Operating Systems
(Honor Track)

Scheduling 3: Scheduling & Deadlock

Xin Jin
Spring 2022

Acknowledgments: lon Stoica, Berkeley CS 162

Recap: Ensuring Progress

Starvation: thread fails to make progress for an indefinite period of time

Starvation (this lecture) # Deadlock (next lecture) because starvation could resolve under
right circumstances

— Deadlocks are unresolvable, cyclic requests for resources

Causes of starvation:
— Scheduling policy never runs a particular thread on the CPU
— Threads wait for each other or are spinning in a way that will never be resolved

Let’s explore what sorts of problems we might encounter and how to avoid them...

Recap: Is FCFS Prone to Starvation?

Scheduled Task (process, thread)

HLT

arrivals

time
1 1 §° L. 15 |

Scheduling Queue

* |f a task never yields (e.g,, goes into an infinite loop), then other tasks
don’t get to run

* Problem with all non-preemptive schedulers...
* And early personal OSes such as original MacOS, Windows 3.1, etc

Recap: Is Round Robin (RR) Prone to Starvation?

e Each of N processes gets ~1/N of CPU (in window)

— With quantum length Q ms, process waits at most
(N-1)*Q ms to run again

— So a process can’t be kept waiting indefinitely

e So RRis fair in terms of waiting time
— Not necessarily in terms of throughput...

Recap: Is Priority Scheduling Prone to Starvation?

e Recall: Priority Scheduler always runs the Priority 3 [==b{Job | [=#{ job 2 [=>1{ Job 3
thread with highest priority Priority 2 f=={ Job 4
— Low priority thread might never run! Priority |
— Starvation... Priority O [=={Job5 1=P|Job6 [Job7

e But there are more serious problems as well...

— Priority inversion: even high priority threads might become starved

Recap: Priority Inversion

Blocked on Acquire
Priority 3

Priority 2 Job 2
Priority | Job | —>

« At this point, which job does the scheduler choose?
* Job 2 (Medium Priority)

* Priority Inversion

Recap: One Solution: Priority Donation/Inheritance

Priority 3

Priority 2

Priority |

* Job 3 temporarily grants Job | its “high priority” to run on its behalf

Are SRTF and MLFQ Prone to Starvation?

Y

quantum = 8

Long-Running Compute

Tasks Demoted to
~

-? _?/ Low Priority
quantum = 16
—Pr? FEFs

e In SRTF, long jobs are starved in favor of short ones

— Same fundamental problem as priority scheduling

e MLFQ s an approximation of SRTF, so it suffers from the same problem

Cause for Starvation: Priorities?

e Most of policies we’ve studied so far:
— Always prefer to give the CPU to a prioritized job
— Non-prioritized jobs may never get to run

e But priorities were a means, not an end
e Our end goal was to serve a mix of CPU-bound, I/O bound, and Interactive jobs
effectively on common hardware

— Give the |/O bound ones enough CPU to issue their next file operation and wait (on
those slow discs)

— Give the interactive ones enough CPU to respond to an input and wait (on those slow
humans)

— Let the CPU bound ones grind away without too much disturbance

Computers

Recall: Changing Landscape...

Per Person

Bell's Law: New
computer class every
10 years

|:10%

|:103

103:

Number
crunching, Data
Storage, Massive

— Inet Services,

ML, ...

Productivity,
[Interactive

Streaming

— from/to the

physical world

years

Things!

The Internet of

10

Changing Landscape of Scheduling

e Priority-based scheduling rooted in “time-sharing”

— Allocating precious, limited resources across a diverse workload
» CPU bound vs. interactive vs. |/O bound

e 80’s brought about personal computers, workstations, and servers on networks
— Different machines of different types for different purposes
— Shift to fairness and avoiding extremes (starvation)

e 90’s emergence of the web, rise of internet-based services, the data-center-is-
the-computer

— Server consolidation, massive clustered services, huge flashcrowds
— It’s about predictability, 95t percentile performance guarantees

11

Priority in Unix — Being Nice

e The industrial operating systems of the 60s and 70s provided priority to enforced
desired usage policies.

