
Acknowledgments: Ion Stoica, Berkeley CS 162

Xin Jin
Spring 2022

Opera&ng Systems
(Honor Track)

Scheduling 4: Deadlock &
Scheduling in Modern Computer Systems

2

Recap: Deadlock: A Deadly type of Starva4on
• Starvation: thread waits indefinitely

– Example, low-priority thread waiting for resources
constantly in use by high-priority threads

• Deadlock: circular waiting for resources
– Thread A owns Res 1 and is waiting for Res 2

Thread B owns Res 2 and is waiting for Res 1

• Deadlock Þ Starvation but not vice versa
– Starvation can end (but doesn’t have to)
– Deadlock can’t end without external intervention

Res 2Res 1

Thread
B

Thread
A

Wait
For

Wait
For

Owned
By

Owned
By

3

Recap: Four requirements for occurrence of Deadlock
• Mutual exclusion

– Only one thread at a time can use a resource.
• Hold and wait

– Thread holding at least one resource is waiting to acquire additional resources
held by other threads

• No preemption
– Resources are released only voluntarily by the thread holding the resource, after

thread is finished with it
• Circular wait

– There exists a set {T1, …, Tn} of waiting threads
» T1 is waiting for a resource that is held by T2

» T2 is waiting for a resource that is held by T3

» …
» Tn is waiting for a resource that is held by T1

4

T1

T2

T3

R2

R1

T4

Recap: Deadlock Detection Algorithm
• Let [X] represent an m-ary vector of non-negative integers

(quantities of resources of each type):
[FreeResources]: Current free resources each type
[RequestX]: Current requests from thread X
[AllocX]: Current resources held by thread X

• See if tasks can eventually terminate on their own
[Avail] = [FreeResources]
Add all nodes to UNFINISHED
do {

done = true
For each node in UNFINISHED {

if ([Requestnode] <= [Avail]) {
remove node from UNFINISHED
[Avail] = [Avail] + [Allocnode]
done = false

}
}

} until(done)

• Nodes left in UNFINISHEDÞ deadlocked

5

How should a system deal with deadlock?

• Four different approaches:
1. Deadlock prevenPon: write your code in a way that it isn’t prone to deadlock
2. Deadlock recovery: let deadlock happen, and then figure out how to recover

from it
3. Deadlock avoidance: dynamically delay resource requests so deadlock doesn’t

happen
4. Deadlock denial: ignore the possibility of deadlock

• Modern operaPng systems:
– Make sure the system isn’t involved in any deadlock
– Ignore deadlock in applicaPons

» “Ostrich Algorithm”

6

Techniques for Preven0ng Deadlock
• Infinite resources

– Include enough resources so that no one ever runs out of resources.
Doesn’t have to be infinite, just large

– Give illusion of infinite resources (e.g. virtual memory)
– Examples:

» Bay bridge with 12,000 lanes. Never wait!
» Infinite disk space (not realistic yet?)

• No Sharing of resources (totally independent threads)
– Not very realistic

• Don’t allow waiting
– How the phone company avoids deadlock

» Call Mom in Toledo, works way through phone network, but if blocked get busy signal.
– Technique used in Ethernet/some multiprocessor nets

» Everyone speaks at once. On collision, back off and retry
– Inefficient, since have to keep retrying

» Consider: driving to San Francisco; when hit traffic jam, suddenly you’re transported back
home and told to retry!

7

(Virtually) Infinite Resources

• With virtual memory we have “infinite” space so everything will just succeed, thus
above example won’t deadlock

– Of course, it isn’t actually infinite, but certainly larger than 2MB!

Thread A
AllocateOrWait(1 MB)
AllocateOrWait(1 MB)
Free(1 MB)
Free(1 MB)

Thread B
AllocateOrWait(1 MB)
AllocateOrWait(1 MB)
Free(1 MB)
Free(1 MB)

8

Techniques for Preven4ng Deadlock
• Make all threads request everything they’ll need at the beginning.

– Problem: PredicPng future is hard, tend to over-esPmate resources
– Example:

» If need 2 chopsTcks, request both at same Tme
» Don’t leave home unTl we know no one is using any intersecTon between here and where you

want to go; only one car on the Bay Bridge at a Tme

• Force all threads to request resources in a parPcular order prevenPng any cyclic use of
resources

– Thus, prevenPng deadlock
– Example (x.Acquire(), y.Acquire(), z.Acquire(),…)

» Make tasks request disk, then memory, then…
» Keep from deadlock on freeways around SF by requiring everyone to go clockwise

9

Request Resources Atomically (1)

Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

Consider instead:
Thread A:
Acquire_both(x, y);
…
y.Release();
x.Release();

Thread B:
Acquire_both(y, x);
…
x.Release();
y.Release();

Rather than:

10

Request Resources Atomically (2)

Thread A
z.Acquire();
x.Acquire();
y.Acquire();
z.Release();
…
y.Release();
x.Release();

Thread B
z.Acquire();
y.Acquire();
x.Acquire();
z.Release();
…
x.Release();
y.Release();

Or consider this:

11

Acquire Resources in Consistent Order

Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

Consider instead:
Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:
x.Acquire();
y.Acquire();
…
x.Release();
y.Release();

Does it matter in which
order the locks are
released?

