation job and you run five, you get five times as

much CPU on many operating systems
• The high-level goal: Dole out CPU time to optimize some desired

parameters of system

USER1 USER2 USER3 USER1 USER2

Time

10

Assumption: CPU Bursts

• Execution model: programs alternate between bursts of CPU and I/O
– Program typically uses the CPU for some period of time, then does I/O, then

uses CPU again
– Each scheduling decision is about which job to give to the CPU for use by its

next CPU burst
– With time slicing, thread may be forced to give up CPU before finishing current

CPU burst

Weighted toward small bursts

11

Scheduling Policy Goals/Criteria
• Minimize Completion Time

– Minimize elapsed time to do an operation (or job)
– Completion time is what the user sees:

» Time to echo a keystroke in editor
» Time to compile a program
» Real-time Tasks: Must meet deadlines imposed by World

• Maximize Throughput
– Maximize operations (or jobs) per second
– Throughput related to completion time, but not identical:

» Minimizing completion time will lead to more context switching than if you only maximized
throughput

– Two parts to maximizing throughput
» Minimize overhead (for example, context-switching)
» Efficient use of resources (CPU, disk, memory, etc.)

• Fairness
– Share CPU among users in some equitable way
– Fairness is not minimizing average completion time:

» Better average completion time by making system less fair

12

First-Come, First-Served (FCFS) Scheduling
• First-Come, First-Served (FCFS)

– Also “First In, First Out” (FIFO) or “Run until done”
» In early systems, FCFS meant one program

scheduled until done (including I/O)
» Now, means keep CPU until thread blocks

• Example: Process Burst Time
P1 24
P2 3
P3 3

– Suppose processes arrive in the order: P1 , P2 , P3
The Gantt Chart for the schedule is:

– Waiting time for P1 = 0; P2 = 24; P3 = 27
– Average waiting time: (0 + 24 + 27)/3 = 17
– Average Completion time: (24 + 27 + 30)/3 = 27

• Convoy effect: short process stuck behind long process

P1 P2 P3

24 27 300

13

FCFS Scheduling (Cont.)
• Example continued:

– Suppose that processes arrive in order: P2 , P3 , P1
Now, the Gantt chart for the schedule is:

– Waiting time for P1 = 6; P2 = 0; P3 = 3
– Average waiting time: (6 + 0 + 3)/3 = 3
– Average Completion time: (3 + 6 + 30)/3 = 13

• In second case:
– Average waiting time is much better (before it was 17)
– Average completion time is better (before it was 27)

• FIFO Pros and Cons:
– Simple (+)
– Head-of-line blocking: Short jobs get stuck behind long ones (-)

» Safeway: Getting milk, always stuck behind cart full of items!
Upside: get to read about Space Aliens!

P1P3P2

63 300

14

• FCFS Scheme: Potentially bad for short jobs!
– Depends on submit order
– If you are first in line at supermarket with milk, you don’t care

who is behind you, on the other hand…
• Round Robin Scheme: Preemption!

– Each process gets a small unit of CPU time
(time quantum), usually 10-100 milliseconds

– After quantum expires, the process is preempted
and added to the end of the ready queue.

– n processes in ready queue and time quantum is q Þ
» Each process gets 1/n of the CPU time
» In chunks of at most q time units
» No process waits more than (n-1)q time units

Round Robin (RR) Scheduling

15

• Performance
– q large Þ FCFS
– q small Þ Interleaved
– q must be large with respect to context switch, otherwise

overhead is too high (all overhead)

RR Scheduling (Cont.)

16

• Example: Process Burst Time
P1 53
P2 8
P3 68
P4 24

– The Gantt chart is:

– Waiting time for P1=(68-20)+(112-88)=72
P2=(20-0)=20
P3=(28-0)+(88-48)+(125-108)=85
P4=(48-0)+(108-68)=88

– Average waiting time = (72+20+85+88)/4=66¼
– Average completion time = (125+28+153+112)/4 = 104½

• Thus, Round-Robin Pros and Cons:
– Better for short jobs, Fair (+)
– Context-switching time adds up for long jobs (-)

P1
0 20

P2
28

P3
48

P4
68

P1
88

P3
108

P4 P1 P3 P3
112 125 145 153

Example of RR with Time Quantum = 20

17

Group Discussion

• Topic: FCFS and RR
– Is RR always better than FCFS in terms of average completion time?
– Does a smaller quantum in RR always lead to a better average completion

time?

