Operating Systems
(Honor Track)

Scheduling 4: Deadlock &
Scheduling in Modern Computer Systems

Xin Jin
Spring 2022

Acknowledgments: lon Stoica, Berkeley CS 162



Recap: Deadlock: A Deadly type of Starvation

e Starvation: thread waits indefinitely

— Example, low-priority thread waiting for resources
constantly in use by high-priority threads

e Deadlock: circular waiting for resources

— Thread A owns Res 1 and is waiting for Res 2
Thread B owns Res 2 and is waiting for Res 1

e Deadlock = Starvation but not vice versa
— Starvation can end (but doesn’t have to)
— Deadlock can’t end without external intervention



Recap: Four requirements for occurrence of Deadlock

Mutual exclusion
— Only one thread at a time can use a resource.
Hold and wait

— Thread holding at least one resource is waiting to acquire additional resources
held by other threads
No preemption
— Resources are released only voluntarily by the thread holding the resource, after
thread is finished with it
Circular wait

— There exists a set {T, ..., T,} of waiting threads
» T,is waiting for a resource that is held by T,
» T, is waiting for a resource that is held by T;

» ...

» T, is waiting for a resource that is held by T;



Recap: Deadlock Detection Algorithm

e Let [X] represent an m-ary vector of non-negative integers
(quantities of resources of each type):

[ FreeResources]: Current free resources each type
[Requesty]: Current requests from thread X
[Alloc]: Current resources held by thread X

e See if tasks can eventually terminate on their own

[Avail] = [FreeResources]
Add all nodes to UNFINISHED

do { R
done = true E
For each node in UNFINISHED {

if ([Request, 4] <= [Avail]) {
remove node from UNFINISHED a

[Avail] = [Avail] + [AllocC,,4e]

done = false
} XS

} R
} until(done)

e Nodes left in UNFINISHED — deadlocked



How should a system deal with deadlock?

Four different approaches:
Deadlock prevention: write your code in a way that it isn’t prone to deadlock

Deadlock recovery: let deadlock happen, and then figure out how to recover
from it

Deadlock avoidance: dynamically delay resource requests so deadlock doesn’t
happen

Deadlock denial: ignore the possibility of deadlock

Modern operating systems:
— Make sure the system isn’t involved in any deadlock

— Ignore deadlock in applications
» “Ostrich Algorithm”



Techniques for Preventing Deadlock

e |nfinite resources

— Include enough resources so that no one ever runs out of resources.
Doesn’t have to be infinite, just large

— Give illusion of infinite resources (e.g. virtual memory)
— Examples:
» Bay bridge with 12,000 lanes. Never wait!
» Infinite disk space (not realistic yet?)
e No Sharing of resources (totally independent threads)
— Not very realistic

e Don’t allow waiting
— How the phone company avoids deadlock
» Call Mom in Toledo, works way through phone network, but if blocked get busy signal.
— Technique used in Ethernet/some multiprocessor nets
» Everyone speaks at once. On collision, back off and retry

— Inefficient, since have to keep retrying

» Consider: driving to San Francisco; when hit traffic jam, suddenly you’re transported back
home and told to retry!



(Virtually) Infinite Resources

Thread A Thread B
AllocateOrWait(1 MB) AllocateOrWait(l MB)
AllocateOrWait(1 MB) AllocateOrWait(l MB)
Free(1l MB) Free(1l MB)

Free(1l MB) Free(1l MB)

* With virtual memory we have “infinite” space so everything will just succeed, thus
above example won't deadlock

— Of course, 1t 1sn't actually infinite, but certainly larger than 2MB!



Techniques for Preventing Deadlock

e Make all threads request everything they’ll need at the beginning.
— Problem: Predicting future is hard, tend to over-estimate resources
— Example:

» If need 2 chopsticks, request both at same time

» Don’t leave home until we know no one is using any intersection between here and where you
want to go; only one car on the Bay Bridge at a time

e Force all threads to request resources in a particular order preventing any cyclic use of
resources

— Thus, preventing deadlock
— Example (x.Acquire(), y.Acquire(), z.Acquire(),...)
» Make tasks request disk, then memory, then...
» Keep from deadlock on freeways around SF by requiring everyone to go clockwise



Request Resources Atomically (1)

Rather than:
Thread A:
x.Acquire();
y.Acquire();

y.Release();
X.Release();