Rather than:

12

Review: Train Example (Wormhole-Routed Network)
• Circular dependency (Deadlock!)

– Each train wants to turn right
– Blocked by other trains
– Similar problem to mulPprocessor networks

• Fix? Imagine grid extends in all four direcPons
– Force ordering of channels (tracks)

» Protocol: Always go east-west first, then north-south
– Called “dimension ordering” (X then Y)

Disallowed

By Rule

13

Techniques for Recovering from Deadlock
• Terminate thread, force it to give up resources

– In Bridge example, Godzilla picks up a car, hurls it into the river. Deadlock solved!
– Hold dining lawyer in contempt and take away in handcuffs
– But, not always possible – killing a thread holding a mutex leaves world inconsistent

• Preempt resources without killing off thread
– Take away resources from thread temporarily
– Doesn’t always fit with semantics of computation

• Roll back actions of deadlocked threads
– Hit the rewind button on TiVo, pretend last few minutes never happened
– For bridge example, make one car roll backwards (may require others behind him)
– Common technique in databases (transactions)
– Of course, if you restart in exactly the same way, may reenter deadlock once again

• Many operating systems use other options

14

Another view of virtual memory: Pre-empting Resources

• Before: With virtual memory we have “infinite” space so everything will just
succeed, thus above example won’t deadlock

– Of course, it isn’t actually infinite, but certainly larger than 2MB!

• Alternative view: we are “pre-empting” memory when paging out to disk, and giving
it back when paging back in

– This works because thread can’t use memory when paged out

Thread A:
AllocateOrWait(1 MB)
AllocateOrWait(1 MB)
Free(1 MB)
Free(1 MB)

Thread B:
AllocateOrWait(1 MB)
AllocateOrWait(1 MB)
Free(1 MB)
Free(1 MB)

15

Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

Techniques for Deadlock Avoidance

• Idea: When a thread requests a resource, OS checks if it would
result in deadlock

– If not, it grants the resource right away
– If so, it waits for other threads to release resources

• Example:

Wait?
But it’s already too late…

Blocks…

16

Deadlock Avoidance: Three States

• Safe state
– System can delay resource acquisition to prevent deadlock

• Unsafe state
– No deadlock yet…
– But threads can request resources in a pattern that unavoidably leads to deadlock

• Deadlocked state
– There exists a deadlock in the system
– Also considered “unsafe”

Deadlock avoidance: prevent system from
reaching an unsafe state

17

Deadlock Avoidance

• Idea: When a thread requests a resource, OS checks if it
would result in deadlock an unsafe state

– If not, it grants the resource right away
– If so, it waits for other threads to release resources

• Example:

Wait until
Thread A
releases
mutex X

Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

18

Banker’s Algorithm for Avoiding Deadlock
• Toward right idea:

– State maximum (max) resource needs in advance
– Allow particular thread to proceed if:

(available resources - #requested) ³ max
remaining that might be needed by any thread

• Banker’s algorithm:
– Allocate resources dynamically

» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run deadlock detection
algorithm, substituting:

([Maxnode]-[Allocnode] <= [Avail]) for ([Requestnode] <= [Avail])
Grant request if result is deadlock free

19

Banker’s Algorithm for Avoiding Deadlock
• Toward right idea:

– State maximum (max) resource needs in advance
– Allow particular thread to proceed if:

(available resources - #requested) ³ max
remaining that might be needed by any thread

• Banker’s algorithm:
– Allocate resources dynamically

» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run deadlock detection
algorithm, substituting:

([Maxnode]-[Allocnode] <= [Avail]) for ([Requestnode] <= [Avail])
Grant request if result is deadlock free

[Avail] = [FreeResources]
Add all nodes to UNFINISHED
do {

done = true
For each node in UNFINISHED {

if ([Requestnode] <= [Avail]) {
remove node from UNFINISHED
[Avail] = [Avail] + [Allocnode]
done = false

}
}

} until(done)

20

Banker’s Algorithm for Avoiding Deadlock
• Toward right idea:

– State maximum (max) resource needs in advance
– Allow particular thread to proceed if:

(available resources - #requested) ³ max
remaining that might be needed by any thread

• Banker’s algorithm:
– Allocate resources dynamically

» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run deadlock detection
algorithm, substituting:

([Maxnode]-[Allocnode] <= [Avail]) for ([Requestnode] <= [Avail])
Grant request if result is deadlock free

[Avail] = [FreeResources]
Add all nodes to UNFINISHED
do {

done = true
For each node in UNFINISHED {

if ([Maxnode]-[Allocnode] <= [Avail]) {
remove node from UNFINISHED
[Avail] = [Avail] + [Allocnode]
done = false

}
}

} until(done)

21

Banker’s Algorithm for Avoiding Deadlock
• Toward right idea:

– State maximum (max) resource needs in advance
– Allow particular thread to proceed if:

(available resources - #requested) ³ max
remaining that might be needed by any thread

• Banker’s algorithm:
– Allocate resources dynamically

» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run deadlock detection
algorithm, substituting:

([Maxnode]-[Allocnode] <= [Avail]) for ([Requestnode] <= [Avail])
Grant request if result is deadlock free

– Keeps system in a “SAFE” state: there exists a sequence {T1, T2, … Tn} with T1 requesting
all remaining resources, finishing, then T2 requesting all remaining resources, etc..

