
Xin Jin
Spring 2022

Operating Systems
(Honor Track)

Memory 4: Demand Paging &
Memory Management in Modern Computer Systems

Acknowledgments: Ion Stoica, Berkeley CS 162



2

Recap: Approximating LRU: Clock Algorithm

Set of all pages
in Memory

Single Clock Hand:
Advances only on page fault!
Check for pages not used recently
Mark pages as not used recently

• Clock Algorithm: Arrange physical pages in circle with single clock hand
– Approximate LRU (approximation to approximation to MIN)
– Replace an old page, not the oldest page

• Details:
– Hardware “use” bit per physical page (called “accessed” in Intel architecture):

» Hardware sets use bit on each reference
» If use bit isn’t set, means not referenced in a long time

– On page fault:
» Advance clock hand (not real time)
» Check use bit: 1® used recently; clear and leave alone

0® selected candidate for replacement



3

Recap: Nth Chance version of Clock Algorithm
• Nth chance algorithm: Give page N chances

– OS keeps counter per page: # sweeps
– On page fault, OS checks use bit:

» 1 ® clear use and also clear counter (used in last sweep)
» 0 ® increment counter; if count=N, replace page

– Means that clock hand has to sweep by N times without page being used before page is 
replaced

• How do we pick N?
– Why pick large N? Better approximation to LRU

» If N ~ 1K, really good approximation
– Why pick small N? More efficient

» Otherwise might have to look a long way to find free page
• What about “modified” (or “dirty”) pages?

– Takes extra overhead to replace a dirty page, so give dirty pages an extra chance before 
replacing?

– Common approach:
» Clean pages, use N=1
» Dirty pages, use N=2 (and write back to disk when N=1)



4

Group Discussion

• Topic: Clock algorithm variations
– Do we really need a hardware-supported “modified” bit?
– Do we really need a hardware-supported “use” bit?

• Discuss in groups of two to three students
– Each group chooses a leader to summarize the discussion
– In your group discussion, please do not dominate the discussion, and give 

everyone a chance to speak



5

Clock Algorithms Variations
• Do we really need hardware-supported “modified” bit?

– No.  Can emulate it using read-only bit
» Need software DB of which pages are allowed to be written (needed this anyway)
» We will tell MMU that pages have more restricted permissions than the actually do to force 

page faults (and allow us notice when page is written)
– Algorithm (Clock-Emulated-M):

» Initially, mark all pages as read-only (W®0), even writable data pages.  
Further, clear all software versions of the “modified” bit ® 0 (page not dirty)

» Writes will cause a page fault. Assuming write is allowed, OS sets software “modified” bit ®
1, and marks page as writable (W®1).

» Whenever page written back to disk, clear “modified” bit ® 0, mark read-only



6

Clock Algorithms Variations (continued)
• Do we really need a hardware-supported “use” bit?

– No. Can emulate it similar to above (e.g. for read operation)
» Kernel keeps a “use” bit and “modified” bit for each page

– Algorithm (Clock-Emulated-Use-and-M):
» Mark all pages as invalid, even if in memory.  

Clear emulated “use” bits ® 0 and “modified” bits ® 0 for all pages (not used, not dirty)
» Read or write to invalid page traps to OS to tell use page has been used
» OS sets “use” bit ® 1 in software to indicate that page has been “used”. 

Further:
1) If read, mark page as read-only, W®0 (will catch future writes)
2) If write (and write allowed), set “modified” bit ® 1, mark page as writable (W®1)

» When clock hand passes, reset emulated “use” bit ® 0 and mark page as invalid again
» Note that “modified” bit left alone until page written back to disk 

• Remember, however, clock is just an approximation of LRU!
– Can we do a better approximation, given that we have to take page faults on some reads 

and writes to collect use information?
– Need to identify an old page, not oldest page!
– Answer: second chance list



7

Second-Chance List Algorithm (VAX/VMS)

• Split memory in two: Active list (RW), SC list (Invalid)
• Access pages in Active list at full speed
• Otherwise, Page Fault

– Always move overflow page from end of Active list to front of Second-chance list (SC) 
and mark invalid

– Desired Page in SC List: move to it front of Active list, mark it RW
– Not in SC list: page in to front of Active list, mark RW; page out LRU victim at end of SC 

list

Directly
Mapped Pages

Marked: RW
List: FIFO

Second 
Chance List

Marked: Invalid
List: LRU

LRU victim

Page-in
From disk

New
Active Pages

Acc
es

s

New
SC Victims

O
verflow



8

Second-Chance List Algorithm (continued)
• How many pages for second chance list?

