Operating Systems (Honor Track)

Scheduling 1: Concepts and Classic Policies

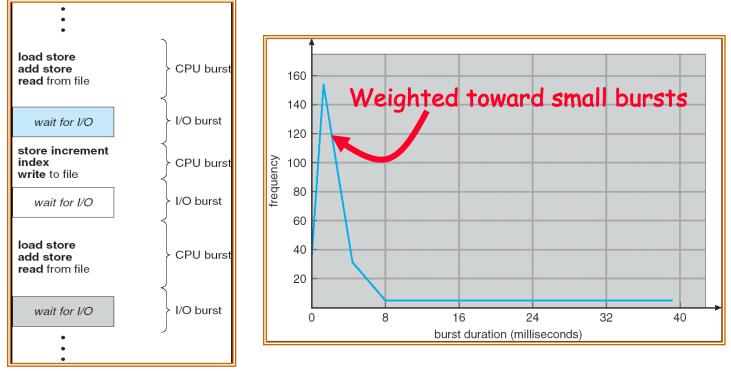
Xin Jin Spring 2022

Acknowledgments: Ion Stoica, Berkeley CS 162

Goal for Today

- Discussion of Scheduling:
 - Which thread should run on the CPU next?
- Scheduling goals, policies
- Look at a number of different schedulers

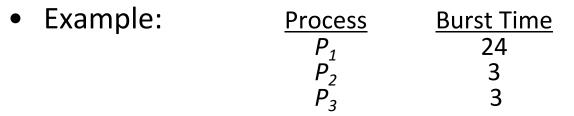
Scheduling: All About Queues



Scheduling Assumptions

- CPU scheduling big area of research in early 70's
- Many implicit assumptions for CPU scheduling:
 - One program per user
 - One thread per program
 - Programs are independent
- Clearly, these are unrealistic but they simplify the problem so it can be solved
 - For instance: is "fair" about fairness among users or programs?
 - » If I run one compilation job and you run five, you get five times as much CPU on many operating systems
- The high-level goal: Dole out CPU time to optimize some desired parameters of system

Assumption: CPU Bursts


- Execution model: programs alternate between bursts of CPU and I/O
 - Program typically uses the CPU for some period of time, then does I/O, then uses CPU again
 - Each scheduling decision is about which job to give to the CPU for use by its next CPU burst
 - With time slicing, thread may be forced to give up CPU before finishing current CPU burst

Scheduling Policy Goals/Criteria

- Minimize Completion Time
 - Minimize elapsed time to do an operation (or job)
 - Completion time is what the user sees:
 - » Time to echo a keystroke in editor
 - » Time to compile a program
 - » Real-time Tasks: Must meet deadlines imposed by World
- Maximize Throughput
 - Maximize operations (or jobs) per second
 - Throughput related to completion time, but not identical:
 - » Minimizing completion time will lead to more context switching than if you only maximized throughput
 - Two parts to maximizing throughput
 - » Minimize overhead (for example, context-switching)
 - » Efficient use of resources (CPU, disk, memory, etc.)
- Fairness
 - Share CPU among users in some equitable way
 - Fairness is not minimizing average completion time:
 - » Better average completion time by making system less fair

First-Come, First-Served (FCFS) Scheduling

- First-Come, First-Served (FCFS)
 - Also "First In, First Out" (FIFO) or "Run until done"
 - » In early systems, FCFS meant one program scheduled until done (including I/O)
 - » Now, means keep CPU until thread blocks

– Suppose processes arrive in the order: P_1 , P_2 , P_3 The Gantt Chart for the schedule is:

- Waiting time for $P_1 = 0$; $P_2 = 24$; $P_3 = 27$
- Average waiting time: (0 + 24 + 27)/3 = 17
- Average Completion time: (24 + 27 + 30)/3 = 27
- *Convoy effect:* short process stuck behind long process

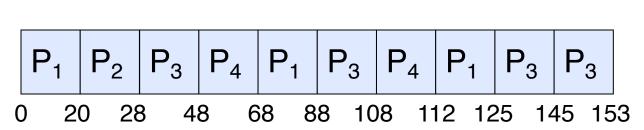
FCFS Scheduling (Cont.)

