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Recap: Multi-Core Scheduling

e Algorithmically, not a huge difference from single-core scheduling

e Implementation-wise, helpful to have per-core scheduling data structures
— Cache coherence

e Affinity scheduling: once a thread is scheduled on a CPU, OS tries to reschedule it
on the same CPU

— Cache reuse



Recap: Spinlocks for multiprocessing

Spinlock implementation:

int value = @; // Free
Acquire() {
while (test&set(&value)) {}; // spin while busy

}
Release() {

value = 0; // atomic store
}

Spinlock doesn’t put the calling thread to sleep—it just busy waits
— When might this be preferable?
» Waiting for limited number of threads at a barrier in a multiprocessing (multicore) program
» Wait time at barrier would be greatly increased if threads must be woken inside kernel

Every test&set () isa write, which makes value ping-pong around between core-local caches
— So —really want to use test&test&set() !

The extra read eliminates the ping-ponging issues:

// Implementation of test&test&set():
Acquire() {
do {
while(value); // wait until might be free
} while (test&set(&value)); // exit if acquire lock

}



Gang Scheduling and Parallel Applications

e When multiple threads work together on a multi-core system, try to schedule
them together

— Makes spin-waiting more efficient (inefficient to spin-wait for a thread that’s
suspended)

e Alternative: OS informs a parallel program how many processors its threads are
scheduled on (Scheduler Activations)

— Application adapts to number of cores that it has scheduled

— “Space sharing” with other parallel programs can be more efficient, because parallel
speedup is often sublinear with the number of cores



So, Does the OS Schedule Processes or Threads?

e Many textbooks use the “old model”—one thread per process

e Usually it's really: threads (e.g., in Linux)

e One point to notice: switching threads vs. switching processes incurs different
costs:

— Switch threads: Save/restore registers
— Switch processes: Change active address space too!

» Expensive
» Disrupts caching



Real-Time Scheduling

e Goal: Predictability of Performance!
— We need to predict with confidence worst case response times for systems!
— In RTS, performance guarantees are:
» Task- and/or class centric and often ensured a priori

— In conventional systems, performance is:
» System/throughput oriented with post-processing (... wait and see ...)

— Real-time is about enforcing predictability; does not equal fast computing!!!
e Hard real-time: for time-critical safety-oriented systems

— Meet all deadlines (if at all possible)

— Ideally: determine in advance if this is possible (admission control)

— Earliest Deadline First (EDF)
Rate-Monitonic Scheduling (RMS), Deadline Monotonic Scheduling (DM)

e Soft real-time: for multimedia
— Attempt to meet deadlines with high probability
— Constant Bandwidth Server (CBS)



Example: Workload Characteristics

e Tasks are preemptable, independent with arbitrary arrival (=release) times
e Tasks have deadlines (D) and known computation times (C)
e Example Setup:
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Example: Round-Robin Scheduling Doesn’t Work
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Earliest Deadline First (EDF)

e Tasks iis periodic with period P; and computation C, in each period: (P;, C;) for each
task i

e Preemptive priority-based dynamic scheduling:

— Each task is assigned a (current) priority based on how close the absolute deadline is (i.e.
DI*! = D} + P; for each task!)

— The scheduler always schedules the active task with the closest absolute deadline
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EDF Feasibility Testing

e Even EDF won’t work if you have too many tasks

e For n tasks with computation time C; and deadline D,, a feasible schedule exists
if:
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Ensuring Progress

Starvation: thread fails to make progress for an indefinite period of time

Starvation (this lecture) # Deadlock (next lecture) because starvation could resolve under
right circumstances

— Deadlocks are unresolvable, cyclic requests for resources

Causes of starvation:
— Scheduling policy never runs a particular thread on the CPU
— Threads wait for each other or are spinning in a way that will never be resolved

Let’s explore what sorts of problems we might encounter and how to avoid them...
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Strawman: Non-Work-Conserving Scheduler

e A work-conserving scheduler is one that does not leave the CPU idle when there
is work to do

e A non-work-conserving scheduler could trivially lead to starvation

e In this class, we’ll assume that the scheduler is work-conserving (unless stated
otherwise)
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Strawman: Last-Come, First-Served (LCFS)

e Stack (LIFO) as a scheduling data structure
— Late arrivals get fast service
— Early ones wait — extremely unfair
— In the worst case — starvation
e \When would this occur?
— When arrival rate (offered load) exceeds service rate (delivered load)

— Queue builds up faster than it drains

e Queue can build in FIFO too, but “serviced in the order received”...
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Is FCFS Prone to Starvation?