– If 0 Þ FIFO
– If all Þ LRU, but page fault on every page reference

• Pick intermediate value.  Compared to FIFO:
– Pro: Few disk accesses (page only goes to disk if unused for a long time) 

– Con: Increased overhead trapping to OS (software / hardware tradeoff)

• History: The VAX architecture did not include a “use” bit.
Why did that omission happen???

– Strecker (architect) asked OS people, they said they didn’t need it, so didn’t implement it
– He later got blamed, but VAX did OK anyway



9

Free List

• Keep set of free pages ready for use in demand paging
– Freelist filled in background by Clock algorithm or other technique (“Pageout daemon”)
– Dirty pages start copying back to disk when enter list

• Like VAX second-chance list
– If page needed before reused, just return to active set

• Advantage: faster for page fault
– Can always use page (or pages) immediately on fault

Set of all pages
in Memory

Single Clock Hand:  Advances as needed to keep 
freelist full (“background”)

D

D

Free Pages
For Processes



10

• When evicting a page frame, how to know which PTEs to invalidate?
– Hard in the presence of shared pages (forked processes, shared memory, …)

• Reverse mapping mechanism must be very fast
– Must hunt down all page tables pointing at given page frame when freeing a page
– Must hunt down all PTEs when seeing if pages “active”

• Implementation options:
– For every page descriptor, keep linked list of page table entries that point to it

» Management nightmare – expensive
– Linux: Object-based reverse mapping

» Link together memory region descriptors instead (much coarser granularity)
» E.g., program code and files mapped in with mmap()

Reverse Page Mapping (Sometimes called “Coremap”)



11

Allocation of Page Frames (Memory Pages)
• How do we allocate memory among different processes?

– Does every process get the same fraction of memory?  Different fractions?
– Should we completely swap some processes out of memory?

• Each process needs minimum number of pages
– Want to make sure that all processes that are loaded into memory can make forward progress
– Example:  IBM 370 – 6 pages to handle SS MOVE instruction:

» instruction is 6 bytes, might span 2 pages
» 2 pages to handle from
» 2 pages to handle to

• Possible Replacement Scopes:
– Global replacement – process selects replacement frame from set of all frames; one process can 

take a frame from another

– Local replacement – each process selects from only its own set of allocated frames



12

Fixed/Priority Allocation

• Equal allocation (Fixed Scheme): 
– Every process gets same amount of memory
– Example: 100 frames, 5 processes ® process gets 20 frames

• Proportional allocation (Fixed Scheme)
– Allocate according to the size of process
– Computation proceeds as follows:

𝑠! = size of process 𝑝! and S = ∑𝑠!
𝑚 = total number of physical frames in the system
𝑎! = (allocation for 𝑝!) =

!!
"
×𝑚

• Priority Allocation:
– Proportional scheme using priorities rather than size

» Same type of computation as previous scheme
– Possible behavior: If process pi generates a page fault, select for replacement a frame from a process 

with lower priority number

• Perhaps we should use an adaptive scheme instead???
– What if some application just needs more memory?



13

Page-Fault Frequency Allocation
• Can we reduce Capacity misses by dynamically changing 

the number of pages/application?

• Establish “acceptable” page-fault rate
– If actual rate too low, process loses frame
– If actual rate too high, process gains frame

• Question: What if we just don’t have enough memory?



14

Thrashing
• If a process does not have “enough” pages, the 

page-fault rate is very high.  
This leads to:

– low CPU utilization
– operating system spends most of its time swapping to 

disk
• Thrashing º a process is busy swapping pages in and 

out with little or no actual progress
• Questions:

– How do we detect Thrashing?
– What is best response to Thrashing?



15

Locality In A Memory-Reference Pattern
• Program Memory Access Patterns have 

temporal and spatial locality
– Group of Pages accessed along a given time 

slice called the “Working Set”
– Working Set defines minimum number of 

pages for process to behave well
• Not enough memory for Working Set Þ

Thrashing
– Better to swap out process?



16

Working-Set Model

• D º working-set window º fixed number of page references 
– Example:  10,000 instructions

• WSi (working set of Process Pi) = total set of pages referenced in the most 
recent D (varies in time)

– if D too small will not encompass entire locality
– if D too large will encompass several localities
– if D = ¥Þ will encompass entire program

• D = S|WSi| º total demand frames 
• if D > m Þ Thrashing

– Policy: if D > m, then suspend/swap out processes
– This can improve overall system behavior by a lot!