22

Banker’s Algorithm Example
• Banker’s algorithm with dining lawyers

– “Safe” (won’t cause deadlock) if when try to
grab chopsPck either:

» Not last chopsPck
» Is last chopsPck but someone will have

two aeerwards

– What if k-handed lawyers? Don’t allow if:
» It’s the last one, no one would have k
» It’s 2nd to last, and no one would have k-1
» It’s 3rd to last, and no one would have k-2
» …

23

Summary
• Four conditions for deadlocks

– Mutual exclusion
– Hold and wait
– No preemption
– Circular wait

• Techniques for addressing Deadlock
– Deadlock prevention:

» write your code in a way that it isn’t prone to deadlock
– Deadlock recovery:

» let deadlock happen, and then figure out how to recover from it
– Deadlock avoidance:

» dynamically delay resource requests so deadlock doesn’t happen
» Banker’s Algorithm provides on algorithmic way to do this

– Deadlock denial:
» ignore the possibility of deadlock

24

Scheduling in Modern Computer Systems

• FCFS
– SOSP’17 ZygOS

• RR
– NSDI’19 Shinjuku

• MLFQ
– NSDI’19 Tiresias

• Fairness
– NSDI’11 DRF
– NSDI’16 FairRide

ZygOS: Achieving Low Tail Latency for Microsecond-
scale Networked Tasks

George Prekas, Marios Kogias, Edouard Bugnion

25

Problem: Serve μs-scale RPCs

• Applica0ons: KV-stores, In-memory DB
• Datacenter environment:
• Complex fan-out – fan-in pa1erns

• Tail-at-scale problem
• Tail Latency Service-Level Objec0ves
• Goal: Improve throughput at an aggressive tail latency SLO
• How? Focus within the leaf nodes
• Reduce system overheads
• Achieve be1er scheduling

26

Load
Balancer

RootRootRoot Root

LeafLeafLeafLeaf

Elementary Queuing Theory
• Processor
• FCFS
• Processor Sharing

• Mul0/Single Queue
• Inter-arrival Distribu0on (λ)
• Poisson

• Service Time Distribu0on (μ)
• Fixed
• ExponenAal
• Bimodal

FCFS

FCFS

S
λ

μ

27

• No OS overheads
• Independent of service time
• Upper performance bound

28

System Linux Dataplanes
Networking Kernel (epoll) Kernel (epoll) Userspace
Connection
Delegation Partitioned Floating Partitioned

Complexity Medium High Low
Work

Conservation ✖ ✔ ✖

Queuing Multi-Queue Single Queue Multi-Queue

Can we build a system with low overheads that achieves work conservation?

Baseline

Upcoming

• Key Observa0ons:
• Single queue systems perform theore&cally be1er
• Dataplanes, despite being mulA-queue systems, perform prac&cally be1er

• Key Contribu0ons
• ZygOS combines the best of the two worlds:

• Reduced system overheads similar to dataplanes
• Convergence to a single-queue model

29

Analysis

• Metric to optimize: Load @ Tail-Latency SLO
• Run timescale-independent simulations
• Run synthetic benchmarks on real system

• Questions:
• Which model achieves better throughput?
• Which system converges to its model at low service times?

30

0.5 1.0

Load

0

5

10

15

0.5 1.0

Load

0

5

10

15

0.5 1.0

Load

0

5

10

15

L
a
te

n
cy

Latency vs Load – Queuing model

SLO: 10 x AVG[service_time]

Fixed ExponenPal Bimodal

31

99th percentile latencySingle queue models provide better throughput at SLO because of
transient load imbalance

16xM/G/1/FCFS M/G/16/FCFS

Greater mismatch
at high dispersion

0.0 0.5 1.0 1.5

Throughput (MRPS)

0

25

50

75

100

125

150

0.0 0.5 1.0 1.5

Throughput (MRPS)

0

25

50

75

100

125

150

0.0 0.5 1.0 1.5

Throughput (MRPS)

0

25

50

75

100

125

150

L
a
te

n
cy

 (
u
s)

Latency vs Load – Service Time 10μs

SLO: 10 x AVG[service_time]
32

99th percentile latency
IX, Belay et al. OSDI 2014

Fixed Exponential Bimodal
SLO Linux (partitioned connections) IX Linux (floating connections)

0.0 0.2 0.4 0.6

Throughput (MRPS)

0

100

200

300

0.0 0.2 0.4 0.6

Throughput (MRPS)

0

100

200

300

L
a

te
n
cy

 (
u
s)

0.0 0.2 0.4 0.6

Throughput (MRPS)

0

100

200

300

Latency vs Load – Service Time 25μs

SLO: 10 x AVG[service_time]
33

99th percentile latency
IX, Belay et al. OSDI 2014

Exponential Bimodal
SLO Linux (partitioned connections) IX Linux (floating connections)

Dataplanes perform better only in very low service times with low dispersion

Linux Floating
outperforms IX

Fixed

ZygOS Approach

• Dataplane aspect:
• Reduced system overheads
• Share nothing network processing