Consider instead:
Thread A:
Acquire_both(x, y);

y.Release();
X.Release();

Thread B:
y.Acquire();
x.Acquire();

X.Release();
y.Release();

Thread B:
Acquire_both(y, x);

X.Release();
y.Release();



Request Resources Atomically (2)

Or consider this:

Thread A

z.Acquire();
x.Acquire();
y.Acquire();
z.Release();

y.Release();
X.Release();

Thread B

y 4

y
X
Z

X 3

.Acquire();
.Acquire();
.Acquire();
.Release();

.Release();
.Release();

10



Acquire Resources in Consistent Order

Rather than:
Thread A:
x.Acquire();
y.Acquire();

y.Release();
X.Release();

Consider instead:

Thread A:
x.Acquire();
y.Acquire();

y.Release();
X.Release();

Thread B:
y.Acquire();
x.Acquire();

X.Release();
y.Release();

Thread B:
x.Acquire();
y.Acquire();

X.Release();
y.Release();

Does it matter in which
order the locks are
released?

11



Review: Train Example (Wormhole-Routed Network)

e Circular dependency (Deadlock!)
— Each train wants to turn right
— Blocked by other trains
— Similar problem to multiprocessor networks
e Fix? Imagine grid extends in all four directions

— Force ordering of channels (tracks)
» Protocol: Always go east-west first, then north-south
— Called “dimension ordering” (X thenY)

N/
s

A\




Techniques for Recovering from Deadlock

Terminate thread, force it to give up resources
— In Bridge example, Godzilla picks up a car, hurls it into the river. Deadlock solved!
— Hold dining lawyer in contempt and take away in handcuffs
— But, not always possible — killing a thread holding a mutex leaves world inconsistent
Preempt resources without killing off thread
— Take away resources from thread temporarily
— Doesn’t always fit with semantics of computation
Roll back actions of deadlocked threads
— Hit the rewind button on TiVo, pretend last few minutes never happened
— For bridge example, make one car roll backwards (may require others behind him)
— Common technique in databases (transactions)
— Of course, if you restart in exactly the same way, may reenter deadlock once again
Many operating systems use other options

13



Another view of virtual memory: Pre-empting Resources

Thread A: Thread B:
AllocateOrWait(1 MB) AllocateOrWait(1l MB)
AllocateOrWait(1 MB) AllocateOrWait(1l MB)
Free(1l MB) Free(1l MB)

Free(1l MB) Free(1l MB)

* Before: With virtual memory we have “infinite” space so everything will just
succeed, thus above example won't deadlock

— Of course, 1t 1sn't actually infinite, but certainly larger than 2MB!

* Alternative view: we are “pre-empting” memory when paging out to disk, and giving
it back when paging back in

— This works because thread can't use memory when paged out

14



Techniques for Deadlock Avoidance

e |dea: When a thread requests a resource, OS checks if it would
result in deadlock

— If not, it grants the resource right away
— If so, it waits for other threads to release resources

THIS DOES NOT WORKI!!!

e Example:
Thread A: Thread B:
~ X.Acquire(); ~y.Acquire();
Blocks...  y.Acquire(); X.Acquire(); Wait?
But it's already too late...
y.Release(); X.Release();

X.Release(); y.Release();

15



Deadlock Avoidance: Three States

e Safe state
— System can delay resource acquisition to prevent deadlock

Deadlock avoidance: prevent system from
reaching an unsdfe state

e Unsafe state
— No deadlock yet...
— But threads can request resources in a pattern that unavoidably leads to deadlock

e Deadlocked state
— There exists a deadlock in the system
— Also considered “unsafe”

16



Deadlock Avoidance

e |dea: When a thread requests a resource, OS checks if it
would result in deadteek an unsafe state

— If not, it grants the resource right away
— If so, it waits for other threads to release resources

e Example:
Thread A: Thread B:
x.Acqu%r'eZ 5; y.Acqu%r'eZ S; Wait unil
y.Acquire(); X.Acquire(); 1 cadA
releases
y.Release(); X.Release();  mutexX

X.Release(); y.Release();

17



Banker’s Algorithm for Avoiding Deadlock

e Toward right idea:
— State maximum (max) resource needs in advance

— Allow particular thread to proceed if:

(available resources - #requested) > max
remaining that might be needed by any thread

e Banker’s algorithm:

— Allocate resources dynamically

» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run deadlock detection
algorithm, substituting:
([Maxnode]_[A”OCnode:I <= [AV&I[D for ([RequeStnode:l <= [Ava”])
Grant request if result is deadlock free

18



Banker’s Algorithm for Avoiding Deadlock

[Avail] = [FreeResources]
Add all nodes to UNFINISHED
do {
done = true
For each node in UNFINISHED {
if ([Request, ] <= [Avail]) {
remove node from UNFINISHED
[Avail] = [Avail] + [Alloc,.q4e]
done = false

}
} until(done)

» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run deadlock detection
algorithm, substituting:
([Maxnode]_[A“OCnode:| <= [AV&I[D fOI” ([RequeStnode] <= [Avall])
Grant request if result is deadlock free



Banker’s Algorithm for Avoiding Deadlock

[Avail] = [FreeResources]
Add all nodes to UNFINISHED
do {
done = true
For each node in UNFINISHED {
1-F ([Maxnode]'[Allocnode] <= [Avail]) {
remove node from UNFINISHED
[Avail] = [Avail] + [Alloc,.q4e]
done = false

}
} until(done)

» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run deadlock detection
algorithm, substituting:
([Maxnode]_[A“OCnode:| <= [AV&I[D fOI” ([RequeStnode] <= [Avall])
Grant request if result is deadlock free



Banker’s Algorithm for Avoiding Deadlock

e Toward right idea:
— State maximum (max) resource needs in advance

— Allow particular thread to proceed if:

(available resources - #requested) > max
remaining that might be needed by any thread

e Banker’s algorithm:

— Allocate resources dynamically

» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run deadlock detection
algorithm, substituting:
([Maxnode]_[A”OCnode:I <= [Ava”]) for ([RequeStnode:l <= [AV&I[I)
Grant request if result is deadlock free
— Keeps system in a “SAFE” state: there exists a sequence {T, T,, ... T} with T, requesting
all remaining resources, finishing, then T, requesting all remaining resources, etc..

21



Banker’s Algorithm Example

e Banker’s algorithm with dining lawyers

— “Safe” (won’t cause deadlock) if when try to
grab chopstick either:

» Not last chopstick

» Is last chopstick but someone will have
two afterwards

— What if k-handed lawyers? Don’t allow if:
» It’s the last one, no one would have k
» It’s 2"d to last, and no one would have k-1
» It’s 3 to last, and no one would have k-2

» ...

22



Summary

e Four conditions for deadlocks
— Mutual exclusion
— Hold and wait
— No preemption
— Circular wait
e Techniques for addressing Deadlock
— Deadlock prevention:
» write your code in a way that it isn’t prone to deadlock
— Deadlock recovery:
» let deadlock happen, and then figure out how to recover from it
— Deadlock avoidance:
» dynamically delay resource requests so deadlock doesn’t happen
» Banker’s Algorithm provides on algorithmic way to do this
— Deadlock denial:
» ignore the possibility of deadlock

23



Scheduling in Modern Computer Systems

FCFS

— SOSP’17 ZygOS
RR

— NSDI’19 Shinjuku
MLFQ

— NSDI’19 Tiresias
Fairness

— NSDI’11 DRF
— NSDI’16 FairRide

24



/ygOS: Achieving Low Tail Latency for Microsecond-
scale Networked Tasks

George Prekas, Marios Kogias, Edouard Bugnion




Problem: Serve us-scale RPCs

* Applications: KV-stores, In-memory DB

* Datacenter environment:
 Complex fan-out — fan-in patterns

* Tail-at-scale problem

* Tail Latency Service-Level Objectives
* Goal: Improve throughput at an aggressive tail latency SLO

* How? Focus within the leaf nodes
* Reduce system overheads
* Achieve better scheduling

26



Elementary Queuing Theory

* Processor
e FCFS

* Processor Sharing A /
e Multi/Single Queue <§\
* Inter-arrival Distribution (A) |
* Poisson
* Service Time Distribution ()
* Fixed

* Exponential
* Bimodal

@
e

* No OS overheads
* Independent of service time
* Upper performance bound



Baseline

System Linux Dataplanes
Networking Kernel (epoll) | Kernel (epoll) | Userspace
Connect.lon Partitioned Floating Partitioned
Delegation
Complexity Medium High Low

Conservation
Queuing Multi-Queue | Single Queue | Multi-Queue

28



Upcoming

* Key Observations:
* Single queue systems perform theoretically better
* Dataplanes, despite being multi-queue systems, perform practically better

* Key Contributions

e ZygOS combines the best of the two worlds:

* Reduced system overheads similar to dataplanes
* Convergence to a single-queue model



Analysis

* Metric to optimize: Load @ Tail-Latency SLO
* Run timescale-independent simulations
* Run synthetic benchmarks on real system

* Questions:
 Which model achieves better throughput?
* Which system converges to its model at low service times?