• Discuss in groups of two to three students
– Each group chooses a leader to summarize the discussion
– In your group discussion, please do not dominate the discussion, and give

everyone a chance to speak

18

Decrease Completion Time

• T1: Burst Length 10
• T2: Burst Length 1

• Q = 10

– Average Completion Time = (10 + 11)/2 = 10.5

• Q = 5

– Average Completion Time = (6 + 11)/2 = 8.5

T1
0 10

T2
11

T1
0 6

T2
11

T1
5

19

Same Completion Time

• T1: Burst Length 1
• T2: Burst Length 1

• Q = 10

– Average Completion Time = (1 + 2)/2 = 1.5

• Q = 1

– Average Completion Time = (1 + 2)/2 = 1.5

T1
0 1
T2
2

T1
0 1
T2
2

20

• T1: Burst Length 1
• T2: Burst Length 1

• Q = 1

– Average Completion Time = (1 + 2)/2 = 1.5

• Q = 0.5

– Average Completion Time = (1.5 + 2)/2 = 1.75

T1
0 1
T2
2

0 2

Increase Completion Time

21

How to Implement RR in the Kernel?

• FIFO Queue, as in FCFS
• But preempt job after quantum expires, and send it to the back of the queue

– How? Timer interrupt!
– And, of course, careful synchronization

22

• How do you choose time slice?
– What if too big?

» Waiting time suffers
– What if infinite (¥)?

» Get back FIFO
– What if time slice too small?

» Throughput suffers!
• Actual choices of time slice:

– Initially, UNIX time slice one second:
» Worked ok when UNIX was used by one or two people.
» What if three compilations going on? 3 seconds to echo each keystroke!

– Need to balance short-job performance and long-job throughput
» Typical time slice today is between 10ms – 100ms

Round-Robin Discussion

23

Comparisons between FCFS and Round Robin
• Assuming zero-cost context-switching time, is RR always better than FCFS?
• Simple example: 10 jobs, each take 100s of CPU time

RR scheduler quantum of 1s
All jobs start at the same time

• Completion Times:

– Both RR and FCFS finish at the same time
– Average completion time is much worse under RR!

» Bad when all jobs same length
• Also: Cache state must be shared between all jobs with RR but can be devoted to

each job with FIFO
– Total time for RR longer even for zero-cost switch!

Job # FIFO RR
1 100 991
2 200 992
… … …
9 900 999
10 1000 1000

24

Quantum

Completion
Time

Wait
Time

AverageP4P3P2P1

Earlier Example with Different Time Quantum
P2
[8]
P4
[24]

P1
[53]

P3
[68]

0 8 32 85 153

Best FCFS:

6257852284Q = 1

104½11215328125Q = 20

100½8115330137Q = 1

66¼ 88852072Q = 20

31¼885032Best FCFS

121¾14568153121Worst FCFS

69½32153885Best FCFS
83½121014568Worst FCFS

95½8015316133Q = 8

57¼5685880Q = 8

99½9215318135Q = 10

99½8215328135Q = 5

61¼68851082Q = 10

61¼58852082Q = 5

25

• Execution Plan
– Always execute highest-priority runable jobs to completion
– Each queue can be processed in RR with some time-quantum

• Problems:
– Starvation:

» Lower priority jobs don’t get to run because higher priority jobs
– Deadlock: Priority Inversion

» Happens when low priority task has lock needed by high-priority task
» Usually involves third, intermediate priority task preventing high-priority task from running

• How to fix problems?
– Dynamic priorities: adjust base-level priority up or down based on heuristics about

interactivity, locking, burst behavior, etc…

Priority 3

Priority 2

Priority 1

Priority 0 Job 5 Job 6

Job 1 Job 2 Job 3

Job 7

Job 4

Handling Differences in Importance: Strict Priority Scheduling

26

Scheduling Fairness
• What about fairness?

– Strict fixed-priority scheduling between queues is unfair (run highest, then next, etc):
» long running jobs may never get CPU
» Urban legend: In Multics, shut down machine, found 10-year-old job Þ

Ok, probably not…
– Must give long-running jobs a fraction of the CPU even when there are shorter jobs

to run
– Tradeoff: fairness gained by hurting avg completion time!

27

Scheduling Fairness
• How to implement fairness?