• Single Queue system
• Work conservation
• Reduction of head of line blocking

Implement work-stealing to achieve work-conservation in a dataplane

34

Background on IX

event-driven app

libIX

RX TX

TCP/IP

2

RX
FIFO

Event
Conditions

3

Batched
Syscalls

TCP/IP

Timer

4

5

6

Ring 3

Guest
Ring 0

1

35

IX Design

1. Application layer
Event based application
that is agnostic to work-stealing

2. Shuffle layer
Includes a per core list of ready connections that allows stealing

3. Network layer
Coherence- and sync-free network processing

36

ZygOS Design

Application
Layer

ZygOS Architecture

event-driven app

libIX

RX TX

TCP/IP

Ring 3

Guest
Ring 0

TCP/IP

Timer

event-driven app

libIX

RX TX

TCP/IP TCP/IP

Timer

Home core Remote
core 37

Network Layer Network Layer

Application
Layer

Shuffle Layer
Shuffle
Queue

Shuffle
QueueRemote

Syscalls

ExecuSon Model

event-driven app

libIX

RX TX

TCP/IP

Ring 3

Guest
Ring 0

TCP/IP

Timer

event-driven app

libIX

RX TX

TCP/IP TCP/IP

Timer

Home core Remote
core 38

Shuffle Layer
Shuffle
Queue

Shuffle
QueueRemote

Syscalls

ExecuSon Model

event-driven app

libIX

RX TX

TCP/IP

Ring 3

Guest
Ring 0

TCP/IP

Timer

event-driven app

libIX

RX TX

TCP/IP TCP/IP

Timer

Home core Remote
core 39

Shuffle
Queue

Shuffle Layer
Shuffle
QueueRemote

Syscalls

ExecuSon Model

event-driven app

libIX

RX TX

TCP/IP

Ring 3

Guest
Ring 0

TCP/IP

Timer

event-driven app

libIX

RX TX

TCP/IP TCP/IP

Timer

Home core Remote
core 40

Shuffle Layer
Shuffle
QueueRemote

Syscalls

Shuffle
Queue

ExecuSon Model

event-driven app

libIX

RX TX

TCP/IP

Ring 3

Guest
Ring 0

TCP/IP

Timer

event-driven app

libIX

RX TX

TCP/IP TCP/IP

Timer

Home core Remote
core 41

Shuffle Layer
Shuffle
Queue

Shuffle
QueueRemote

Syscalls

ExecuSon Model

event-driven app

libIX

RX TX

TCP/IP

Ring 3

Guest
Ring 0

TCP/IP

Timer

event-driven app

libIX

RX TX

TCP/IP TCP/IP

Timer

Home core Remote
core 42

Shuffle Layer
Shuffle
Queue

Shuffle
QueueRemote

Syscalls

ExecuSon Model

event-driven app

libIX

RX TX

TCP/IP

Ring 3

Guest
Ring 0

TCP/IP

Timer

event-driven app

libIX

RX TX

TCP/IP TCP/IP

Timer

Home core Remote
core 43

Shuffle Layer
Shuffle
Queue

Shuffle
QueueRemote

Syscalls

ExecuSon Model

event-driven app

libIX

RX TX

TCP/IP

Ring 3

Guest
Ring 0

TCP/IP

Timer

event-driven app

libIX

RX TX

TCP/IP TCP/IP

Timer

Home core Remote
core 44

Shuffle Layer
Shuffle
Queue

Shuffle
QueueRemote

Syscalls

ExecuSon Model

event-driven app

libIX

RX TX

TCP/IP

Ring 3

Guest
Ring 0

TCP/IP

Timer

event-driven app

libIX

RX TX

TCP/IP TCP/IP

Timer

Home core Remote
core 45

Shuffle Layer
Shuffle
Queue

Shuffle
QueueRemote

Syscalls

EvaluaSon Setup

• Environment:
• 10+1 Xeon Servers
• 16-hyperthread server machine
• Quanta/Cumulus 48x10GbE switch

• Experiments:
• Synthetic micro-benchmarks
• Silo [SOSP 2013]
• Memcached

• Baselines:
• IX
• Linux (partitioned and floating connections)

46

0.0 0.5 1.0 1.5

Throughput (MRPS)

0

25

50

75

100

125

150

0.0 0.5 1.0 1.5

Throughput (MRPS)

0

25

50

75

100

125

150

0.0 0.5 1.0 1.5

Throughput (MRPS)

0

25

50

75

100

125

150

L
a
te

n
cy

 (
u
s)

Latency vs Load – Service Time 10μs

SLO: 10 x AVG[service_time]
47

99th percentile latency
IX, Belay et al. OSDI 2014

ExponenPal Bimodal
SLO Linux (partitioned connections) IX Linux (floating connections)

Fixed

Latency vs Load – Service Time 10μs

SLO: 10 x AVG[service_time]
48

99th percentile latency
IX, Belay et al. OSDI 2014

ExponenPal Bimodal

0.0 0.5 1.0 1.5

Throughput (MRPS)

0

25

50

75

100

125

150

0.0 0.5 1.0 1.5

Throughput (MRPS)

0

25

50

75

100

125

150

0.0 0.5 1.0 1.5

Throughput (MRPS)

0

25

50

75

100

125

150

L
a
te

n
cy

 (
u
s)

SLO Linux (partitioned connections) IX Linux (floating connections) ZygOS

Fixed

0 50 100 150 200 250 300 350 400
Throughput (KRPS)

0

250

500

750

1000

1250

1500
L
a
te

n
cy

 (
u
s)

