
Acknowledgments: Ion Stoica, Berkeley CS 162

Xin Jin
Spring 2022

Operating Systems
(Honor Track)

Scheduling 3: Scheduling & Deadlock

2

Recap: Ensuring Progress
• Starvation: thread fails to make progress for an indefinite period of time

• Starvation (this lecture) ≠ Deadlock (next lecture) because starvation could resolve under
right circumstances

– Deadlocks are unresolvable, cyclic requests for resources

• Causes of starvation:
– Scheduling policy never runs a particular thread on the CPU
– Threads wait for each other or are spinning in a way that will never be resolved

• Let’s explore what sorts of problems we might encounter and how to avoid them…

3

Recap: Is FCFS Prone to Starvation?

• If a task never yields (e.g., goes into an infinite loop), then other tasks
don’t get to run
• Problem with all non-preemptive schedulers…

• And early personal OSes such as original MacOS, Windows 3.1, etc

time
Sc

he
du

lin
g

Q
ue

ue

Scheduled Task (process, thread)

arrivals

4

Recap: Is Round Robin (RR) Prone to Starvation?

• Each of N processes gets ~1/N of CPU (in window)
– With quantum length Q ms, process waits at most

(N-1)*Q ms to run again
– So a process can’t be kept waiting indefinitely

• So RR is fair in terms of waiting time
– Not necessarily in terms of throughput…

5

Recap: Is Priority Scheduling Prone to Starvation?
• Recall: Priority Scheduler always runs the

thread with highest priority
– Low priority thread might never run!
– Starvation…

• But there are more serious problems as well…
– Priority inversion: even high priority threads might become starved

Priority 3

Priority 2

Priority 1

Priority 0 Job 5 Job 6

Job 1 Job 2 Job 3

Job 7

Job 4

6

Recap: Priority Inversion

• At this point, which job does the scheduler choose?
• Job 2 (Medium Priority)
• Priority Inversion

Priority 3

Priority 2

Priority 1 Job 1

Job 3

Job 2

Blocked on Acquire

7

Recap: One Solution: Priority Donation/Inheritance

• Job 3 temporarily grants Job 1 its “high priority” to run on its behalf

Priority 3

Priority 2

Priority 1

Job 1

Job 3

Job 2

Blocked on Acquire

Release()

8

Are SRTF and MLFQ Prone to Starvation?

• In SRTF, long jobs are starved in favor of short ones
– Same fundamental problem as priority scheduling

• MLFQ is an approximation of SRTF, so it suffers from the same problem

Long-Running Compute
Tasks Demoted to

Low Priority

9

Cause for Starvation: Priorities?

• Most of policies we’ve studied so far:
– Always prefer to give the CPU to a prioritized job
– Non-prioritized jobs may never get to run

• But priorities were a means, not an end
• Our end goal was to serve a mix of CPU-bound, I/O bound, and Interactive jobs

effectively on common hardware
– Give the I/O bound ones enough CPU to issue their next file operation and wait (on

those slow discs)
– Give the interactive ones enough CPU to respond to an input and wait (on those slow

humans)
– Let the CPU bound ones grind away without too much disturbance

10

Recall: Changing Landscape…

years

Computers
Per Person

103:1

1:106

Laptop

PDA

Mainframe

Mini

Workstation
PC

Cell

1:1

1:103

Mote!

Bell’s Law: New
computer class every
10 years

The Internet of
Things!

Number
crunching, Data
Storage, Massive
Inet Services,
ML, …

Productivity,
Interactive

Streaming
from/to the
physical world

11

Changing Landscape of Scheduling

• Priority-based scheduling rooted in “time-sharing”
– Allocating precious, limited resources across a diverse workload

» CPU bound vs. interactive vs. I/O bound

• 80’s brought about personal computers, workstations, and servers on networks
– Different machines of different types for different purposes
– Shift to fairness and avoiding extremes (starvation)

• 90’s emergence of the web, rise of internet-based services, the data-center-is-
the-computer

– Server consolidation, massive clustered services, huge flashcrowds
– It’s about predictability, 95th percentile performance guarantees

13

Priority in Unix – Being Nice
• The industrial operating systems of the 60s and 70s provided priority to enforced

desired usage policies.
– When it was being developed at Berkeley, instead it provided ways to “be nice”.