— When it was being developed at Berkeley, instead it provided ways to “be nice”.
e nice values range from -20 to 19

— Negative values are “not nice”

— If you wanted to let your friends get more time, you would nice up your job
e Scheduler puts higher nice-value tasks (lower priority) to sleep more ...

— In O(1) scheduler, this translated fairly directly to priority (and time slice)

13

Case Study: Linux O(1) Scheduler

Kernel/Realtime Tasks User Tasks

0 100 139
e Priority-based scheduler: 140 priorities
— 40 for “user tasks” (set by “nice”), 100 for “Realtime/Kernel”
— Lower nice value = higher priority

— Higher nice value = lower priority
— All algorithms O(1)
» Timeslices/priorities/interactivity credits all compute when job finishes time slice
» 140-bit bit mask indicates presence or absence of job at given priority level
e Two separate priority queues: “active” and “expired”

— All tasks in the active queue use up their timeslices and get placed on the expired queue,
after which queues swapped

e Timeslice depends on priority — linearly mapped onto timeslice range
— Like a multi-level queue (one queue per priority) with different timeslice at each level
— Execution split into “Timeslice Granularity” chunks — round robin through priority

Linux O(1) Scheduler

Task priority FIFO lists

CPU-X Expired CPU-X Active
runqueue rungueue

-1 —r—> Priority 1

— —t+—> Priority 2

— . e

—— ~—+—» Priority 100

—> Prionty 101

—> Prionty 140

Task priority FIFO lists

—t—> Priority 101

—> Priority 140

Real-time task priorities

\ .
> User task pnorities

e Lots of ad-hoc
heuristics

—Try to boost priority
of I/O-bound tasks

—Try to boost priority
of starved tasks

15

O(1) Scheduler Continued

e Heuristics
— User-task priority adjusted £5 based on heuristics
» P>sleep_avg = (sleep_time —run_time) x coefficient
» Higher sleep_avg = more I/O bound the task, more reward (and vice versa)
— Interactive Credit
» Earned when a task sleeps for a “long” time
» Spend when a task runs for a “long” time
» ICis used to provide hysteresis to avoid changing interactivity for temporary changes in behavior
— However, “interactive tasks” get special dispensation
» To try to maintain interactivity
» Placed back into active queue, unless some other task has been starved for too long...

e Real-Time Tasks
— Always preempt non-RT tasks
— No dynamic adjustment of priorities
— Scheduling schemes:

» SCHED_ FIFO: preempts other tasks, no timeslice limit
» SCHED RR: preempts normal tasks, RR scheduling amongst tasks of same priority

16

Proportional-Share Scheduling

e Instead using priorities, share the CPU proportionally
— Give each job a share of the CPU according to its priority
— Low-priority jobs get to run less often
— But all jobs can at least make progress (no starvation)

17

Recall: Lottery Scheduling

tQ i |Q i+ | . tlme

* Given a set of jobs (the mix), provide each with a share of a resource
—e.g, 50% of the CPU for Job A, 30% for , and 20% for Job C

* |dea: Give out tickets according to the proportion each should receive,

* Every quantum (tick): draw one at random, schedule that job (thread) to run

18

Lottery Scheduling: Simple Mechanism

10 ° tlcket Z N

e Pickanumberdinl .. N, asthe
random “dart”

e Jobs record their N; of allocated tickets
e Order them by N;

e Select the first j such that), N, up to j exceeds
d.

19

Linux Completely Fair Scheduler (CFS)

Basic Idea: track CPU time per thread and schedule threads
to match up average rate of execution

Scheduling Decision:
— "Repair’ illusion of complete fairness
— Choose thread with minimum CPU time

— Closely related to Fair Queueing

Use a heap-like scheduling queue for this...