SLO

Linux

IX
ZygOS

Silo with TPC-C workload

1.63x speedup
over Linux

3.68x lower
99th latency

49

Conclusion

ZygOS: A datacenter opera0ng system for low-latency
• Reduced System overheads

• Converges to a single queue model

• Work conservaPon through work stealing

• Reduce HOL through light-weight IPIs

50

https://github.com/ix-project/zygos

We ♥ opensource

https://github.com/ix-project/zygos

Scheduling in Modern Computer Systems

• FCFS
• SOSP’17 ZygOS

• RR
• NSDI’19 Shinjuku

• MLFQ
• NSDI’19 Tiresias

• Fairness
• NSDI’11 DRF
• NSDI’16 FairRide

Tiresias

Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin,
Yibo Zhu, Myeongjae Jeon, Junjie Qian, Hongqiang (Harry) Liu, Chuanxiong Guo

A GPU Cluster Manager for Distributed Deep Learning

• Deep learning (DL) is popular
• 10.5× increase of DL training jobs in Microsoft
• DL training jobs require GPU

• Distributed deep learning (DDL) training with multiple GPUs

• GPU cluster for DL training
• 5× increase of GPU cluster scale in Microsoft [1]

1[1]. Analysis of Large-Scale Multi-Tenant GPU Clusters for DNN Training Workloads. https://arxiv.org/abs/1901.05758

How to efficiently manage a GPU cluster for DL training jobs?

GPU Cluster for Deep Learning Training

Google Lens Siri

2

GPU Cluster Manager

GPU Cluster

2

Scheduler

Free GPU

Occupied GPU

4-GPU machine

N N-GPU DL job

142

Placement Scheme

Job Queue

1

1

Design Objectives

Minimize
Cluster-Wide Average
Job Completion Time (JCT)

Achieve
High Resource (GPU)
Utilization

3[1]. Optimus: An Efficient Dynamic Resource Scheduler for Deep Learning Clusters, EuroSys’18

⎯ DSSM ⎯ ResNext ⎯ Seq2Seq

Progress

N
or

m
. T

ra
in

. L
os

s 1.0

0.5

0.0
Progress

N
or

m
. T

ra
in

. L
os

s 1.0

0.5

0.0
⎯ Job1 ⎯ Job2

Challenge Ⅰ: Unpredictable Training Time

§Unknown execution time of DL training jobs
§ Job execution time is useful when minimizing JCT

§ Predict job execution time
§ Use the smooth loss curve of DL training jobs (Optimus [1])

4[1]. Optimus: An Efficient Dynamic Resource Scheduler for Deep Learning Clusters, EuroSys’18

⎯ DSSM ⎯ ResNext ⎯ Seq2Seq

Progress

N
or

m
. T

ra
in

. L
os

s 1.0

0.5

0.0
Progress

N
or

m
. T

ra
in

. L
os

s 1.0

0.5

0.0
⎯ Job1 ⎯ Job2

Challenge Ⅰ: Unpredictable Training Time

It’s hard to predict training time of DL jobs in many cases

§Unknown execution time of DL training jobs
§ Job execution time is useful when minimizing JCT

§ Predict job execution time
§ Use the smooth loss curve of DL training jobs (Optimus [1])

8

Challenge ⅠⅠ: Over-Aggressive Job Consolidation

§ Fragmented free GPUs in the cluster

§ Longer queuing delay

§Network overhead in DDL training

Machine 1 Machine 2 Machine 3 Machine 4

Free GPU

Occupied GPU

Job Queue

4 N N-GPU Job

Machine 2Machine 2

4

§ Consolidated placement for good training performance

9

Prior Solutions

I. Unpredictable Training Time
(Scheduling)

II. Over-Aggressive Job Consolidation
(Job Placement)

YARN-CS

Optimus[1]

Gandiva[2]

FIFO

Time-sharing Trial-and-error

None

[1]. Optimus: An Efficient Dynamic Resource Scheduler for Deep Learning Clusters, EuroSys’18
[2]. Gandiva: Introspective Cluster Scheduling for Deep Learning, OSDI’18

None

None

10

Tiresias A GPU cluster manager for
Distributed Deep Learning
Without Complete Knowledge

I. Age-Based Scheduler Minimize JCT without
complete knowledge of jobs

2. Model Profile-Based Placement Place jobs without additional
information from users

Challenge I

How To Schedule DL Training Jobs
Without Complete Job Information?

Temporal and Spatial Co-scheduling

13

Characteristics of DL Training Jobs

§ Variations in both temporal and spatial aspects

Scheduler should consider both
temporal and spatial
aspects of DL training jobs

Job execution time

#
 o

f G
PU

s

10210 104 105103

Job execution time (min)

1

2

4

8

16

32

64

128

N
um

be
r

of
 G

PU
s

…?

1. Spatial: number of GPUs
2. Temporal: executed time

15

Available Job Information

Time1 2 3 4 5 6 7 8 9 10 110

G1

G2

G3
Executed time

of GPUs

…?

