Operating Systems
(Honor Track)

Scheduling 2: Case Studies, Fairness, Real Time, and
Forward Progress

Xin Jin
Spring 2022

Acknowledgments: lon Stoica, Berkeley CS 162

Recap: Multi-Core Scheduling

e Algorithmically, not a huge difference from single-core scheduling

e Implementation-wise, helpful to have per-core scheduling data structures
— Cache coherence

e Affinity scheduling: once a thread is scheduled on a CPU, OS tries to reschedule it
on the same CPU

— Cache reuse

Recap: Spinlocks for multiprocessing

Spinlock implementation:

int value = @; // Free
Acquire() {
while (test&set(&value)) {}; // spin while busy

}
Release() {

value = 0; // atomic store
}

Spinlock doesn’t put the calling thread to sleep—it just busy waits
— When might this be preferable?
» Waiting for limited number of threads at a barrier in a multiprocessing (multicore) program
» Wait time at barrier would be greatly increased if threads must be woken inside kernel

Every test&set () isa write, which makes value ping-pong around between core-local caches
— So —really want to use test&test&set() !

The extra read eliminates the ping-ponging issues:

// Implementation of test&test&set():
Acquire() {
do {
while(value); // wait until might be free
} while (test&set(&value)); // exit if acquire lock

}

Gang Scheduling and Parallel Applications

e When multiple threads work together on a multi-core system, try to schedule
them together

— Makes spin-waiting more efficient (inefficient to spin-wait for a thread that’s
suspended)

e Alternative: OS informs a parallel program how many processors its threads are
scheduled on (Scheduler Activations)

— Application adapts to number of cores that it has scheduled

— “Space sharing” with other parallel programs can be more efficient, because parallel
speedup is often sublinear with the number of cores

So, Does the OS Schedule Processes or Threads?

e Many textbooks use the “old model”—one thread per process

e Usually it's really: threads (e.g., in Linux)

e One point to notice: switching threads vs. switching processes incurs different
costs:

— Switch threads: Save/restore registers
— Switch processes: Change active address space too!

» Expensive
» Disrupts caching

Real-Time Scheduling

e Goal: Predictability of Performance!
— We need to predict with confidence worst case response times for systems!
— In RTS, performance guarantees are:
» Task- and/or class centric and often ensured a priori

— In conventional systems, performance is:
» System/throughput oriented with post-processing (... wait and see ...)

— Real-time is about enforcing predictability; does not equal fast computing!!!
e Hard real-time: for time-critical safety-oriented systems

— Meet all deadlines (if at all possible)

— Ideally: determine in advance if this is possible (admission control)

— Earliest Deadline First (EDF)
Rate-Monitonic Scheduling (RMS), Deadline Monotonic Scheduling (DM)

e Soft real-time: for multimedia
— Attempt to meet deadlines with high probability
— Constant Bandwidth Server (CBS)

Example: Workload Characteristics

e Tasks are preemptable, independent with arbitrary arrival (=release) times
e Tasks have deadlines (D) and known computation times (C)
e Example Setup:

e
Tl o |

T2 = DZl

Example: Round-Robin Scheduling Doesn’t Work

Missed
- L deadline!!
A " lLs

Tl ; >

- A | ! '“.' l_l)

O T=R = R
A i P 1

T4 | l ,

Time

Earliest Deadline First (EDF)

e Tasks iis periodic with period P; and computation C, in each period: (P;, C;) for each
task i

e Preemptive priority-based dynamic scheduling:

— Each task is assigned a (current) priority based on how close the absolute deadline is (i.e.
DI*! = D} + P; for each task!)

— The scheduler always schedules the active task with the closest absolute deadline

AAICH) RN N B

EDF Feasibility Testing

e Even EDF won’t work if you have too many tasks

e For n tasks with computation time C; and deadline D,, a feasible schedule exists
if:

10

Ensuring Progress

Starvation: thread fails to make progress for an indefinite period of time

Starvation (this lecture) # Deadlock (next lecture) because starvation could resolve under
right circumstances

— Deadlocks are unresolvable, cyclic requests for resources

Causes of starvation:
— Scheduling policy never runs a particular thread on the CPU
— Threads wait for each other or are spinning in a way that will never be resolved

Let’s explore what sorts of problems we might encounter and how to avoid them...

11

Strawman: Non-Work-Conserving Scheduler

e A work-conserving scheduler is one that does not leave the CPU idle when there
is work to do

e A non-work-conserving scheduler could trivially lead to starvation

e In this class, we’ll assume that the scheduler is work-conserving (unless stated
otherwise)

12

Strawman: Last-Come, First-Served (LCFS)

e Stack (LIFO) as a scheduling data structure
— Late arrivals get fast service
— Early ones wait — extremely unfair
— In the worst case — starvation
e \When would this occur?
— When arrival rate (offered load) exceeds service rate (delivered load)

— Queue builds up faster than it drains

e Queue can build in FIFO too, but “serviced in the order received”...