- Example continued:
 - Suppose that processes arrive in order: P2 , P3 , P1
 Now, the Gantt chart for the schedule is:

- Waiting time for P1 = 6; P2 = 0; P3 = 3
- Average waiting time: (6 + 0 + 3)/3 = 3
- Average Completion time: (3 + 6 + 30)/3 = 13
- In second case:
 - Average waiting time is much better (before it was 17)
 - Average completion time is better (before it was 27)
- FIFO Pros and Cons:
 - Simple (+)
 - Head-of-line blocking: Short jobs get stuck behind long ones (-)
 - » Safeway: Getting milk, always stuck behind cart full of items! Upside: get to read about Space Aliens!

Round Robin (RR) Scheduling

- FCFS Scheme: Potentially bad for short jobs!
 - Depends on submit order
 - If you are first in line at supermarket with milk, you don't care who is behind you, on the other hand...
- Round Robin Scheme: Preemption!
 - Each process gets a small unit of CPU time (*time quantum*), usually 10-100 milliseconds
 - After quantum expires, the process is preempted and added to the end of the ready queue.
 - *n* processes in ready queue and time quantum is $q \Rightarrow$
 - » Each process gets 1/n of the CPU time
 - » In chunks of at most q time units
 - » No process waits more than (n-1)q time units



RR Scheduling (Cont.)

- Performance
 - $-q \text{ large} \Rightarrow \text{FCFS}$
 - $-q \text{ small} \Rightarrow \text{Interleaved}$
 - q must be large with respect to context switch, otherwise overhead is too high (all overhead)

Example of RR with Time Quantum = 20

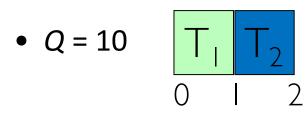
- Example: Process Burst Time P_1 53 P_2 8 P_3 68 P_4 24
 - The Gantt chart is:

- Waiting time for $P_1 = (68-20) + (112-88) = 72$ $P_2 = (20-0) = 20$ $P_3 = (28-0) + (88-48) + (125-108) = 85$ $P_4 = (48-0) + (108-68) = 88$
- Average waiting time = (72+20+85+88)/4=66¼
- Average completion time = (125+28+153+112)/4 = 104½
- Thus, Round-Robin Pros and Cons:
 - Better for short jobs, Fair (+)
 - Context-switching time adds up for long jobs (-)

Group Discussion

• Topic: FCFS and RR

- Is RR always better than FCFS in terms of average completion time?
- Does a smaller quantum in RR always lead to a better average completion time?
- Discuss in groups of two to three students
 - Each group chooses a leader to summarize the discussion
 - In your group discussion, please do not dominate the discussion, and give everyone a chance to speak

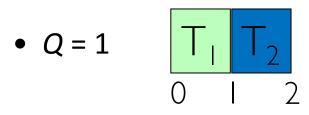

Decrease Completion Time

- T₁: Burst Length 10
- T₂: Burst Length 1

• Q = 10 O - Average Completion Time = (10 + 11)/2 = 10.5• Q = 5 T_1 T_2 T_1 T_2 T_1 T_2 T_1 T_2 T_1 T_1 T_2 T_1 T_2 T_1 T_2 T_2 T_1 T_2 T_2 T_1 T_2 T_2 T_2 T_1 T_2 T_2 T_2

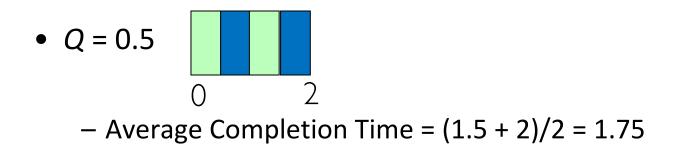
Same Completion Time

- T₁: Burst Length 1
- T₂: Burst Length 1


- Average Completion Time = (1 + 2)/2 = 1.5

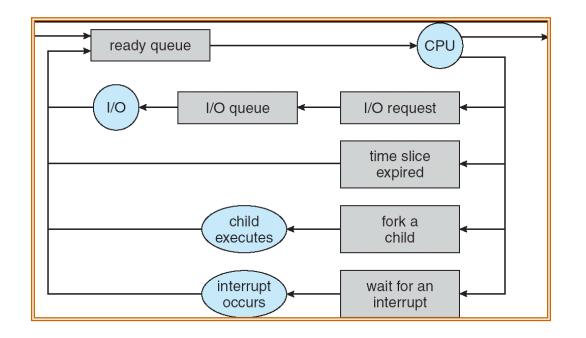
•
$$Q = 1$$

$$\begin{bmatrix} T_1 & T_2 \\ 0 & I_2 \end{bmatrix}$$

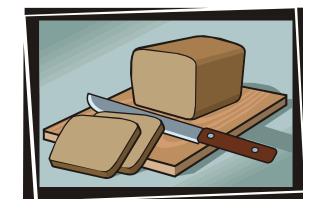

- Average Completion Time = (1 + 2)/2 = 1.5

Increase Completion Time

- T₁: Burst Length 1
- T₂: Burst Length 1



- Average Completion Time = (1 + 2)/2 = 1.5


How to Implement RR in the Kernel?