– Could give each queue some fraction of the CPU
» What if one long-running job and 100 short-running ones?
» Like express lanes in a supermarket—sometimes express lanes get so long, get better

service by going into one of the other lines
– Could increase priority of jobs that don’t get service

» What is done in some variants of UNIX
» This is ad hoc—what rate should you increase priorities?
» And, as system gets overloaded, no job gets CPU time, so everyone increases in

priorityÞInteractive jobs suffer

28

What if we Knew the Future?
• Could we always mirror best FCFS?
• Shortest Job First (SJF):

– Run whatever job has least amount of
computation to do

– Sometimes called “Shortest Time to Completion First” (STCF)
• Shortest Remaining Time First (SRTF):

– Preemptive version of SJF: if job arrives and has a shorter time to
completion than the remaining time on the current job, immediately
preempt CPU

– Sometimes called “Shortest Remaining Time to Completion First”
(SRTCF)

• These can be applied to whole program or current CPU burst
– Idea is to get short jobs out of the system
– Big effect on short jobs, only small effect on long ones
– Result is better average completion time

29

Discussion
• SJF/SRTF are the best you can do at minimizing average

completion time
– Provably optimal (SJF among non-preemptive, SRTF among

preemptive)
– Since SRTF is always at least as good as SJF, focus on SRTF

• Comparison of SRTF with FCFS
– What if all jobs the same length?

» SRTF becomes the same as FCFS (i.e. FCFS is best can do if all jobs the
same length)

– What if jobs have varying length?
» SRTF: short jobs not stuck behind long ones

30

Example to illustrate benefits of SRTF

• Three jobs:
– A, B: both CPU bound, run for week

C: I/O bound, loop 1ms CPU, 9ms disk I/O
– If only one at a time, C uses 90% of the disk, A or B could use

100% of the CPU
• With FCFS:

– Once A or B get in, keep CPU for two weeks
• What about RR or SRTF?

– Easier to see with a timeline

C

C’s
I/O

C’s
I/O

C’s
I/O

A or B

31

SRTF Example continued:

C’s
I/O

CABAB… C

C’s
I/O

RR 1ms time slice

C’s
I/O

C’s
I/O

CA BC

RR 100ms time slice

C’s
I/O

AC

C’s
I/O

AA

SRTF

Disk Utilization:
~90% but lots of
wakeups!

Disk Utilization:
90%

Disk Utilization:
9/201 ~ 4.5%

32

• Starvation
– SRTF can lead to starvation if many small jobs!
– Large jobs never get to run

• Somehow need to predict future
– How can we do this?
– Some systems ask the user

» When you submit a job, have to say how long it will take
» To stop cheating, system kills job if takes too long

– But: hard to predict job’s runtime even for non-malicious users
• Bottom line, can’t really know how long job will take

– However, can use SRTF as a yardstick
for measuring other policies

– Optimal, so can’t do any better
• SRTF Pros & Cons

– Optimal (average completion time) (+)
– Hard to predict future (-)
– Unfair (-)

SRTF Further discussion

33

Predicting the Length of the Next CPU Burst
• Adaptive: Changing policy based on past behavior

– CPU scheduling, in virtual memory, in file systems, etc
– Works because programs have predictable behavior

» If program was I/O bound in past, likely in future
» If computer behavior were random, wouldn’t help

• Example: SRTF with estimated burst length
– Use an estimator function on previous bursts:

Let tn-1, tn-2, tn-3, etc. be previous CPU burst lengths.
Estimate next burst tn = f(tn-1, tn-2, tn-3, …)

– Function f could be one of many different time series estimation schemes
(Kalman filters, etc)

– For instance, exponential averaging
tn = atn-1+(1-a)tn-1
with (0<a£1)

34

Lottery Scheduling
• Yet another alternative: Lottery Scheduling

– Give each job some number of lottery tickets
– On each time slice, randomly pick a winning ticket
– On average, CPU time is proportional to number of tickets

given to each job
• How to assign tickets?