• nice values range from -20 to 19
– Negative values are “not nice”
– If you wanted to let your friends get more time, you would nice up your job

• Scheduler puts higher nice-value tasks (lower priority) to sleep more …
– In O(1) scheduler, this translated fairly directly to priority (and time slice)

14

Case Study: Linux O(1) Scheduler

• Priority-based scheduler: 140 priorities
– 40 for “user tasks” (set by “nice”), 100 for “Realtime/Kernel”
– Lower nice value Þ higher priority
– Higher nice value Þ lower priority
– All algorithms O(1)

» Timeslices/priorities/interactivity credits all compute when job finishes time slice
» 140-bit bit mask indicates presence or absence of job at given priority level

• Two separate priority queues: “active” and “expired”
– All tasks in the active queue use up their timeslices and get placed on the expired queue,

after which queues swapped
• Timeslice depends on priority – linearly mapped onto timeslice range

– Like a multi-level queue (one queue per priority) with different timeslice at each level
– Execution split into “Timeslice Granularity” chunks – round robin through priority

Kernel/Realtime Tasks User Tasks

0 100 139

15

Linux O(1) Scheduler

• Lots of ad-hoc
heuristics
–Try to boost priority

of I/O-bound tasks
–Try to boost priority

of starved tasks

16

O(1) Scheduler Continued
• Heuristics

– User-task priority adjusted ±5 based on heuristics
» Pàsleep_avg = (sleep_time – run_time) x coefficient
» Higher sleep_avg Þ more I/O bound the task, more reward (and vice versa)

– Interactive Credit
» Earned when a task sleeps for a “long” time
» Spend when a task runs for a “long” time
» IC is used to provide hysteresis to avoid changing interactivity for temporary changes in behavior

– However, “interactive tasks” get special dispensation
» To try to maintain interactivity
» Placed back into active queue, unless some other task has been starved for too long…

• Real-Time Tasks
– Always preempt non-RT tasks
– No dynamic adjustment of priorities
– Scheduling schemes:

» SCHED_FIFO: preempts other tasks, no timeslice limit
» SCHED_RR: preempts normal tasks, RR scheduling amongst tasks of same priority

17

Proportional-Share Scheduling

• Instead using priorities, share the CPU proportionally
– Give each job a share of the CPU according to its priority
– Low-priority jobs get to run less often
– But all jobs can at least make progress (no starvation)

18

Recall: Lottery Scheduling

• Given a set of jobs (the mix), provide each with a share of a resource
– e.g., 50% of the CPU for Job A, 30% for Job B, and 20% for Job C

• Idea: Give out tickets according to the proportion each should receive,
• Every quantum (tick): draw one at random, schedule that job (thread) to run

timeQ i Q i+1

19

Lottery Scheduling: Simple Mechanism

• 𝑁𝑡𝑖𝑐𝑘𝑒𝑡 = ∑Ni
• Pick a number 𝑑 in 1 . . 𝑁𝑡𝑖𝑐𝑘𝑒𝑡 as the

random “dart”
• Jobs record their Ni of allocated tickets
• Order them by Ni
• Select the first j such that ∑Ni up to j exceeds

d.

1

10

20

Linux Completely Fair Scheduler (CFS)
• Basic Idea: track CPU time per thread and schedule threads

to match up average rate of execution
• Scheduling Decision:

– “Repair” illusion of complete fairness
– Choose thread with minimum CPU time
– Closely related to Fair Queueing

• Use a heap-like scheduling queue for this…
– O(log N) to add/remove threads, where N is number

of threads
• Sleeping threads don’t advance their CPU time, so they get

a boost when they wake up again…
– Get interactivity automatically!