- FIFO Queue, as in FCFS
- But preempt job after quantum expires, and send it to the back of the queue
 - How? Timer interrupt!
 - And, of course, careful synchronization

Round-Robin Discussion

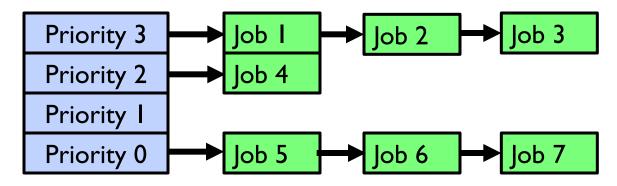
- How do you choose time slice?
 - What if too big?
 - » Waiting time suffers
 - What if infinite (∞)?
 - » Get back FIFO
 - What if time slice too small?
 - » Throughput suffers!
- Actual choices of time slice:
 - Initially, UNIX time slice one second:
 - » Worked ok when UNIX was used by one or two people.
 - » What if three compilations going on? 3 seconds to echo each keystroke!
 - Need to balance short-job performance and long-job throughput
 - » Typical time slice today is between 10ms 100ms

Comparisons between FCFS and Round Robin

- Assuming zero-cost context-switching time, is RR always better than FCFS?
- Simple example: 10 jobs, each take 100s of CPU time RR scheduler quantum of 1s All jobs start at the same time
- Completion Times:

Job #	FIFO	RR	
I	100	991	
2	200	992	
	•••	•••	
9	900	999	
10	1000	1000	

- Both RR and FCFS finish at the same time
- Average completion time is much worse under RR!


» Bad when all jobs same length

- Also: Cache state must be shared between all jobs with RR but can be devoted to each job with FIFO
 - Total time for RR longer even for zero-cost switch!

Earlier Example with Different Time Quantum

Best F	CFS: $\begin{bmatrix} P_2 & P_4 \\ [8] & [24] \end{bmatrix}$		53]	P ₃ [68]		
	0 8	32		85		153
	Quantum	P	P ₂	P ₃	P ₄	Average
Wait Time	Best FCFS	32	0	85	8	311/4
	Q = 1	84	22	85	57	62
	Q = 5	82	20	85	58	611/4
	Q = 8	80	8	85	56	571⁄4
	Q = 10	82	10	85	68	611/4
	Q = 20	72	20	85	88	66 ¹ /4
	Worst FCFS	68	145	0	121	831/2
Completion Time	Best FCFS	85	8	153	32	69 ¹ / ₂
	Q = 1	137	30	153	81	1001/2
	Q = 5	135	28	153	82	99 ¹ / ₂
	Q = 8	133	16	153	80	95 ½
	Q = 10	135	18	153	92	99 ¹ / ₂
	Q = 20	125	28	153	112	1041⁄2
	Worst FCFS	121	153	68	145	1213⁄4

Handling Differences in Importance: Strict Priority Scheduling

- Execution Plan
 - Always execute highest-priority runable jobs to completion
 - Each queue can be processed in RR with some time-quantum
- Problems:
 - Starvation:
 - » Lower priority jobs don't get to run because higher priority jobs
 - Deadlock: Priority Inversion
 - » Happens when low priority task has lock needed by high-priority task
 - » Usually involves third, intermediate priority task preventing high-priority task from running
- How to fix problems?
 - Dynamic priorities: adjust base-level priority up or down based on heuristics about interactivity, locking, burst behavior, etc...

Scheduling Fairness

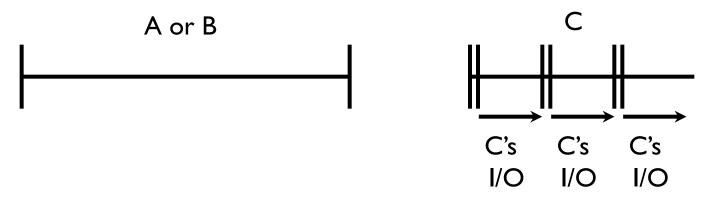
- What about fairness?
 - Strict fixed-priority scheduling between queues is unfair (run highest, then next, etc):
 - » long running jobs may never get CPU
 - » Urban legend: In Multics, shut down machine, found 10-year-old job ⇒ Ok, probably not...
 - Must give long-running jobs a fraction of the CPU even when there are shorter jobs to run
 - Tradeoff: fairness gained by hurting avg completion time!