— O(log N) to add/remove threads, where N is number
of threads

Sleeping threads don't advance their CPU time, so they get
a boost when they wake up again...

— Get interactivity automatically!

CFS: Average rate of

. 1
execution = —;
N

ﬁ

Swi] NdD
=| =

20

Linux CFS: Responsiveness/Starvation Freedom

In addition to fairness, we want low waiting time and starvation freedom
— Make sure that everyone gets to run at least a bit!
Constraint 1: Target Latency

— Period of time over which every process gets service
— Quanta = Target_Latency / n (n: number of processes)

Target Latency: 20 ms, 4 Processes
— Each process gets 5ms time slice

Target Latency: 20 ms, 200 Processes

— Each process gets 0.1ms time slice (!!!)
— Recall Round-Robin: large context switching overhead if slice gets to small

21

Linux CFS: Throughput

e Goal: Throughput
— Avoid excessive overhead

e Constraint 2: Minimum Granularity
— Minimum length of any time slice

e Target Latency 20 ms, Minimum Granularity 1 ms, 100 processes
— Each process gets 1 ms time slice

22

Linux CFS: Proportional Shares
e What if we want to give more CPU to some and less to others in CFS (proportional
share) ?
— Allow different threads to have different rates of execution (cycles/time)
e Use weights: assignh a weight w;to each process i to compute the switching quanta

Qi

— Basic equal share: Q; = Target Latency - %

— Weighted Share: Q; = (W"/Zp Wp) - Target Latency

e Reuse nice value to reflect share, rather than priority,
— Remember that lower nice value = higher priority

— CFS uses nice values to scale weights exponentially: Weight=1024/(1.25)nice

» Two CPU tasks separated by nice value of 5 =
Task with lower nice value has 3 times the weight, since (1.25)°~ 3

23

Choosing the Right Scheduler

| Care About: Then Choose:

CPU Throughput

Avg. Completion Time
/O Throughput

Fairness (CPU Time)

Fairness
(Wart Time to Get CPU)

Meeting Deadlines

Favoring Important Tasks

24

Choosing the Right Scheduler

| Care About: Then Choose:

CPU Throughput FCFS
Avg. Completion Time SRTF Approximation
/O Throughput SRTF Approximation
Fairness (CPU Time) Linux CFS
Fairness Round Robin
(Wart Time to Get CPU)
Meeting Deadlines EDF

Favoring Important Tasks Priority

How to Evaluate a Scheduling algorithm?

e Deterministic modeling

— takes a predetermined workload and compute the performance of each algorithm

for that workload

e Queueing models

— Mathematical approach for handling stochastic workloads

e Implementation/Simulation:

— Build system which allows actual algorithms
to be run against actual data

— Most flexible/general

simulation

FCES

performance
statistics
for FCFS

—>

CPU 10

actual
process
execution

VOR2AI3
CRUE2

L ORI
CPU 2

o G4y
CPU 173

simulation

SJE

performance
statistics
for SJF

=

trace tape

e
~

simulation

RR (q = 14)

—

performance
statistics
for RR (g = 14)

26

A Final Word On Scheduling

e When do the details of the scheduling policy and fairness really matter?

— When there aren’t enough resources to go around

e When should you simply buy a faster computer?
— (Or network link, or expanded highway, or ...)

— One approach: Buy it when it will pay for itself in improved response time

» Perhaps you’re paying for worse response time in reduced
productivity, customer angst, etc...

» Might think that you should buy a faster X when Xis utilized 100%,
but usually, response time goes to infinity as utilization=100%

e An interesting implication of this curve:

— Most scheduling algorithms work fine in the “linear” portion of
the load curve, fail otherwise

— Argues for buying a faster X when hit “knee” of curve

auwin
asuodsd

Utilization

%001

27

Deadlock: A Deadly type of Starvation

e Starvation: thread waits indefinitely

— Example, low-priority thread waiting for resources
constantly in use by high-priority threads

e Deadlock: circular waiting for resources

— Thread A owns Res 1 and is waiting for Res 2
Thread B owns Res 2 and is waiting for Res 1

e Deadlock = Starvation but not vice versa
— Starvation can end (but doesn’t have to)
— Deadlock can’t end without external intervention

28

Example: Single-Lane Bridge Crossing

A4S
SR ADID NI
AN <

.
=T

.