17

What about Compulsory Misses?
• Recall that compulsory misses are misses that occur the first time that a page 

is seen
– Pages that are touched for the first time
– Pages that are touched after process is swapped out/swapped back in

• Clustering:
– On a page-fault, bring in multiple pages “around” the faulting page
– Since efficiency of disk reads increases with sequential reads, makes sense to read 

several sequential pages
• Working Set Tracking:

– Use algorithm to try to track working set of application
– When swapping process back in, swap in working set



18

Summary
• Second-Chance List algorithm: Yet another approximate  LRU

– Divide pages into two groups, one of which is truly LRU and managed on page faults.
• Working Set:

– Set of pages touched by a process recently
• Thrashing: a process is busy swapping pages in and out

– Process will thrash if working set doesn’t fit in memory
– Need to swap out a process



19

Memory Management in Modern Computer Systems

• Memory Abstraction
– NSDI’14 FaRM

• Demand paging: remote memory over RDMA
– NSDI’17 InfiniSwap
– OSDI’20 AIFM

• Demand paging: memory swapping between GPU memory and host memory
– OSDI’20 PipeSwitch



FaRM: Fast Remote Memory
Aleksandar Dragojević, Dushyanth Narayanan, 
Orion Hodson, Miguel Castro



21

Hardware trends
� Main memory is cheap

� 100 GB – 1 TB per server
� 10 – 100 TBs in a small cluster

� New data centre networks
� 40 Gbps throughput (100 this year)
� 1-3 µs latency
� RDMA primitives



Remote direct memory access
� Read / write remote memory

� NIC performs DMA requests

� FaRM uses RDMA extensively
� Reads to directly read data
� Writes into remote buffers for messaging

� Great performance
� Bypasses the kernel
� Bypasses the remote CPU

RAM CPU NIC

Machine A

RAM CPU NIC

Network

DMA

Machine B DMA

22



10
9
8
7
6
5
4
3
2
1Re
qu
es
ts
/µ
s/

se
rv
er

RDMA RDMA msg TCP

0
16 32 64 128 256 512 1024 2048

Transfer bytes (log)
23



10

100
Av
er
ag
e
la
te
nc
y
µs
(lo
g)

RDMA RDMA msg TCP

1
16 32 64 128 256 512 1024 2048

Transfer bytes (log)
24



25

Applications
� Data centre applications

� Irregular access patterns
� Latency sensitive

� Data serving
� Key-value store
� Graph store

� Enabling new applications



How to program a modern cluster?

We have:
• TBs of DRAM
• 100s of CPU cores
• RDMA network

Desirable:
• Keep data in memory
• Access data using RDMA
• Collocate data and computation

26



Traditional model

27



Symmetric model

28



Shared address space

O1 O2 O3 O4
O5

O6
O7

O8
O9

29



Shared address space

O1

O2

O3

O4

O5 O6

O7
O8

O9

Shared address space

O10WriteWrite

Free
Alloc

30



Optimizations: locality awareness
4

7
1

6

2

31



Optimizations: locality awareness
4

7
6

2

1

RPC

32

Local



Transactions

S1

S2

S3

RDMA

Execution Commit

Lock Validate

RDMA RDMA

Update and unlock

33

RDMA

Buffer writes



34

TAO [Bronson ‘13, Armstrong ‘13]

6 Mops/s/srv
(10x improvement)

42 µs average latency 
(40 – 50x improvement)

� Facebook’s in-memory graph store
� Workload

� Read-dominated (99.8%)
� 10 operation types

� FaRM implementation
� Nodes and edges are FaRM objects
� Lock-free reads for lookups
� Transactions for updates



35

FaRM
� Platform for distributed computing

� Data is in memory
� RDMA

� Shared memory abstraction
� Transactions
� Lock-free reads

� Order-of-magnitude performance improvements
� Enables new applications



36

Memory Management in Modern Computer Systems

• Memory Abstraction
– NSDI’14 FaRM

• Demand paging: remote memory over RDMA
– NSDI’17 InfiniSwap
– OSDI’20 AIFM

• Demand paging: memory swapping between GPU memory and host memory
– OSDI’20 PipeSwitch



Efficient Memory Disaggregation with 
Infiniswap

Juncheng Gu, Youngmoon Lee, Yiwen Zhang, 
Mosharaf Chowdhury, Kang G. Shin



Agenda
•Motivation and related work

•Design and system overview

• Implementation and evaluation

• Future work and conclusion

3/30/17 1



Memory-intensive applications

23/30/17



Memory-intensive applications

33/30/17



3/30/17 12



Memory underutilization
Po

rti
on

of
M

em
or

y
• Google Cluster Analysis[1]

Allocated Used

0.8

0.5

[1] Reiss, Charles, et al. "Heterogeneity and dynamicity of clouds at scale: Google trace analysis." SoCC’12.