C
PU

 Tim
e

T1
T2

T3

1
𝑁

CFS: Average rate of
execution = !

"
:

21

• In addition to fairness, we want low waiting time and starvation freedom
– Make sure that everyone gets to run at least a bit!

• Constraint 1: Target Latency
– Period of time over which every process gets service
– Quanta = Target_Latency / n (n: number of processes)

• Target Latency: 20 ms, 4 Processes
– Each process gets 5ms time slice

• Target Latency: 20 ms, 200 Processes
– Each process gets 0.1ms time slice (!!!)
– Recall Round-Robin: large context switching overhead if slice gets to small

Linux CFS: Responsiveness/Starvation Freedom

22

Linux CFS: Throughput

• Goal: Throughput
– Avoid excessive overhead

• Constraint 2: Minimum Granularity
– Minimum length of any time slice

• Target Latency 20 ms, Minimum Granularity 1 ms, 100 processes
– Each process gets 1 ms time slice

23

Linux CFS: Proportional Shares
• What if we want to give more CPU to some and less to others in CFS (proportional

share) ?
– Allow different threads to have different rates of execution (cycles/time)

• Use weights: assign a weight wi to each process i to compute the switching quanta
Qi

– Basic equal share: 𝑄𝑖 = Target Latency ⋅ '
(

– Weighted Share: 𝑄) = .*!
∑"*" ⋅ Target Latency

• Reuse nice value to reflect share, rather than priority,
– Remember that lower nice value Þ higher priority
– CFS uses nice values to scale weights exponentially: Weight=1024/(1.25)nice

» Two CPU tasks separated by nice value of 5 Þ
Task with lower nice value has 3 times the weight, since (1.25)5 » 3

24

Choosing the Right Scheduler

I Care About: Then Choose:

CPU Throughput

Avg. CompletionTime

I/O Throughput

Fairness (CPU Time)

Fairness
(Wait Time to Get CPU)

Meeting Deadlines

Favoring Important Tasks

25

Choosing the Right Scheduler

I Care About: Then Choose:

CPU Throughput FCFS

Avg. CompletionTime SRTF Approximation

I/O Throughput SRTF Approximation

Fairness (CPU Time) Linux CFS

Fairness
(Wait Time to Get CPU)

Round Robin

Meeting Deadlines EDF

Favoring Important Tasks Priority

26

How to Evaluate a Scheduling algorithm?
• Deterministic modeling

– takes a predetermined workload and compute the performance of each algorithm
for that workload

• Queueing models
– Mathematical approach for handling stochastic workloads

• Implementation/Simulation:
– Build system which allows actual algorithms

to be run against actual data
– Most flexible/general

27

A Final Word On Scheduling
• When do the details of the scheduling policy and fairness really matter?

– When there aren’t enough resources to go around
• When should you simply buy a faster computer?

– (Or network link, or expanded highway, or …)
– One approach: Buy it when it will pay for itself in improved response time

» Perhaps you’re paying for worse response time in reduced
productivity, customer angst, etc…

» Might think that you should buy a faster X when X is utilized 100%,
but usually, response time goes to infinity as utilizationÞ100%

• An interesting implication of this curve:
– Most scheduling algorithms work fine in the “linear” portion of

the load curve, fail otherwise
– Argues for buying a faster X when hit “knee” of curve

Utilization

R
esponse
tim

e 100%

28

Deadlock: A Deadly type of Starvation
• Starvation: thread waits indefinitely

– Example, low-priority thread waiting for resources
constantly in use by high-priority threads

• Deadlock: circular waiting for resources
– Thread A owns Res 1 and is waiting for Res 2

Thread B owns Res 2 and is waiting for Res 1

• Deadlock Þ Starvation but not vice versa
– Starvation can end (but doesn’t have to)
– Deadlock can’t end without external intervention

