
Acknowledgments: Ion Stoica, Berkeley CS 162

Xin Jin
Spring 2022

Operating Systems
(Honor Track)

Scheduling 2: Case Studies, Fairness, Real Time, and
Forward Progress

2

Recap: Multi-Core Scheduling

• Algorithmically, not a huge difference from single-core scheduling

• Implementation-wise, helpful to have per-core scheduling data structures
– Cache coherence

• Affinity scheduling: once a thread is scheduled on a CPU, OS tries to reschedule it
on the same CPU

– Cache reuse

3

Recap: Spinlocks for multiprocessing
• Spinlock implementation:

int value = 0; // Free
Acquire() {

while (test&set(&value)) {}; // spin while busy
}
Release() {

value = 0; // atomic store
}

• Spinlock doesn’t put the calling thread to sleep—it just busy waits
– When might this be preferable?

» Waiting for limited number of threads at a barrier in a multiprocessing (multicore) program
» Wait time at barrier would be greatly increased if threads must be woken inside kernel

• Every test&set() is a write, which makes value ping-pong around between core-local caches
– So – really want to use test&test&set() !

• The extra read eliminates the ping-ponging issues:
// Implementation of test&test&set():
Acquire() {

do {
while(value); // wait until might be free

} while (test&set(&value)); // exit if acquire lock
}

4

Gang Scheduling and Parallel Applications

• When multiple threads work together on a multi-core system, try to schedule
them together

– Makes spin-waiting more efficient (inefficient to spin-wait for a thread that’s
suspended)

• Alternative: OS informs a parallel program how many processors its threads are
scheduled on (Scheduler Activations)

– Application adapts to number of cores that it has scheduled
– “Space sharing” with other parallel programs can be more efficient, because parallel

speedup is often sublinear with the number of cores

5

So, Does the OS Schedule Processes or Threads?

• Many textbooks use the “old model”—one thread per process
• Usually it's really: threads (e.g., in Linux)

• One point to notice: switching threads vs. switching processes incurs different
costs:

– Switch threads: Save/restore registers
– Switch processes: Change active address space too!

» Expensive
» Disrupts caching

6

Real-Time Scheduling
• Goal: Predictability of Performance!

– We need to predict with confidence worst case response times for systems!
– In RTS, performance guarantees are:

» Task- and/or class centric and often ensured a priori
– In conventional systems, performance is:

» System/throughput oriented with post-processing (… wait and see …)
– Real-time is about enforcing predictability; does not equal fast computing!!!

• Hard real-time: for time-critical safety-oriented systems
– Meet all deadlines (if at all possible)
– Ideally: determine in advance if this is possible (admission control)
– Earliest Deadline First (EDF)

Rate-Monitonic Scheduling (RMS), Deadline Monotonic Scheduling (DM)
• Soft real-time: for multimedia

– Attempt to meet deadlines with high probability
– Constant Bandwidth Server (CBS)

7

Example: Workload Characteristics
• Tasks are preemptable, independent with arbitrary arrival (=release) times
• Tasks have deadlines (D) and known computation times (C)
• Example Setup:

8

Example: Round-Robin Scheduling Doesn’t Work

Time

9

• Tasks i is periodic with period Pi and computation Ci in each period: (𝑃!, 𝐶!) for each
task 𝑖

• Preemptive priority-based dynamic scheduling:
– Each task is assigned a (current) priority based on how close the absolute deadline is (i.e.
𝐷!"#$ = 𝐷!" + 𝑃! for each task!)

– The scheduler always schedules the active task with the closest absolute deadline

Earliest Deadline First (EDF)

0 5 10 15

)1,4(1 =T

)2,5(2 =T

)2,7(3 =T

10

EDF Feasibility Testing

• Even EDF won’t work if you have too many tasks
• For 𝑛 tasks with computation time 𝐶𝑖 and deadline 𝐷𝑖, a feasible schedule exists

if:

!
!"#

$
𝐶!
𝐷!

≤ 1

1
4
+
2
5
+
2
7
= 0.936 ≤ 1

11

Ensuring Progress
• Starvation: thread fails to make progress for an indefinite period of time

• Starvation (this lecture) ≠ Deadlock (next lecture) because starvation could resolve under
right circumstances

– Deadlocks are unresolvable, cyclic requests for resources

• Causes of starvation:
– Scheduling policy never runs a particular thread on the CPU
– Threads wait for each other or are spinning in a way that will never be resolved

• Let’s explore what sorts of problems we might encounter and how to avoid them…

12

Strawman: Non-Work-Conserving Scheduler

• A work-conserving scheduler is one that does not leave the CPU idle when there
is work to do

• A non-work-conserving scheduler could trivially lead to starvation

• In this class, we’ll assume that the scheduler is work-conserving (unless stated
otherwise)

13

Strawman: Last-Come, First-Served (LCFS)

• Stack (LIFO) as a scheduling data structure
– Late arrivals get fast service
– Early ones wait – extremely unfair
– In the worst case – starvation

• When would this occur?
– When arrival rate (offered load) exceeds service rate (delivered load)
– Queue builds up faster than it drains

• Queue can build in FIFO too, but “serviced in the order received”…

14

Is FCFS Prone to Starvation?