16[1]. Feedback queueing models for time-shared systems. JACM, 1968
[2]. Multi-armed bandit allocation indices. Wiley, Chichester, 1989

Age-Based Schedulers

• Least-Attained Service[1] (LAS)
• Prioritize job that has the shortest executed time

• Gittins Index policy[2]
• Need the distribution of job execution time
• Prioritize job that has the highest probability to complete in the near future

Time1 2 3 4 5 6 7 8 9 10 110

G1

G2

G3

Age (executed time)

of GPUs # of GPUs

17

Two-Dimensional Age-Based Scheduler (2DAS)

• Age calculated by two-dimensional attained service
• i.e., a job’s total executed GPU time (# of GPUs × executed time)

• No prior information
• 2D-LAS

•With partial information: distribution of job GPU time
• 2D-Gittins Index

Fewer Job Switches: Discretized 2D-LAS (MLFQ)

Challenge II

How to Place DL Jobs
Without Hurting Training Performance?

• Tensor size in DL models
• Large tensors cause network imbalance and contention

33

Characteristics of DL Models

VGG11

VGG16

VGG19

Alex
Net

ResN
et5

0

Inc
ep

tio
n3

ResN
et1

01

ResN
et1

52

Inc
ep

tio
n4

Google
Net

Si
ze

 (
M

B)

0

100

200

300

400

500

600

Consolidated placement
is needed when the
model is highly skewed
in its tensor size

34

Model Profile-Based Placement

Consolidation?

NO

YES

ResNet50

VGG11

Inception3

VGG16

ResNet101

AlexNet

Inception4

VGG19

GoogleNet

ResNet152

M
od

el
 P

ro
fil

er

35

Tiresias
Central Master
Network-Level Model Profiler

60-GPU
Testbed Experiment

Large-scale &
Trace-driven Simulation

Evaluation

GPU Cluster

DL Job
(model, resource)

Placement Preemption

Discretized-2DAS

Central Master

Placement scheme
Model profiler

JCT Improvements in Testbed Experiment

• Testbed – Michigan ConFlux cluster
• 15 machines (4 GPUs each)
• 100 Gbps RDMA network

Avg. JCT improvement
(w.r.t. YARN-CS): 5.5×

Comparable
performance to SRTF

36

0.0

0.2

0.4

0.6

0.8

1.0

10 100 1000 10000 100000

Fr
ac

tio
n

of
 Jo

bs

JCT (second)

YARN-CS
SRTF
Tiresias

0.0

0.2

0.4

0.6

0.8

1.0

10 100 1000 10000 100000

Fr
ac

tio
n

of
 Jo

bs

JCT (second)

YARN-CS
SRTF
Tiresias

0.0

0.2

0.4

0.6

0.8

1.0

10 100 1000 10000 100000

Fr
ac

tio
n

of
 Jo

bs

JCT (second)

YARN-CS
SRTF
Tiresias

10 102 103 104 105

• Discrete-time simulator
• 10-week job trace from Microsoft
• 2,000-GPU cluster

37

JCT Improvements in Trace-Driven Simulation

Avg. JCT improvement
(w.r.t. Gandiva): 2×

0.0

0.2

0.4

0.6

0.8

1.0

100 1000 10000 100000 1000000 10000000

Fr
ac

tio
n

of
 Jo

bs

JCT(second)

YARN-CS
SRTF

Gandiva

Tiresias

0.0

0.2

0.4

0.6

0.8

1.0

100 1000 10000 100000 1000000 10000000

Fr
ac

tio
n

of
 Jo

bs

JCT(second)

YARN-CS
SRTF

Gandiva

Tiresias

102 103 104 105 106 107

38

Tiresias

• Optimize JCT with no or partial job information

• Relax placement constraint without hurting training performance

• Simple, practical, and with significant performance improvements

A GPU cluster manager for
Distributed Deep Learning
Without Complete Knowledge

https://github.com/SymbioticLab/Tiresias

Scheduling in Modern Computer Systems

• FCFS
• SOSP’17 ZygOS

• RR
• NSDI’19 Shinjuku

• MLFQ
• NSDI’19 Tiresias

• Fairness
• NSDI’11 DRF
• NSDI’16 FairRide

D i t R F i (DRF)Dominant�Resource�Fairness�(DRF)
Fair�Allocation�of�Multiple�Resource�Types

Ali�Ghodsi,�Matei�Zaharia
B j i Hi d A d K i kiBenjamin�Hindman,�Andy�Konwinski,

Scott�Shenker,�Ion�Stoica

University�of�California,�Berkeley

alig@cs.berkeley.edu 1

What�is�fair�sharing?
CPU

100%

• n�users�want�to�share�a�resource�(e.g.�CPU)
– Solution:�

100%

50%

33%

33%

Allocate�each�1/n�of�the�shared�resource
0%

33%

• Generalized�by�maxͲmin�fairness
– Handles�if�a�user�wants�less�than�its�fair�share

100%

50%

20%

40%

– E.g.�user�1�wants�no�more�than�20%

G li d b i ht d i f i

50%

0%

40%

• Generalized�by�weighted�maxͲmin�fairness
– Give�weights�to�users�according�to�importance
User 1 gets weight 1 user 2 weight 2

100%

50%

33%

– User�1�gets�weight�1,�user�2�weight�2

alig@cs.berkeley.edu 2

50%

0%

66%

How to define fairness?