\

h.‘»'g\'l

R b

|

|
:
'H 1
0l
: J| ‘}l& ‘l\ “““i;

iy
XTAA

CA 140 to Yosemite National Park

29

Bridge Crossing Example

Each segment of road can be viewed as a resource
— Car must own the segment under them
— Must acquire segment that they are moving into
For bridge: must acquire both halves
— Traffic only in one direction at a time

Deadlock: Shown above when two cars in opposite directions meet in middle
— Each acquires one segment and needs next
— Deadlock resolved if one car backs up (preempt resources and rollback)
» Several cars may have to be backed up
Starvation (not Deadlock):
— East-going traffic really fast = no one gets to go west

30

Deadlock with Locks

Thread A: Thread B:

x.Acquire(); y.Acquire();
y.Acquire(); x.Acquire();
y.Release(); x.Release();
X.Release(); y.Release();

e This lock pattern exhibits non-deterministic deadlock
— Sometimes it happens, sometimes it doesn’t!

e This is really hard to debug!

Deadlock with Locks: “Unlucky” Case

Thread A: Thread B:
x.Acquire();

y.Acquire();
y.Acquire(); <stalled>
<unreachable> x.Acquire(); <stalled>
- <unreachable>
y.Release(); .
X.Release(); X.Release();

y.Release();

Nerther thread will get to run = Deadlock

32

Deadlock with Locks: “Lucky” Case

Thread A: Thread B:

x.Acquire();

y.Acquire();

. y.Acquire();

y.Release();

X.Release();
x.Acquire();
X.Release();
y.Release();

Sometimes, schedule won't trigger deadlock!

Train Example (Wormhole-Routed Network)

e Circular dependency (Deadlock!)

— Each train wants to turn right, but is blocked by other trains
e Similar problem to multiprocessor networks

— Wormhole-Routed Network: Messages trail through network like a “worm”
e Fix? Imagine grid extends in all four directions

— Force ordering of channels (tracks)
» Protocol: Always go east-west first, then north-south

— Called “dimension ordering” (X thenY)

AN\

34

Other Types of Deadlock

e Threads often block waiting for resources
— Locks
— Terminals
— Printers
— CD drives
— Memory

e Threads often block waiting for other threads
— Pipes
— Sockets

e You can deadlock on any of these!

35

Deadlock with Space

Thread A: Thread B

AllocateOrWait(1 MB) AllocateOrWait(l MB)
AllocateOrWait(1 MB) AllocateOrWait(l MB)
Free(1l MB) Free(1l MB)
Free(1l MB) Free(1l MB)

If only 2 MB of space, we get same deadlock srtuation

36

Dining Lawyers Problem

Five chopsticks/Five lawyers (really cheap restaurant)
— Free for all: Lawyer will grab any one they can
— Need two chopsticks to eat

What if all grab at same time?
— Deadlock!

How to fix deadlock?
— Make one of them give up a chopstick (Hah!)
— Eventually everyone will get chance to eat

How to prevent deadlock?
— Never let lawyer take last chopstick if no hungry lawyer has two chopsticks afterwards
— Can we formalize this requirement somehow?

37

Four requirements for occurrence of Deadlock

Mutual exclusion
— Only one thread at a time can use a resource.
Hold and wait

— Thread holding at least one resource is waiting to acquire additional resources
held by other threads
No preemption
— Resources are released only voluntarily by the thread holding the resource, after
thread is finished with it
Circular wait

— There exists a set {T, ..., T,} of waiting threads
» T,is waiting for a resource that is held by T,
» T, is waiting for a resource that is held by T;

» ...