Latency vs Load — Queuing model

Fixed

— 16xM/G/1/FCFS

15

10+

Exponential

— M/G/16/FCFS

Greater mismatch
at high dispersion

Bimodal




Latency vs Load — Service Time 10us

........ SLO —a— Linux (partitioned connections) — IX —+— Linux (floating connections)
Exponential Bimodal
150 150
125 - 125 -
100 1 100 1
75 - 75 -
50 - 50 -
25 25
0 . . . 0 . . . 0 . . .
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
Throughput (MRPS) Throughput (MRPS) Throughput (MRPS)

99t percentile latency
SLO: 10 x AVG|service_time] IX, Belay et al. OSDI 2014

32



Latency vs Load — Service Time 25us

........ SLO  —«— Linux (partitioned connections)  —— |x -~ Linux (floating connections)

Exponential Bimodal

Linux Floating

300 1 300 1 outperforms IX

200 - 200 -

100 - 100 +

0.0

0.2 0.4 0.6 %0 0.2 0.4 0.6 %0 0.2 0.4 0.6
Throuihiut ‘MRPSI Throuihiut ‘I\/IRPSI Throuihiut ‘MRPSI

SLO: 10 x AVG|service_time] IX, Belay et al. OSDI 2014

33



/ygOS Approach

e Dataplane aspect:
e Reduced system overheads
* Share nothing network processing

* Single Queue system
* Work conservation
* Reduction of head of line blocking

34



Background on [X

Ring 3

Event
Conditions

Guest
Ring O

Batched
Syscalls

35



Yy g1eSipresign

1. Application layer
Event based application
that is agnostic to work-stealing

2. Shuffle layer

Includes a per core list of ready connections that allows stealing

3. Network layer
Coherence- and sync-free network processing



ZygOS Architecture

Application
Layer

Application
Layer

iffletayer
Shuffle
Queue Remote Que
Syscalls 3
I
I
Network Layer | Network Layer
|
I
|
I
|
N\ | N\
Home core \@ RX TX @ | Remote \@) RX TX @
| 37

core




Execution Model

Shuffle Layer
Shuffle

Queue Remote Queue
Syscalls

Shuffle

TCP/IP TCP/IP

O

Remote
core

Home core

Omm



Execution Model

Shuffle Layer
Shuffle

Queue Remote Queue
Syscalls

Shuffle

TCP/IP

O

Remote
core

Home core



Execution Model

Shuttle Layer

M Shuffle Shuffle
Jl Queue Remote Queue

Syscalls

Remote
core

Home core @ RX TX



Execution Model

Shuffle Layer

Shuffle Shuffle
Queue Remote Queue

Syscalls

TCP/IP

TCP/IP

41

Remote
core

Home core @ RX TX



Execution Model

Shuffle Layer

Shuffle Shuffle
Queue Remote Queue
Syscalls

TCP/IP

TCP/IP

42

Remote
core

Home core @ RX TX



Execution Model

Shuffle
Queue Remote

Syscalls

TCP/IP

Remote
core

Home core @ RX TX



Execution Model

Shuffle Layer

Shuffle Shuffle
Queue Remote Queue
Syscalls

TCP/IP

TCP/IP

O

Remote
core

Home core @ RX TX



Execution Model

Shuffle Layer

Shuffle Shuffle
Queue Remote Queue
Syscalls

TCP/IP

TCP/IP

O

Remote
core

Home core @ RX TX



Evaluation Setup

* Environment:
e 10+1 Xeon Servers

* 16-hyperthread server machine
* Quanta/Cumulus 48x10GbE switch

* Experiments:

* Synthetic micro-benchmarks
* Silo [SOSP 2013]
* Memcached

* Baselines:
e IX
 Linux (partitioned and floating connections)



Latency vs Load — Service Time 10us

........ SLO —a— Linux (partitioned connections) — IX —+— Linux (floating connections)
Exponential Bimodal
150 150
125 - 125 -
100 1 100 1
75 - 75 -
50 - 50 -
25 25
0 . . . 0 . . . 0 . . .
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
Throughput (MRPS) Throughput (MRPS) Throughput (MRPS)

99t percentile latency
SLO: 10 x AVG|service_time] IX, Belay et al. OSDI 2014

47



Latency vs Load — Service Time 10us

........ SLO —a+— Linux (partitioned connections) e X —+ Linux (floating connections) —+— 2ZygOS

Fixed

0 15

0 0.5 1
Throughput (MRPS)

0
0.