13

Is FCFS Prone to Starvation?

Scheduled Task (process, thread)

HLT

arrivals

time
1 1 §° L. 15 |

Scheduling Queue

* |f a task never yields (e.g,, goes into an infinite loop), then other tasks
don’t get to run

* Problem with all non-preemptive schedulers...
* And early personal OSes such as original MacOS, Windows 3.1, etc

14

Is Round Robin (RR) Prone to Starvation?

e Each of N processes gets ~1/N of CPU (in window)

— With quantum length Q ms, process waits at most
(N-1)*Q ms to run again

— So a process can’t be kept waiting indefinitely

e So RRis fair in terms of waiting time
— Not necessarily in terms of throughput...

15

Is Priority Scheduling Prone to Starvation?

e Recall: Priority Scheduler always runs the Priority 3 [==b{Job | [=#{ job 2 [=>1{ Job 3
thread with highest priority Priority 2 f=={ Job 4
— Low priority thread might never run! Priority |
— Starvation... Priority 0 [==%{Job 5 |—>|Job 6 |—> Job 7

e But there are more serious problems as well...

— Priority inversion: even high priority threads might become starved

16

Priority Inversion

Priority 3

Priority 2

Priority |

Acquire()

« At this point, which job does the scheduler choose?
* Job 3 (Highest priority)

17

Priority Inversion

Priority 3

Priority 2

~__ Acquire()

.~
.h.
»

—

Priority |

* Job 3 attempts to acquire lock held by Job |

18

Priority Inversion

Priority 2 Job 2

Blocked on Acquire
Priority 3

Priority | Job |

« At this point, which job does the scheduler choose?
* Job 2 (Medium Priority)

* Priority Inversion

‘o

19

Where high priority task is blocked waiting on low priority task

Priority Inversion

Low priority one must run for high priority to make progress

Medium priority task can starve a high priority one

When else might priority lead to starvation or “live lock”?

High Priority

while (try_lock) {

}

Low Priority

lock.acquire(...)

lock.release(...)

—

20

One Solution: Priority Donation/Inheritance

Priority 3 ~— Acquire()

Priority 2

.~
.~~
‘

—

Priority |

* Job 3 temporarily grants Job | its “high priority” to run on its behalf

21

One Solution: Priority Donation/Inheritance

Priority 3

Priority 2

Priority |

* Job 3 temporarily grants Job | its “high priority” to run on its behalf

22

One Solution: Priority Donation/Inheritance

Priority 3 Acquire()

Priority 2

Priority |

* Job | completes critical section and releases lock
* Job 3 acquires lock, runs again

23

Case Study: Martian Pathfinder Rover

July 4, 1997 — Pathfinder lands on Mars

— First US Mars landing since Vikings in 1976; first rover

— Novel delivery mechanism: inside air-filled balloons
bounced to stop on the surface from orbit!

And then...a few days into mission...:
— Multiple system resets occur to realtime OS (VxWorks)
— System would reboot randomly, losing valuable time and progress

Problem? Priority Inversion! Priority 2 _

— Low priority task grabs mutex trying to Priority | == Lots of random medium stuff
communicate with high priority task: Priority O fe=pp ASI/MET collector: grab lock

— Realtime watchdog detected lack of forward progress and invoked reset to safe state
» High-priority data distribution task was supposed to complete with regular deadline

Solution: Turn priority donation back on and upload fixes!

Original developers turned off priority donation (also called priority inheritance)

— Worried about performance costs of donating priority!
24

Summary
Scheduling Goals:
— Minimize Response Time (e.g. for human interaction)
— Maximize Throughput (e.g. for large computations)
— Fairness (e.g. Proper Sharing of Resources)
— Predictability (e.g. Hard/Soft Realtime)
Round-Robin Scheduling:

- Ghive %ach thread a small amount of CPU time when it executes; cycle between all ready
threads

— Pros: Better for short jobs
Shortest Job First (SJF)/Shortest Remaining Time First (SRTF):

— Run whatever job has the least amount of computation to do/least remaining amount of
computation to do

Multi-Level Feedback Scheduling:
— Multiple queues of different priorities and scheduling algorithms
— Automatic promotion/demotion of process priority in order to approximate SJF/SRTF

Realtime Schedulers such as EDF
— Guaranteed behavior by meeting deadlines
— Realtime tasks defined by tuple of compute time and period
— Schedulability test: is it possible to meet deadlines with proposed set of processes?

25