• Share guarantee
• Each user can get at least 1/n of the resource
• But will get less if her demand is less

• Stragegy-proof
• Users are not better off by asking for more than they need
• Users have no reason to lie

• Pareto efficiency
• It is not possible to increase the allocation of a user without decreasing the

allocation of at least another user
• It leads to maximizing system utilizaiton subject to satisfying other constraints

75

Why is maxͲmin fairness not enough?Why�is�max min�fairness�not�enough?

• Job scheduling in datacenters is not onlyJob�scheduling�in�datacenters�is�not�only�
about�CPUs

Jobs consume CPU memory disk and I/O– Jobs�consume�CPU,�memory,�disk,�and�I/O

D hi h ll ?• Does�this�pose�any�challenge?

alig@cs.berkeley.edu 5

Heterogeneous�Resource�Demands

Some�tasks�are�
CPUͲintensive

Most�task�need�~
<2�CPU,�2�GB�RAM>

Some�tasks�are�
memoryͲintensive

alig@cs.berkeley.edu 6

2000Ͳnode�Hadoop�Cluster�at�Facebook�(Oct�2010)

ProblemProblem

Single resource example

100%

50%Single�resource�example
– 1�resource:�CPU
– User�1�wants�<1�CPU>�per�task

50%

50%p
– User�2�wants�<3�CPU>�per�task

CPU
0%

50%

MultiͲresource�example
– 2�resources:�CPUs�&�mem

100%

– User�1�wants�<1�CPU,�4�GB>�per�task
– User�2�wants�<3�CPU,�1�GB>�per�task

50% ?�������?
p

–What’s�a�fair�allocation?

alig@cs.berkeley.edu 7
CPU

0%
mem

Problem�definition
f i l h l i l hHow�to�fairly share�multiple�resources�when�

users�have�heterogenous�demands on�them?

alig@cs.berkeley.edu 8

ModelModel

• Users have tasks according to a demand vectorUsers�have�tasks according�to�a�demand�vector
– e.g.�<2,�3,�1>�user’s�tasks�need�2�R1,�3�R2,�1�R3
Not needed in practice measure actual consumption– Not�needed�in�practice,�measure�actual�consumption

R i i lti l f d d t• Resources�given�in�multiples�of�demand�vectors

• Assume�divisible�resources

10alig@cs.berkeley.edu

A Natural Policy

• Asset Fairness

A�Natural�Policy

Asset�Fairness
– Equalize�each�user’s�sum�of�resource shares

• Cluster�with�70�CPUs,�70�GB�RAM
– U1 needs�<2�CPU,�2�GB�RAM>�per�task1 , p

– U2 needs�<1�CPU,�2�GB�RAM>�per�task

alig@cs.berkeley.edu

A Natural Policy

• Asset Fairness

A�Natural�Policy

Asset�Fairness
– Equalize�each�user’s�sum�of�resource shares

User�1 User�2

• Cluster�with�70�CPUs,�70�GB�RAM
– U1 needs�<2�CPU,�2�GB�RAM>�per�task

100%

43%43%Problem
User�1�has�<�50%�of�both�CPUs�and�RAM1 , p

– U2 needs�<1�CPU,�2�GB�RAM>�per�task 50%

57%
28%

Better�off�in�a�separate�cluster�with�50%�of�
the�resources

• Asset�fairness�yields
– U1:�15�tasks:� 30�CPUs,�30�GB�(є=60)

CPU
0%

RAM

– U2:�20�tasks:��� 20�CPUs,�40�GB�(є=60)

alig@cs.berkeley.edu

Dominant Resource FairnessDominant�Resource�Fairness

• A�user’s�dominant�resource is�the�resource�she�use s do a t esou ce s t e esou ce s e
has�the�biggest�share�of
– Example:�
Total�resources:�� <10�CPU,�4�GB>
User�1’s�allocation: <2�CPU,� 1�GB>�

i i 1/4 2/10 (1/)Dominant�resource�is�memory�as�1/4�>�2/10�(1/5)

• A user’s dominant share is the fraction of the• A�user s�dominant�share�is�the�fraction�of�the�
dominant�resource�she�is�allocated
– User 1’s dominant share is 25% (1/4)User�1 s�dominant�share�is�25%�(1/4)

18alig@cs.berkeley.edu

Dominant�Resource�Fairness�(2)
• Apply�maxͲmin�fairness�to�dominant�shares
• Equalize�the�dominant�share�of�the�usersq

– Example:�
Total�resources:�� <9�CPU,�18�GB>
User�1�demand: <1�CPU,�4�GB>�dom�res:�mem
User�2�demand: <3�CPU,�1�GB>�dom�res:�CPU

User�1

User�2

100%
3�CPUs 12�GB

66%
50%

66%

66%

19

0%
CPU

(9�total)
mem

(18�total)

6�CPUs 2�GB

Properties of PoliciesProperties�of�Policies

Property Asset CEEI DRFp y

Share guarantee ܃ ܃

StrategyͲproofness ܃ gy܃ p

Pareto�efficiency ܃ ܃ ܃

EnvyͲfreeness ܃ ܃ ܃

Single�resource�fairness ܃ ܃ ܃

Bottleneck res.�fairness ܃ ܃

Population monotonicity ܃ ܃

Resource�monotonicity

alig@cs.berkeley.edu 29

Scheduling in Modern Computer Systems

• FCFS
• SOSP’17 ZygOS

• RR
• NSDI’19 Shinjuku

• MLFQ
• NSDI’19 Tiresias

• Fairness
• NSDI’11 DRF
• NSDI’16 FairRide

Qifan Pu,
Haoyuan Li,

Matei Zaharia,
Ali Ghodsi,
Ion Stoica

FairRide: Near-Optimal
Fair Cache Sharing

UC BERKELEY

1

Caches are crucial

2

3

Cache sharing
� Increasingly, caches are shared among multiple users

± Especially with the advent of cloud

Benefits:
± Provide low latency
± Reduce backend load

*

Cache

ǥ ǥ ǥ

Backend (storage/network)