99t percentile latency
SLO: 10 x AVG|service_time]

150

Exponential

125 1

100 1

75 -

50 1

25 -

0
0.

1 15

0 0.5 0
Throughput (MRPS)

150

Bimodal

125 1

100 1

75 -

50 1

25 -

0
0.

15

0 0.5 1.0
Throughput (MRPS)

IX, Belay et al. OSDI 2014

48



Silo with TPC-C workload

1.63x speedup
over Linux

3.68x lower
99th |atency

0 50

100

150 200 250
Throughput (KRPS)

300 350

400

49



Conclusion

ZygOS: A datacenter operating system for low-latency We ¥ opensource

(=] [m]

* Reduced System overheads

* Converges to a single queue model

* Work conservation through work stealing

[=],

https://github.com/ix-project/zygos

* Reduce HOL through light-weight IPls



https://github.com/ix-project/zygos

Scheduling in Modern Computer Systems

* FCFS
* SOSP’17 ZygOS

* RR
* NSDI'19 Shinjuku

* MLFQ
e NSDI'19 Tiresias

e Fairness
e NSDI’11 DRF
e NSDI’16 FairRide



Tiresias

A GPU Cluster Manager for Distributed Deep Learning

Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin,
Yibo Zhu, Myeongjae Jeon, Junjie Qian, Honggiang (Harry) Liu, Chuanxiong Guo

UNIVERSITY OF

MICHIGAN

o= Microsoft il ByteDance  WHIiST A.ingmp

NNNNNNNNNNNNNNNNNNNNNNNN
CCCCCCCCCCCCCCCCCCCC




GPU Cluster for Deep Learning Training

* Deep learning (DL) is popular ) A
« 10.5x increase of DL training jobs in Microsoft L ° -

* DL training jobs require GPU
* Distributed deep learning (DDL) training with multiple GPUs

>

Google Lens Siri

* GPU cluster for DL training

* 5% increase of GPU cluster scale in Microsoft

[1]. Analysis of Large-Scale Multi-Tenant GPU Clusters for DNN Training Workloads. https://arxiv.org/abs/1901.05758



GPU Cluster Manager

@) N-GPU DL job
[] Free GPU
B Occupied GPU

4-GPU machine

Job Queue

— @ 0 0 O

|

SchQuler

|

PIacemeC)Scheme

|

B -
m

s

5

H:

GPU Cluster

Design Objectives

Minimize
Cluster-Wide Average
Job Completion Time (JCT)

Achieve

High Resource (GPU)
Utilization



Challenge |: Unpredictable Training Time

» Unknown execution time of DL training jobs
" J]ob execution time Is useful when minimizing |JCT

" Predict job execution time
= Use the smooth loss curve of DL training jobs (Optimus ;)

o
L>
>

— DSSM — Seq2Seq

0.54

Norm. Train. Loss
o
(9, ]
1

Norm. Train. Loss

—Job, —Job,
0.0 >
Progress Progress

=)
=)
v

[1]. Optimus: An Efficient Dynamic Resource Scheduler for Deep Learning Clusters, EuroSys’ 18



Challenge |: Unpredictable Training Time

» Unknown execution time of DL training jobs
" J]ob execution time Is useful when minimizing |JCT

" Predict job execution time
= Use the smooth loss curve of DL training jobs (Optimus ;)

[1]. Optimus: An Efficient Dynamic Resource Scheduler for Deep Learning Clusters, EuroSys’ 18



Challenge ll: Over-Aggressive Job Consolidation

* Network overhead in DDL training

for good training performance

* Fragmented free GPUs in the cluster

* [onger queuing delay

00 — X © N-cPu o
Job Queue
Free GPU
u u H . Occupied GPU

Machine | Machine 2 Machine 3 Machine 4




Prior Solutions

. Unpredictable Training Time | 1l. Over-Aggressive Job Consolidation

( )

( )

YARN-CS FIFO None

Gandivay, Time-sharing Trial-and-error

[1]. Optimus: An Efficient Dynamic Resource Scheduler for Deep Learning Clusters, EuroSys’ |8

[2]. Gandiva: Introspective Cluster Scheduling for Deep Learning, OSDI’|8



A GPU cluster manager for
Distributed Deep Learning
Without Complete Knowledge

|. Age-Based Scheduler Minimize JCT without
complete knowledge of jobs

2. Model Profile-Based Placement Place jobs without additional
information from users




Challenge |

How To Schedule DL Training Jobs
Without Complete Job Information?