Scheduling Fairness

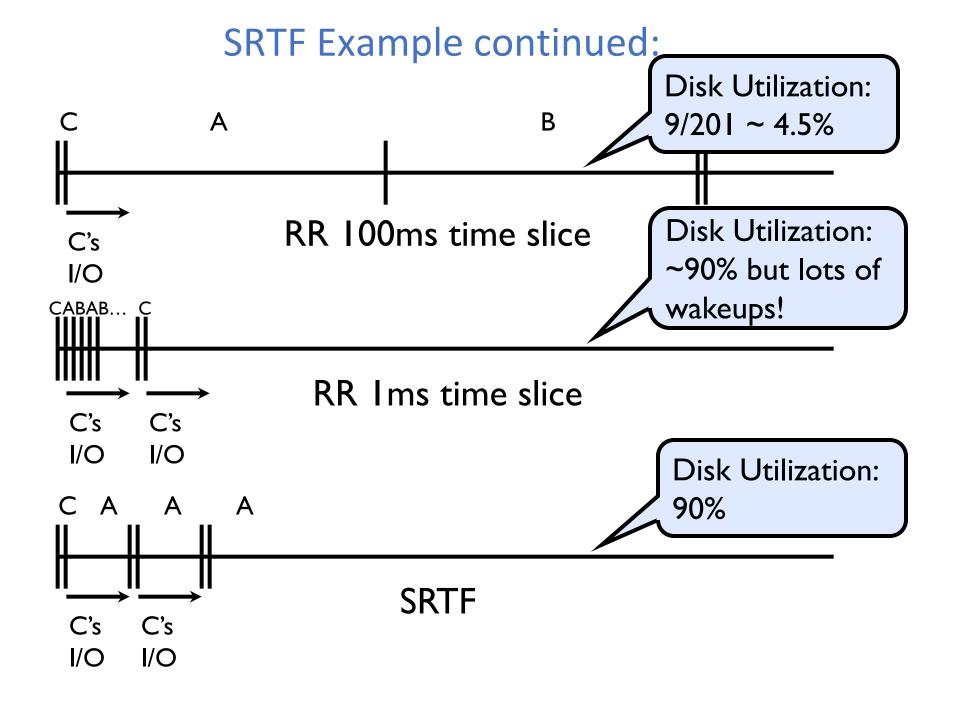
- How to implement fairness?
 - Could give each queue some fraction of the CPU
 - » What if one long-running job and 100 short-running ones?
 - » Like express lanes in a supermarket—sometimes express lanes get so long, get better service by going into one of the other lines
 - Could increase priority of jobs that don't get service
 - » What is done in some variants of UNIX
 - » This is ad hoc—what rate should you increase priorities?
 - » And, as system gets overloaded, no job gets CPU time, so everyone increases in priority⇒Interactive jobs suffer

What if we Knew the Future?

- Could we always mirror best FCFS?
- Shortest Job First (SJF):
 - Run whatever job has least amount of computation to do



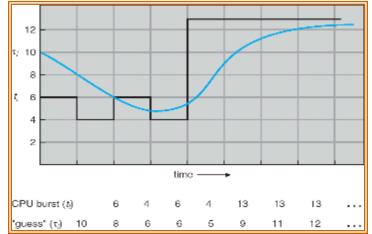
- Sometimes called "Shortest Time to Completion First" (STCF)
- Shortest Remaining Time First (SRTF):
 - Preemptive version of SJF: if job arrives and has a shorter time to completion than the remaining time on the current job, immediately preempt CPU
 - Sometimes called "Shortest Remaining Time to Completion First" (SRTCF)
- These can be applied to whole program or current CPU burst
 - Idea is to get short jobs out of the system
 - Big effect on short jobs, only small effect on long ones
 - Result is better average completion time