Res 2Res 1

Thread
B

Thread
A

Wait
For

Wait
For

Owned
By

Owned
By

29

Example: Single-Lane Bridge Crossing

CA 140 to Yosemite National Park

30

Bridge Crossing Example
• Each segment of road can be viewed as a resource

– Car must own the segment under them
– Must acquire segment that they are moving into

• For bridge: must acquire both halves
– Traffic only in one direction at a time

• Deadlock: Shown above when two cars in opposite directions meet in middle
– Each acquires one segment and needs next
– Deadlock resolved if one car backs up (preempt resources and rollback)

» Several cars may have to be backed up
• Starvation (not Deadlock):

– East-going traffic really fast Þ no one gets to go west

East
Half

West
Half

Wait
For

Wait
For

Owned
By

Owned
By

31

Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

Lock yLock x

Thread
B

Thread
A

Wait
For

Wait
For

Owned
By

Owned
By

Deadlock with Locks

• This lock pattern exhibits non-deterministic deadlock
– Sometimes it happens, sometimes it doesn’t!

• This is really hard to debug!

32

Deadlock with Locks: “Unlucky” Case

Thread A:
x.Acquire();

y.Acquire(); <stalled>
<unreachable>
…
y.Release();
x.Release();

Thread B:

y.Acquire();

x.Acquire(); <stalled>
<unreachable>
…
x.Release();
y.Release(); Lock yLock x

Thread
B

Thread
A

Wait
For

Wait
For

Owned
By

Owned
By

Neither thread will get to run Þ Deadlock

33

Deadlock with Locks: “Lucky” Case

Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:

y.Acquire();

x.Acquire();
…
x.Release();
y.Release();

Sometimes, schedule won’t trigger deadlock!

34

Train Example (Wormhole-Routed Network)
• Circular dependency (Deadlock!)

– Each train wants to turn right, but is blocked by other trains
• Similar problem to multiprocessor networks

– Wormhole-Routed Network: Messages trail through network like a “worm”
• Fix? Imagine grid extends in all four directions

– Force ordering of channels (tracks)
» Protocol: Always go east-west first, then north-south

– Called “dimension ordering” (X then Y)

Disallowed

By Rule

35

Other Types of Deadlock

• Threads often block waiting for resources
– Locks
– Terminals
– Printers
– CD drives
– Memory

• Threads often block waiting for other threads
– Pipes
– Sockets

• You can deadlock on any of these!

36

Deadlock with Space

Thread A:
AllocateOrWait(1 MB)
AllocateOrWait(1 MB)
Free(1 MB)
Free(1 MB)

If only 2 MB of space, we get same deadlock situation

Thread B
AllocateOrWait(1 MB)
AllocateOrWait(1 MB)
Free(1 MB)
Free(1 MB)

37

Dining Lawyers Problem
• Five chopsticks/Five lawyers (really cheap restaurant)

– Free for all: Lawyer will grab any one they can
– Need two chopsticks to eat

• What if all grab at same time?
– Deadlock!

• How to fix deadlock?
– Make one of them give up a chopstick (Hah!)
– Eventually everyone will get chance to eat

• How to prevent deadlock?
– Never let lawyer take last chopstick if no hungry lawyer has two chopsticks afterwards
– Can we formalize this requirement somehow?

38

Four requirements for occurrence of Deadlock
• Mutual exclusion

– Only one thread at a time can use a resource.
• Hold and wait

– Thread holding at least one resource is waiting to acquire additional resources
held by other threads

• No preemption
– Resources are released only voluntarily by the thread holding the resource, after

thread is finished with it
• Circular wait

– There exists a set {T1, …, Tn} of waiting threads
» T1 is waiting for a resource that is held by T2

» T2 is waiting for a resource that is held by T3

» …
» Tn is waiting for a resource that is held by T1

39

Symbols

Detecting Deadlock:
Resource-Allocation Graph

• System Model
– A set of Threads T1, T2, . . ., Tn

– Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices
– Each resource type Ri has Wi instances
– Each thread utilizes a resource as follows:

» Request() / Use() / Release()

• Resource-Allocation Graph:
– V is partitioned into two types:

» T = {T1, T2, …, Tn}, the set threads in the system.
» R = {R1, R2, …, Rm}, the set of resource types in system

– request edge – directed edge T1 ® Rj

– assignment edge – directed edge Rj® Ti

R1
R2

T1 T2

40

Resource-Allocation Graph Examples

T1 T2 T3

R1 R2

R3
R4

Simple Resource
Allocation Graph

T1 T2 T3

R1 R2

R3
R4

Allocation Graph
With Deadlock

T1

T2

T3

R2

R1

T4

Allocation Graph
With Cycle, but
No Deadlock

• Model:
– request edge – directed edge T1 ® Rj
– assignment edge – directed edge Rj® Ti

41

T1

T2

T3

R2

R1

T4

Deadlock Detection Algorithm
• Let [X] represent an m-ary vector of non-negative integers

(quantities of resources of each type):
[FreeResources]: Current free resources each type
[RequestX]: Current requests from thread X
[AllocX]: Current resources held by thread X

• See if tasks can eventually terminate on their own
[Avail] = [FreeResources]
Add all nodes to UNFINISHED
do {

done = true
For each node in UNFINISHED {

if ([Requestnode] <= [Avail]) {
remove node from UNFINISHED
[Avail] = [Avail] + [Allocnode]
done = false

}
}

} until(done)

• Nodes left in UNFINISHEDÞ deadlocked

42

How should a system deal with deadlock?

• Four different approaches:
1. Deadlock prevention: write your code in a way that it isn’t prone to deadlock
2. Deadlock recovery: let deadlock happen, and then figure out how to recover

from it
3. Deadlock avoidance: dynamically delay resource requests so deadlock doesn’t

happen
4. Deadlock denial: ignore the possibility of deadlock

• Modern operating systems:
– Make sure the system isn’t involved in any deadlock
– Ignore deadlock in applications

» “Ostrich Algorithm”

43

Summary (1 of 3)
• Scheduling Goals:

– Minimize Response Time (e.g. for human interaction)
– Maximize Throughput (e.g. for large computations)
– Fairness (e.g. Proper Sharing of Resources)
– Predictability (e.g. Hard/Soft Realtime)

• Round-Robin Scheduling:
– Give each thread a small amount of CPU time when it executes; cycle between all ready

threads
– Pros: Better for short jobs

• Shortest Job First (SJF)/Shortest Remaining Time First (SRTF):
– Run whatever job has the least amount of computation to do/least remaining amount of

computation to do
• Multi-Level Feedback Scheduling:

– Multiple queues of different priorities and scheduling algorithms
– Automatic promotion/demotion of process priority in order to approximate SJF/SRTF

44

Summary (2 of 3)
• Realtime Schedulers such as EDF

– Guaranteed behavior by meeting deadlines
– Realtime tasks defined by tuple of compute time and period
– Schedulability test: is it possible to meet deadlines with proposed set of processes?

• Lottery Scheduling:
– Give each thread a priority-dependent number of tokens (short tasksÞmore tokens)

• Linux CFS Scheduler: Fair fraction of CPU
– Approximates an “ideal” multitasking processor
– Practical example of “Fair Queueing”

45

Summary (3 of 3)
• Four conditions for deadlocks

– Mutual exclusion
– Hold and wait
– No preemption
– Circular wait

• Techniques for addressing Deadlock
– Deadlock prevention:

» write your code in a way that it isn’t prone to deadlock
– Deadlock recovery:

» let deadlock happen, and then figure out how to recover from it
– Deadlock avoidance:

» dynamically delay resource requests so deadlock doesn’t happen
» Banker’s Algorithm provides on algorithmic way to do this

– Deadlock denial:
» ignore the possibility of deadlock