Characteristics of DL Training Jobs

128+

64+

Number of GPUs

N
1

w
N
L

o
1

oo
1

N
1

" Variations in both temporal and spatial aspects

********

102

103

10*

Job execution time (min)

e
10°

Scheduler should consider both

temporal and spatial
aspects of DL training jobs



Avallable Job Information

|, Spatial: number of GPUs

2. Temporal: time

1 1 | | | | 1 1
0 I 2 3 4 5 6 7 8 9 10 Il Time



Age-Based Schedulers

* Least-Attained Servicer; (LAS)
* Prioritize job that has the shortest executed time

( time)
G2
GI
S B EE— | T T T >
0 I 2 3 4 5 6 7 8 9 10 Il Time

[1]. Feedback queueing models for time-shared systems. JACM, 1968

[2]. Multi-armed bandit allocation indices. Wiley, Chichester, 1989



Two-Dimensional Age-Based Scheduler (2DAS)

* Age calculated by two-dimensional attained service
* lLe,ajob’s (# of GPUs x executed time)

* No prior information

Fewer Job Switches: Discretized 2D-LAS (MLFQ)




Challenge |l

How to Place DL Jobs
Without Hurting Training Performance!?



Characteristics of DL Models

e Tensor size In DL models
cause network imbalance and contention

Consolidated placement
is needed when the
model is highly skewed
in Its tensor size

—~~
(a0}
2
~
()
N
(Vs

JHL
Il

33



Model Profile-Based Placement

ResNetlO| Inception4 ResNet|52

GoogleNet Inception3 ResNet50

(- )

AlexNet VGGl 6

Model Profiler

VGGI9 VGGl |




Central Master

O mm | | Discretized-2DAS
DL Job

(model, resource)

Model profiler

Placement scheme Evalu atio n

Placement Preemption

60-GPU
lestbed Experiment

Central Master
Network-Level Model Profiler

Large-scale &
Trace-driven Simulation

GPU Cluster




JCT Improvements in Testbed Experiment

* Testbed — Michigan ConFlux cluster
* |5 machines (4 GPUs each)
* |00 Gbps RDMA network

Avg. |CT improvement
(w.r.t. YARN-CS): 5.5%

-- YARN-CS
08 SRTF
0.6 —Tiresias ',’

! Comparable
berformance to SRTF

Fraction of Jobs

- - ==

10 102 103 10* 10°
JCT (second)




JCT Improvements in Trace-Driven Simulation

e Discrete-time simulator

* |O-week job trace from Microsoft
* 2,000-GPU cluster

1.0

508 Avg. |CT improvement
5 06 /77 YARN-CS (w.r.t. Gandiva): 2 *
< K SRTF
S 04 ,° )
Y ---Gandiva
L 0.2 2 —Tiresias
0.0

| 02 103 |0 10° 1 0° 107
JCT(second)




A GPU cluster manager for
Distributed Deep Learning
Without Complete Knowledge

* Optimize JCT with no or partial job information

* Relax placement constraint without hurting training performance

. . , L , UNIVERSITY OF
* Simple, practical, and with significant performance improvements ~ MICHIGAN




Scheduling in Modern Computer Systems

* FCFS
« SOSP’17 ZygOS

* RR
* NSDI'19 Shinjuku

* MLFQ
e NSDI'19 Tiresias

e Fairness
e NSDI’11 DRF
e NSDI’16 FairRide



Dominant Resource Fairness (DRF)
Fair Allocation of Multiple Resource Types

Ali Ghodsi, Matei Zaharia
Benjamin Hindman, Andy Konwinski,
Scott Shenker, lon Stoica

University of California, Berkeley

alig@cs.berkeley.edu



What is fair sharing?