Discussion

- SJF/SRTF are the best you can do at minimizing average completion time
 - Provably optimal (SJF among non-preemptive, SRTF among preemptive)
 - Since SRTF is always at least as good as SJF, focus on SRTF
- Comparison of SRTF with FCFS
 - What if all jobs the same length?
 - » SRTF becomes the same as FCFS (i.e. FCFS is best can do if all jobs the same length)
 - What if jobs have varying length?
 - » SRTF: short jobs not stuck behind long ones

Example to illustrate benefits of SRTF

- Three jobs:
 - A, B: both CPU bound, run for week
 C: I/O bound, loop 1ms CPU, 9ms disk I/O
 - If only one at a time, C uses 90% of the disk, A or B could use 100% of the CPU
- With FCFS:
 - Once A or B get in, keep CPU for two weeks
- What about RR or SRTF?
 - Easier to see with a timeline


SRTF Further discussion

- Starvation
 - SRTF can lead to starvation if many small jobs!
 - Large jobs never get to run
- Somehow need to predict future
 - How can we do this?
 - Some systems ask the user
 - » When you submit a job, have to say how long it will take
 - » To stop cheating, system kills job if takes too long
 - But: hard to predict job's runtime even for non-malicious users
- Bottom line, can't really know how long job will take
 - However, can use SRTF as a yardstick for measuring other policies
 - Optimal, so can't do any better
- SRTF Pros & Cons
 - Optimal (average completion time) (+)
 - Hard to predict future (-)
 - Unfair (-)

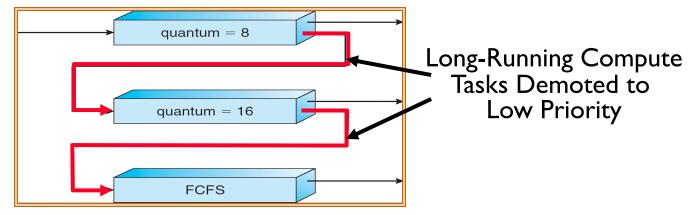
Predicting the Length of the Next CPU Burst

- Adaptive: Changing policy based on past behavior
 - CPU scheduling, in virtual memory, in file systems, etc
 - Works because programs have predictable behavior
 - » If program was I/O bound in past, likely in future
 - » If computer behavior were random, wouldn't help
- Example: SRTF with estimated burst length
 - Use an estimator function on previous bursts: Let t_{n-1} , t_{n-2} , t_{n-3} , etc. be previous CPU burst lengths. Estimate next burst $\tau_n = f(t_{n-1}, t_{n-2}, t_{n-3}, ...)$
 - Function f could be one of many different time series estimation schemes (Kalman filters, etc)
 - For instance,
- exponential averaging $\tau_n = \alpha t_{n-1} + (1-\alpha)\tau_{n-1}$ with (0< $\alpha \le 1$)

Lottery Scheduling

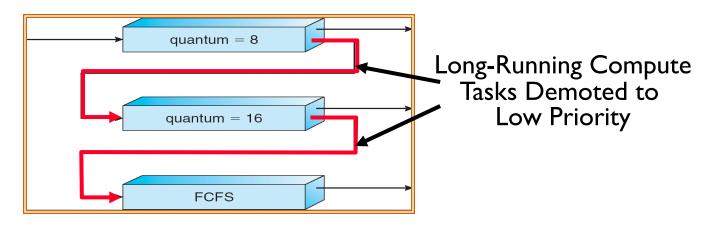
- Yet another alternative: Lottery Scheduling
 - Give each job some number of lottery tickets
 - On each time slice, randomly pick a winning ticket
 - On average, CPU time is proportional to number of tickets given to each job

- How to assign tickets?
 - To approximate SRTF, short running jobs get more, long running jobs get fewer
 - To avoid starvation, every job gets at least one ticket (everyone makes progress)
- Advantage over strict priority scheduling: behaves gracefully as load changes
 - Adding or deleting a job affects all jobs proportionally, independent of how many tickets each job possesses

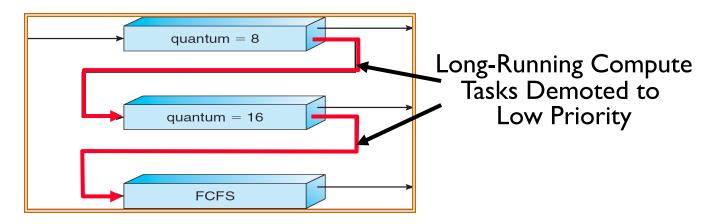

Lottery Scheduling Example (Cont.)