Problems with cache algorithms

*

Cache

Backend (storage/network)

� LRU, LFU, LRU-�ǥ
� Cache data likely to be

accessed in the future
� Optimize global efficiency

� Single user gets arbitrarily

small cache

� Prone to strategic behavior

ǥ ǥ ǥ

* *

4

� Users access equal-sized files at constant rates
± the rate user i accesses file j

� A allocation policy decides which files to cache
± the % of file j put in cache

� Users care their hit ratio

± user iǯ� hit ratio:

A simple model

8
� Results hold with varied file sizes, access partial files, is binary, etc.

rij

HRi =
total _hits

total _accesses
=

pjrij
j

rij
j

pj

pj
!

𝒋
𝒑𝒋𝒓𝒊𝒋

!
𝒋
𝒓𝒊𝒋

� Isolation Guarantee
± No user should be worse off than static allocation

� Strategy-Proofness
± No user can improve by cheating

� Pareto Efficiency
± ���ǯ� improve a user without hurting others

Properties

10

(Share Guarantee)

0

6

12

18

0 10 20 30 40m
is

s
ra

tio
 (%

)

time (min)

site1
site2

� Very easy to cheat, hard to detect
± e.g., by making spurious accesses

� Can happen in practice

Strategy proofness

11

2x

*

Amazon Elasticache

ǥ ǥ

MySQL Instance

Site1 Site2

*

� Maximize the the user with minimum allocation
± Solution: allocate each 1/n (fair share)

± Handles if some users want less than fair share

� Widely successful to other resources:

± OS: round robin, prop sharing, lottery �����ǥ
± Networking: fair queueing, wfq, wf2q, csfq, ���ǥ
± Datacenter: DRF, Hadoop fair sched, ������ǥ

What is max-min fairness?

14

33% 33% 33%

20% 40% 40%

An example
5 req/sec A

C 5 req/sec

Alice

Bob

50%

file sizes = 1GB, total cache = 2GB

HR = 83.3%

HR = 83.3%

15

0 0.5 1 1.5 2GB

50%

B A C
B
100%

Properties

Isolation
Guarantee

Strategy
Proofness

Pareto
Efficiency

 max-min fairness ݱ ݱ

?

16

100%

An example
5 req/sec A

5 req/sec

Alice

Bob

50%

file sizes = 1GB, total cache = 2GB

HR = 83.3%

HR = 83.3% +10 req/sec

66.7%

 100%

17

100%
C

0 0.5 1 1.5 2GB
B C 50% 100%

B

100%

An example
5 req/sec A

5 req/sec

Alice

Bob

50%

file sizes = 1GB, total cache = 2GB

HR = 83.3%

HR = 83.3% +10 req/sec

66.7%

 100%

17

100%
C

0 0.5 1 1.5 2GB
B C 50% 100%

B

By gaming the system, a user can
increase performance by hurting others!

Properties

Isolation
Guarantee

Strategy
Proofness

Pareto
Efficiency

 ݵ max-min fairness ݱ ݱ

priority allocation

max-min rate

 ݱ ݱ ݵ

 ݵ ݵ ݱ

18

ǥ ǥ ǥ ǥ

static allocation ݵ ݱ ݱ

No allocation policy can satisfy all
three properties!

� Best we can do: two of three.

Theorem

19

111

FairRide
� Starts with max-min fairness

± Allocate 1/n to each user
± ������ǲ����ǳ���

� Only difference:
 blocking �������������ǯ��ǲ���ǳ���������������

� Probabilistic blocking: with some probability

± Implemented with delaying

5 req/sec

Alice

Bob
HR = 83.3% +10 req/sec

100%

FairRide: Blocking
A

B
100%

C
100%

 66.7%
24

Allow 5
Block 5

B C
0 0.5 1 1.5 2GB

5 req/sec

Alice

Bob
HR = 83.3% +10 req/sec

100%

FairRide: Blocking
A

B
100%

C
100%

 66.7%
24

Allow 5
Block 5

B C
0 0.5 1 1.5 2GB
Cheating always gives worst performance.

Dis-incentive strategic behaviors.

Probabilistic blocking
� FairRide blocks a user with p(nj) = 1/(nj+1) probability

± nj is number of other users caching file j
± e.g., p(1)=50%, p(4)=20%

� The best you can do in a general case
± Less blocking does not prevent cheating

25

Isolation
Guarantee

Strategy
Proofness

Pareto
Efficiency

 ݵ max-min fairness ݱ ݱ

priority allocation

max-min rate

 ݱ ݱ ݵ

 ݵ ݵ ݱ

static allocation ݵ ݱ ݱ

Isolation
Guarantee

Strategy
Proofness

Pareto
Efficiency

122

Properties

FairRide ݱ ݱ Near-optimal