100%
* n users want to share a resource (e.g. CPU)

— Solution: 50%
Allocate each 1/n of the shared resource

0% -

100%

* Generalized by max-min fairness
— Handles if a user wants less than its fair share

— E.g. user 1 wants no more than 20% 207

0%
* Generalized by weighted max-min fairness o0

— Give weights to users according to importance
— User 1 gets weight 1, user 2 weight 2 50%

alig@cs.berkeley.edu 0%



How to define fairness?

e Share guarantee
* Each user can get at least 1/n of the resource
e But will get less if her demand is less

 Stragegy-proof
e Users are not better off by asking for more than they need
* Users have no reason to lie

* Pareto efficiency

* It is not possible to increase the allocation of a user without decreasing the
allocation of at least another user

* |t leads to maximizing system utilizaiton subject to satisfying other constraints



Why is max-min fairness not enough?

* Job scheduling in datacenters is not only
about CPUs

— Jobs consume CPU, memory, disk, and /0

* Does this pose any challenge?



Heterogeneous Resource Demands

Ask CPU demand (cores)

o® Maps

Per task memory demand

Some tasks are
CPU mtenswe o@ 'Redu'ces .
Most task need ~ Some tasks are
.‘<2 CPU y) GB RAMghgmcry-mtenswe
I
Qi 0%
4 5 6

2000-node Hadoop Cluster at Facebook (Oct 2010)

alig@cs.berkeley.edu



Problem

Single resource example
— 1 resource: CPU
— User 1 wants <1 CPU> per task
— User 2 wants <3 CPU> per task

100%-{

7~

Multi-resource example
— 2 resources: CPUs & mem
— User 1 wants <1 CPU, 4 GB> per task
— User 2 wants <3 CPU, 1 GB> per task
— What’s a fair allocation?

100%

50%1---P--1 -

0%+

alig@cs.berkeley.edu



Problem definition

How to fairly share multiple resources when
users have heterogenous demands on them?

alig@cs.berkeley.edu



Model

* Users have tasks according to a demand vector
—e.g.<2,3,1> user’stasksneed2R;,3R,, 1R,
— Not needed in practice, measure actual consumption

e Resources given in multiples of demand vectors

e Assume divisible resources

10



A Natural Policy

e Asset Fairness

— Equalize each user’s sum of resource shares

e Cluster with 70 CPUs, 70 GB RAM
— U, needs <2 CPU, 2 GB RAM> per task
— U, needs <1 CPU, 2 GB RAM> per task

alig@cs.berkeley.edu



A Natural Policy

e Asset Fairness

— Equalize each user’s sum of resource shares

B User 1[] User 2
100%; -
Problem A
User 1 has < 50% of both CPUs and RAM

Better off in a separate cluster with 50% of
\the resources

* Asset fairness yields

— U,;:15tasks: (30 CPUSs, 30 GB)5=60)
— U,:20tasks: 20 CPUs, 40 GB (3=60)

50%

0%

alig@cs.berkeley.edu



Dominant Resource Fairness

e A user’s dominant resource is the resource she
has the biggest share of

— Example:
Total resources: <10 CPU, 4 GB>
User 1’s allocation: <2 CPU, 1 GB>
Dominant resource is memory as 1/4 > 2/10 (1/5)

e A user’s dominant share is the fraction of the
dominant resource she is allocated

— User 1’s dominant share is 25% (1/4)

18



Dominant Resource Fairness (2)

* Apply max-min fairness to dominant shares
e Equalize the dominant share of the users

— Example:
Total resources: <9 CPU, 18 GB>
User 1 demand: <1 CPU, 4 GB> dom res: mem

User 2 demand: <3 CPU, 1 GB> dom res: CPU

100% 1
| 3cpus| ¥ 126B| [ user1

B User2
A : 66%

50%

166% g

{ 6CPUs
CPU mem
(9 total) (18 total) 19

0%



Properties of Policies

Property Asset CEEI DRF
Share guarantee v

Strategy-proofness
Pareto efficiency

Envy-freeness

NSNX KX

Single resource fairness

NN KX

Bottleneck res. fairness

SN X

<

Population monotonicity

Resource monotonicity




Scheduling in Modern Computer Systems

* FCFS
* SOSP’17 ZygOS

* RR
* NSDI'19 Shinjuku

* MLFQ
e NSDI'19 Tiresias

e Fairness
e NSDI’11 DRF
e NSDI’16 FairRide



lab

FairRide: Near-Optimal
Fair Cache Sharing

Qifan Pu,
Haoyuan L,
Matei Zaharia,
Ali Ghodsi,

lon Stoica -




Caches are crucial

AN\ ALLUXIO
Spor‘llg
/"r /—\‘W

iFI emCached




Cache sharing

* Increasingly, caches are shared among multiple users
— Especially with the advent of cloud