- Lottery Scheduling Example
 - Assume short jobs get 10 tickets, long jobs get 1 ticket

# short jobs/ # long jobs	% of CPU each short jobs gets	% of CPU each long jobs gets
1/1	91%	9%
0/2	N/A	50%
2/0	50%	N/A
10/1	9.9%	0.99%
1/10	50%	5%


- What if too many short jobs to give reasonable completion time?
 - » If load average is 100, hard to make progress
 - » One approach: log some user out

Multi-Level Feedback Scheduling


- Another method for exploiting past behavior (first use in CTSS)
 - Multiple queues, each with different priority
 - » Higher priority queues often considered "foreground" tasks
 - Each queue has its own scheduling algorithm
 - » e.g. foreground RR, background FCFS
 - » Sometimes multiple RR priorities with quantum increasing exponentially (highest:1ms, next: 2ms, next: 4ms, etc)
- Adjust each job's priority as follows (details vary)
 - Job starts in highest priority queue
 - If timeout expires, drop one level
 - If timeout doesn't expire, push up one level (or to top)

Scheduling Details

- Result approximates SRTF:
 - CPU bound jobs drop like a rock
 - Short-running I/O bound jobs stay near top
- Scheduling must be done between the queues
 - Fixed priority scheduling:
 - » serve all from highest priority, then next priority, etc.
 - Time slice:
 - » each queue gets a certain amount of CPU time
 - » e.g., 70% to highest, 20% next, 10% lowest

Scheduling Details

- Countermeasure: user action that can foil intent of the OS designers
 - For multilevel feedback, put in a bunch of meaningless I/O to keep job's priority high
 - Of course, if everyone did this, wouldn't work!
- Example of Othello program:
 - Playing against competitor, so key was to do computing at higher priority than the competitors.
 - » Put in printf's, ran much faster!

How to Handle Simultaneous Mix of Diff Types of Apps?

- Consider mix of interactive and high throughput apps:
 - How to best schedule them?
 - How to recognize one from the other?
 - » Do you trust app to say that it is "interactive"?
 - Should you schedule the set of apps identically on servers, workstations, pads, and cellphones?
- For instance, is Burst Time (observed) useful to decide which application gets CPU time?
 - Short Bursts \Rightarrow Interactivity \Rightarrow High Priority?
- Assumptions encoded into many schedulers:
 - Apps that sleep a lot and have short bursts must be interactive apps they should get high priority
 - Apps that compute a lot should get low(er?) priority, since they won't notice intermittent bursts from interactive apps
- Hard to characterize apps:
 - What about apps that sleep for a long time, but then compute for a long time?
 - Or, what about apps that must run under all circumstances (say periodically)

Multi-Core Scheduling

- Algorithmically, not a huge difference from single-core scheduling
- Implementation-wise, helpful to have *per-core* scheduling data structures
 - Cache coherence
- Affinity scheduling: once a thread is scheduled on a CPU, OS tries to reschedule it on the same CPU
 - Cache reuse

Spinlocks for multiprocessing

• Spinlock implementation:

```
int value = 0; // Free
Acquire() {
    while (test&set(&value)) {}; // spin while busy
}
Release() {
    value = 0; // atomic store
}
```

- Spinlock doesn't put the calling thread to sleep—it just busy waits
 - When might this be preferable?
 - » Waiting for limited number of threads at a barrier in a multiprocessing (multicore) program
 - » Wait time at barrier would be greatly increased if threads must be woken inside kernel
- Every test&set() is a write, which makes value ping-pong around between core-local caches

- So - really want to use test&test&set() !

• The extra read eliminates the ping-ponging issues:

```
// Implementation of test&test&set():
Acquire() {
    do {
        while(value); // wait until might be free
        } while (test&set(&value)); // exit if acquire lock
}
```

Conclusion

- Round-Robin Scheduling:
 - Give each thread a small amount of CPU time when it executes; cycle between all ready threads
 - Pros: Better for short jobs
- Shortest Job First (SJF)/Shortest Remaining Time First (SRTF):
 - Run whatever job has the least amount of computation to do/least remaining amount of computation to do
 - Pros: Optimal (average completion time)
 - Cons: Hard to predict future, Unfair
- Multi-Level Feedback Scheduling:
 - Multiple queues of different priorities and scheduling algorithms
 - Automatic promotion/demotion of process priority in order to approximate SJF/SRTF
- Lottery Scheduling:
 - Give each thread a priority-dependent number of tokens (short tasks⇒more tokens)