– To approximate SRTF, short running jobs get more, long running jobs get fewer
– To avoid starvation, every job gets at least one ticket (everyone makes progress)

• Advantage over strict priority scheduling: behaves gracefully as load changes
– Adding or deleting a job affects all jobs proportionally, independent of how many

tickets each job possesses

35

Lottery Scheduling Example (Cont.)
• Lottery Scheduling Example

– Assume short jobs get 10 tickets, long jobs get 1 ticket

– What if too many short jobs to give reasonable completion time?
» If load average is 100, hard to make progress
» One approach: log some user out

short jobs/

long jobs
% of CPU each
short jobs gets

% of CPU each
long jobs gets

1/1 91% 9%
0/2 N/A 50%
2/0 50% N/A
10/1 9.9% 0.99%
1/10 50% 5%

36

Multi-Level Feedback Scheduling

• Another method for exploiting past behavior (first use in CTSS)
– Multiple queues, each with different priority

» Higher priority queues often considered “foreground” tasks
– Each queue has its own scheduling algorithm

» e.g. foreground – RR, background – FCFS
» Sometimes multiple RR priorities with quantum increasing exponentially

(highest:1ms, next: 2ms, next: 4ms, etc)
• Adjust each job’s priority as follows (details vary)

– Job starts in highest priority queue
– If timeout expires, drop one level
– If timeout doesn’t expire, push up one level (or to top)

Long-Running Compute
Tasks Demoted to

Low Priority

37

Scheduling Details

• Result approximates SRTF:
– CPU bound jobs drop like a rock
– Short-running I/O bound jobs stay near top

• Scheduling must be done between the queues
– Fixed priority scheduling:

» serve all from highest priority, then next priority, etc.
– Time slice:

» each queue gets a certain amount of CPU time
» e.g., 70% to highest, 20% next, 10% lowest

Long-Running Compute
Tasks Demoted to

Low Priority

38

Scheduling Details

• Countermeasure: user action that can foil intent of the OS designers
– For multilevel feedback, put in a bunch of meaningless I/O to keep job’s priority high
– Of course, if everyone did this, wouldn’t work!

• Example of Othello program:
– Playing against competitor, so key was to do computing at higher priority than the

competitors.
» Put in printf’s, ran much faster!

Long-Running Compute
Tasks Demoted to

Low Priority

39

• Consider mix of interactive and high throughput apps:
– How to best schedule them?
– How to recognize one from the other?

» Do you trust app to say that it is “interactive”?
– Should you schedule the set of apps identically on servers, workstations,

pads, and cellphones?
• For instance, is Burst Time (observed) useful to decide which application gets CPU

time?
– Short Bursts Þ Interactivity Þ High Priority?

• Assumptions encoded into many schedulers:
– Apps that sleep a lot and have short bursts must be interactive apps –

they should get high priority
– Apps that compute a lot should get low(er?) priority, since they won’t notice

intermittent bursts from interactive apps
• Hard to characterize apps:

– What about apps that sleep for a long time, but then compute for a long time?
– Or, what about apps that must run under all circumstances (say periodically)

How to Handle Simultaneous Mix of Diff Types of Apps?

40

Multi-Core Scheduling

• Algorithmically, not a huge difference from single-core scheduling

• Implementation-wise, helpful to have per-core scheduling data structures
– Cache coherence

• Affinity scheduling: once a thread is scheduled on a CPU, OS tries to reschedule it
on the same CPU

– Cache reuse

42

Spinlocks for multiprocessing
• Spinlock implementation:

int value = 0; // Free
Acquire() {

while (test&set(&value)) {}; // spin while busy
}
Release() {

value = 0; // atomic store
}

• Spinlock doesn’t put the calling thread to sleep—it just busy waits
– When might this be preferable?

» Waiting for limited number of threads at a barrier in a multiprocessing (multicore) program
» Wait time at barrier would be greatly increased if threads must be woken inside kernel

• Every test&set() is a write, which makes value ping-pong around between core-local caches
– So – really want to use test&test&set() !

• The extra read eliminates the ping-ponging issues:
// Implementation of test&test&set():
Acquire() {

do {
while(value); // wait until might be free

} while (test&set(&value)); // exit if acquire lock
}

43

Conclusion

• Round-Robin Scheduling:
– Give each thread a small amount of CPU time when it executes; cycle between all

ready threads
– Pros: Better for short jobs

• Shortest Job First (SJF)/Shortest Remaining Time First (SRTF):
– Run whatever job has the least amount of computation to do/least remaining amount

of computation to do
– Pros: Optimal (average completion time)
– Cons: Hard to predict future, Unfair

• Multi-Level Feedback Scheduling:
– Multiple queues of different priorities and scheduling algorithms
– Automatic promotion/demotion of process priority in order to approximate SJF/SRTF

• Lottery Scheduling:
– Give each thread a priority-dependent number of tokens

(short tasksÞmore tokens)