Scheduled Task (process, thread)

HLT

arrivals

time
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Scheduling Queue

* |f a task never yields (e.g,, goes into an infinite loop), then other tasks
don’t get to run

* Problem with all non-preemptive schedulers...
* And early personal OSes such as original MacOS, Windows 3.1, etc
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Is Round Robin (RR) Prone to Starvation?

e Each of N processes gets ~1/N of CPU (in window)

— With quantum length Q ms, process waits at most
(N-1)*Q ms to run again

— So a process can’t be kept waiting indefinitely

e So RRis fair in terms of waiting time
— Not necessarily in terms of throughput...
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Is Priority Scheduling Prone to Starvation?

e Recall: Priority Scheduler always runs the Priority 3 [==b{Job | [=#{ job 2 [=>1{ Job 3
thread with highest priority Priority 2 f=={ Job 4
— Low priority thread might never run! Priority |
— Starvation... Priority 0 [==%{Job 5 |—>|Job 6 |—> Job 7

e But there are more serious problems as well...

— Priority inversion: even high priority threads might become starved
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Priority Inversion

Priority 3

Priority 2

Priority |

Acquire()

« At this point, which job does the scheduler choose?
* Job 3 (Highest priority)
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Priority Inversion

Priority 3

Priority 2

~__ Acquire()
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* Job 3 attempts to acquire lock held by Job |
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Priority Inversion

Priority 2 Job 2

Blocked on Acquire
Priority 3

Priority | Job |

« At this point, which job does the scheduler choose?
* Job 2 (Medium Priority)

* Priority Inversion

‘o
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Where high priority task is blocked waiting on low priority task

Priority Inversion

Low priority one must run for high priority to make progress

Medium priority task can starve a high priority one

When else might priority lead to starvation or “live lock”?

High Priority

while (try_lock) {

}

Low Priority

lock.acquire(...)

lock.release(...)

—
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One Solution: Priority Donation/Inheritance

Priority 3 ~— Acquire()

Priority 2
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‘
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Priority |

* Job 3 temporarily grants Job | its “high priority” to run on its behalf
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One Solution: Priority Donation/Inheritance

Priority 3

Priority 2

Priority |

* Job 3 temporarily grants Job | its “high priority” to run on its behalf
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One Solution: Priority Donation/Inheritance

Priority 3 Acquire()

Priority 2

Priority |

* Job | completes critical section and releases lock
* Job 3 acquires lock, runs again
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Case Study: Martian Pathfinder Rover

July 4, 1997 — Pathfinder lands on Mars

— First US Mars landing since Vikings in 1976; first rover

— Novel delivery mechanism: inside air-filled balloons
bounced to stop on the surface from orbit!

And then...a few days into mission...:
— Multiple system resets occur to realtime OS (VxWorks)
— System would reboot randomly, losing valuable time and progress

Problem? Priority Inversion! Priority 2 _

— Low priority task grabs mutex trying to Priority | == Lots of random medium stuff
communicate with high priority task: Priority O fe=pp ASI/MET collector: grab lock

— Realtime watchdog detected lack of forward progress and invoked reset to safe state
» High-priority data distribution task was supposed to complete with regular deadline

Solution: Turn priority donation back on and upload fixes!

Original developers turned off priority donation (also called priority inheritance)

— Worried about performance costs of donating priority!
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Summary
Scheduling Goals:
— Minimize Response Time (e.g. for human interaction)
— Maximize Throughput (e.g. for large computations)
— Fairness (e.g. Proper Sharing of Resources)
— Predictability (e.g. Hard/Soft Realtime)
Round-Robin Scheduling:

- Ghive %ach thread a small amount of CPU time when it executes; cycle between all ready
threads

— Pros: Better for short jobs
Shortest Job First (SJF)/Shortest Remaining Time First (SRTF):

— Run whatever job has the least amount of computation to do/least remaining amount of
computation to do

Multi-Level Feedback Scheduling:
— Multiple queues of different priorities and scheduling algorithms
— Automatic promotion/demotion of process priority in order to approximate SJF/SRTF

Realtime Schedulers such as EDF
— Guaranteed behavior by meeting deadlines
— Realtime tasks defined by tuple of compute time and period
— Schedulability test: is it possible to meet deadlines with proposed set of processes?
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