Benefits: k />< |

— Provide low latency (Cache b

— Reduce backend load

. "

Backend (storage/network)

\_




Problems with cache algorithms

LRU, LFU, LRU-K...

| * (Cache data likely to be
‘\\‘\\ accessed in the future
.y * Optimize global efficiency

/Cache )

- * Single user gets arbitrarily

< small cache

\

>

Backend (storage/network) |

N ') * Prone to strategic behavior




A simple model

» Users access equal-sized files at constant rates
— I/;.j the rate userjaccesses file j

* A allocation policy decides which files to cache
— P, the % of file j putin cache

total _hits Zj Pily

* Users care their hit ratio HR, =

o . total accesses
— user /'s hit ratio: - Z_ri,-
J

@ Results hold with varied file sizes, access partial files, pj is binary, etc.



Properties

* |solation Guarantee (Share Guarantee)

— No user should be worse off than static allocation

* Strategy-Proofness
— No user can improve by cheating

» Pareto Efficiency
— Can’timprove a user without hurting others

10



Strategy proofness

* Very easy to cheat, hard to detect
—e.g., by making spurious accesses
* Can happen in practice

Sitel Site2 18 -
/ N —
v A S IZX
( Amazon Elasticache ) e
i ® 6 site1
| —
. ) A site2
N é o w w w w
OR D0 - 0 10 20 30 40
_ MySQL Instance ) time (min)




What is max-min fairness?

* Maximize the the user with minimum allocation
— Solution: allocate each 1/n (fair share)

33% 33% 33%
— Handles if some users want less than fair share

20% 40% 40%

* Widely successful to other resources:
— OS: round robin, prop sharing, lottery sched...
— Networking: fair queueing, wfq, wf2q, csfq, drr...
— Datacenter: DRF, Hadoop fair sched, Quincy...



An example

5 req/sec

Alice
HR =83.3%

req/sec

v >y v
n]BwUC;ZD
2 7S [/

S Ve

50%0

file sizes = 1GB, total cache = 2GB



Properties

Isolation Strategy Pareto
Guarantee Proofness Efficiency
v ? v

max-min fairness

16



An example

5 req/sec A
Alice
HR =83.3% e
- 66.7% 7 { B N\
‘ B C ‘ v |100%
O 0.5 .

Bob
HR =83-3% ) +10 req/sec 100%
L00% *

file sizes = 1GB, total cache = 2GB



An example

5 req/sec A
Alice
HR =83.3% SRS

10,,

0 Q

66.7% sec9h./[B
— —rb -r\\se" 100%

By gamlng the system, a user can
4R INcrease performance by hurting others!

100% “ Ik |

file sizes = 1GB, total cache = 2GB .



Properties

Isolation Strategy Pareto
Guarantee Proofness EfflClency

max-min fairness

static allocation v v X
priority allocation X v v
max-min rate X v X



Theorem

No allocation policy can satisfy all
three properties!

 Best we can do: two of three.



FairRide

e Starts with max-min fairness
— Allocate 1/n to each user
— Split “cost” of shared files equally among shared users

* Only difference:
blocking users who don’t "pay” from accessing

* Probabilistic blocking: with some probability
— Implemented with delaying



FairRide: Blocking

A
Alice

Bob W4 req/sec C
HR 5 83-3% +10 reg/sec 100%
G (=



FairRide: Blocking

AIIow 5
Block 5 m
LLI . 100%

Cheating always glves worst performance.
Dis-incentive strategic behaviors.

HF <L FLU TEY/SET 100%
QM o )i—’l_l
6.7%



Probabilistic blocking

* FairRide blocks a user with p(nj) = 1/(nj+1) probability
— njis number of other users caching file j
—e.g., p(1)=50%, p(4)=20%

* The best you can doin a general case
— Less blocking does not prevent cheating



Properties

Isolation Strategy Pareto
Guarantee Proofness Efﬁaency

max-min fairness

static allocation v v X

priority allocation X v v
max-min rate X v X
FairRide 4 v Near-optimal

122