• If a task never yields (e.g., goes into an infinite loop), then other tasks
don’t get to run
• Problem with all non-preemptive schedulers…

• And early personal OSes such as original MacOS, Windows 3.1, etc

time
Sc

he
du

lin
g

Q
ue

ue

Scheduled Task (process, thread)

arrivals

15

Is Round Robin (RR) Prone to Starvation?

• Each of N processes gets ~1/N of CPU (in window)
– With quantum length Q ms, process waits at most

(N-1)*Q ms to run again
– So a process can’t be kept waiting indefinitely

• So RR is fair in terms of waiting time
– Not necessarily in terms of throughput…

16

Is Priority Scheduling Prone to Starvation?
• Recall: Priority Scheduler always runs the

thread with highest priority
– Low priority thread might never run!
– Starvation…

• But there are more serious problems as well…
– Priority inversion: even high priority threads might become starved

Priority 3

Priority 2

Priority 1

Priority 0 Job 5 Job 6

Job 1 Job 2 Job 3

Job 7

Job 4

17

Priority Inversion

• At this point, which job does the scheduler choose?
• Job 3 (Highest priority)

Priority 3

Priority 2

Priority 1 Job 1

Job 3

Job 2

Acquire()

18

Priority Inversion

• Job 3 attempts to acquire lock held by Job 1

Priority 3

Priority 2

Priority 1 Job 1

Job 3

Job 2

Acquire()

19

Priority Inversion

• At this point, which job does the scheduler choose?
• Job 2 (Medium Priority)
• Priority Inversion

Priority 3

Priority 2

Priority 1 Job 1

Job 3

Job 2

Blocked on Acquire

20

Priority Inversion

• Where high priority task is blocked waiting on low priority task
• Low priority one must run for high priority to make progress
• Medium priority task can starve a high priority one

• When else might priority lead to starvation or “live lock”?

lock.acquire(…)
…
lock.release(…)

Low Priority

while (try_lock) {
…
}

High Priority

21

One Solution: Priority Donation/Inheritance

• Job 3 temporarily grants Job 1 its “high priority” to run on its behalf

Priority 3

Priority 2

Priority 1 Job 1

Job 3

Job 2

Acquire()

22

One Solution: Priority Donation/Inheritance

• Job 3 temporarily grants Job 1 its “high priority” to run on its behalf

Priority 3

Priority 2

Priority 1

Job 1

Job 3

Job 2

Blocked on Acquire

Release()

23

One Solution: Priority Donation/Inheritance

• Job 1 completes critical section and releases lock
• Job 3 acquires lock, runs again

Priority 3

Priority 2

Priority 1 Job 1

Job 3

Job 2

Acquire()

24

• July 4, 1997 – Pathfinder lands on Mars
– First US Mars landing since Vikings in 1976; first rover
– Novel delivery mechanism: inside air-filled balloons

bounced to stop on the surface from orbit!
• And then…a few days into mission…:

– Multiple system resets occur to realtime OS (VxWorks)
– System would reboot randomly, losing valuable time and progress

• Problem? Priority Inversion!
– Low priority task grabs mutex trying to

communicate with high priority task:
– Realtime watchdog detected lack of forward progress and invoked reset to safe state

» High-priority data distribution task was supposed to complete with regular deadline

• Solution: Turn priority donation back on and upload fixes!
• Original developers turned off priority donation (also called priority inheritance)

– Worried about performance costs of donating priority!

Case Study: Martian Pathfinder Rover

Priority 2
Priority 1
Priority 0 ASI/MET collector : grab lock

Lots of random medium stuff
Data Distribution Task: needs lock

25

Summary
• Scheduling Goals:

– Minimize Response Time (e.g. for human interaction)
– Maximize Throughput (e.g. for large computations)
– Fairness (e.g. Proper Sharing of Resources)
– Predictability (e.g. Hard/Soft Realtime)

• Round-Robin Scheduling:
– Give each thread a small amount of CPU time when it executes; cycle between all ready

threads
– Pros: Better for short jobs

• Shortest Job First (SJF)/Shortest Remaining Time First (SRTF):
– Run whatever job has the least amount of computation to do/least remaining amount of

computation to do
• Multi-Level Feedback Scheduling:

– Multiple queues of different priorities and scheduling algorithms
– Automatic promotion/demotion of process priority in order to approximate SJF/SRTF

• Realtime Schedulers such as EDF
– Guaranteed behavior by meeting deadlines
– Realtime tasks defined by tuple of compute time and period
– Schedulability test: is it possible to meet deadlines with proposed set of processes?