» T, is waiting for a resource that is held by T;

38

Detecting Deadlock:
Resource-Allocation Graph
e System Model
— Asetof Threads T, T,, ..., T,
— Resource types Ry, R,, .. ., R,
CPU cycles, memory space, 1/0 devices
— Each resource type R, has W, instances
— Each thread utilizes a resource as follows:
» Request () / Use() / Release /()
e Resource-Allocation Graph:

— V is partitioned into two types:
» T={T,, T,, ..., T,}, the set threads in the system.
» R={R., R,, ..., R}, the set of resource types in system

— request edge — directed edge T; — R,
— assignment edge — directed edge R, — T;

39

Resource-Allocation Graph Examples

e Model:

— request edge — directed edge T; — R;
— assignment edge — directed edge R, —> T,

R,

Rs

R

Simple Resource

Allocation Graph

Allocation Graph Allocation Graph
With Deadlock With Cycle, but
No Deadlock

40

Deadlock Detection Algorithm

e Let [X] represent an m-ary vector of non-negative integers
(quantities of resources of each type):

[FreeResources]: Current free resources each type
[Requesty]: Current requests from thread X
[Alloc]: Current resources held by thread X

e See if tasks can eventually terminate on their own
[Avail] = [FreeResources]

Add all nodes to UNFINISHED
do {

done = true
For each node in UNFINISHED {
if ([Request, 4] <= [Avail]) {
remove node from UNFINISHED a
[Avail] = [Avail] + [AllocC,,4e]
done = false
}
}
} until(done)

e Nodes left in UNFINISHED — deadlocked

41

How should a system deal with deadlock?

Four different approaches:
Deadlock prevention: write your code in a way that it isn’t prone to deadlock

Deadlock recovery: let deadlock happen, and then figure out how to recover
from it

Deadlock avoidance: dynamically delay resource requests so deadlock doesn’t
happen

Deadlock denial: ignore the possibility of deadlock

Modern operating systems:
— Make sure the system isn’t involved in any deadlock

— lgnore deadlock in applications
» “Ostrich Algorithm”

42

Summary (1 of 3)

Scheduling Goals:
— Minimize Response Time (e.g. for human interaction)
— Maximize Throughput (e.g. for large computations)
— Fairness (e.g. Proper Sharing of Resources)
— Predictability (e.g. Hard/Soft Realtime)
Round-Robin Scheduling:

— Give each thread a small amount of CPU time when it executes; cycle between all ready
threads

— Pros: Better for short jobs
Shortest Job First (SJF)/Shortest Remaining Time First (SRTF):

— Run whatever job has the least amount of computation to do/least remaining amount of
computation to do

Multi-Level Feedback Scheduling:
— Multiple queues of different priorities and scheduling algorithms
— Automatic promotion/demotion of process priority in order to approximate SJF/SRTF

43

Summary (2 of 3)

e Realtime Schedulers such as EDF
— Guaranteed behavior by meeting deadlines
— Realtime tasks defined by tuple of compute time and period

— Schedulability test: is it possible to meet deadlines with proposed set of processes?

e |ottery Scheduling:

— Give each thread a priority-dependent number of tokens (short tasks=more tokens)
e Linux CFS Scheduler: Fair fraction of CPU

— Approximates an “ideal” multitasking processor

— Practical example of “Fair Queueing”

44

Summary (3 of 3)

e Four conditions for deadlocks
— Mutual exclusion
— Hold and wait
— No preemption
— Circular wait
e Techniques for addressing Deadlock
— Deadlock prevention:
» write your code in a way that it isn’t prone to deadlock
— Deadlock recovery:
» let deadlock happen, and then figure out how to recover from it
— Deadlock avoidance:
» dynamically delay resource requests so deadlock doesn’t happen
» Banker’s Algorithm provides on algorithmic way to do this
— Deadlock denial:
» ignore the possibility of deadlock

45