3/30/17 16Time (days)



Memory underutilization
• Google Cluster Analysis[1]

Allocated Used

on
of

M
em

or
y

0.8

0.5
≈30%

itr
Po

Time (days)
Can we utilize this memory?

[1] Reiss, Charles, et al. "Heterogeneity and dynamicity of clouds at scale: Google trace analysis." SoCC’12.

3/30/17 18



Disaggregate free memory

3/30/17 21



3/30/17 22

What are the challenges?

• Minimize deployment overhead
• No hardware design
• No application modification

• Tolerate failures
• e.g. network disconnection, machine crash

• Manage remote memory at scale



No HW design
No app 

modification
Fault-

tolerance Scalability

Memory Blade[ISCA’09]

HPBD[CLUSTER’05] /NBDX[1]

RDMA key-value service
(e.g. HERD[SIGCOMM’14], FaRM[NSDI’14])

Intel Rack Scale Architecture 
(RSA)[2]

Infiniswap

3/30/17 23

Recent work on memory disaggregation

1 https://github.com/accelio/NBDX
2 http://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html

http://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html


Agenda
•Motivation and related work

•Design and system overview

• Implementation and evaluation

• Future work and conclusion
3/30/17 24



System Overview

Application1 Application2User 
Space

Kernel 
Space Virtual MemoryManager (VMM)

Infiniswap Block Device

Local Disk RNIC

Machine 1

Application

Infiniswap 
Daemon User 

Space

Machine 2

RNIC

Sync

3/30/17 25

Async



System Overview

Application1 Application2User 
Space

Kernel 
Space Virtual MemoryManager (VMM)

Infiniswap Block Device

RNIC

Application

Infiniswap 
Daemon User 

Space

Machine 2

RNIC

SyncAsync

Local Disk

Machine 1

Infiniswap Block Device
• Swap space
• Request router

3/30/17 26



System Overview

Application1 Application2User 
Space

Kernel 
Space Virtual MemoryManager (VMM)

Infiniswap Block Device

Local Disk RNIC

Machine 1

ApplicationDaemon
Space

Machine 2

RNIC

SyncAsync

Local disk
• [ASYNC] backup swapped-out 

data
• Tolerate remote memory

failure
Infiniswap

User

3/30/17 27



System Overview

Application1 Application2User 
Space

Kernel 
Space Virtual MemoryManager (VMM)

Infiniswap Block Device

Local Disk RNIC

Machine 1

Application

Infiniswap 
Daemon User 

Space

Machine 2

RNIC

Sync

3/30/17 28

Async

Infiniswap Deamon
• Local memory region
• Remote memory service



System Overview

Application1 Application2User 
Space

Kernel 
Space Virtual MemoryManager (VMM)

Infiniswap Block Device

RNIC

Application

Infiniswap 
Daemon User 

Space

Machine 2

RNIC

SyncAsync

Local Disk

Machine 1

RDMA
• One-sided operations
• Bypass remote CPU

3/30/17 29



Objectives Ideas

No hardware design
Remote paging

No application modification

Fault-tolerance Local backup disk

Scalability Decentralized remote memory
management

How to meet the design objectives?

3/30/17 30



One-to-many

Application1 Application2

Virtual MemoryManager (VMM)

Infiniswap Block Device

RNIC

Application

Infiniswap 
Daemon User 

Space

Machine 1 Machine 2

RNIC

Application
Infiniswap 
Daemon User 

Space

RNIC

Machine 3

Local Disk

3/30/17 31

User 
Space

Kernel 
Space

Async Sync



Many-to-many

Application1 Application2User 
Space

Kernel 
Space Virtual Memory Manager (VMM)

Infiniswap Block Device

RNIC

Application

Infiniswap 
Daemon User 

Space

Machine 1 Machine 2

RNIC

Application

Infiniswap 
Daemon User 

Space

RNIC

Machine 3

Application1 Application2 User 
Space

Kernel 
SpaceVirtual Memory Manager (VMM)

Infiniswap Block Device

RNIC

Machine 4

Local Disk Local Disk

Async

3/30/17 32

Sync AsyncSync



Many-to-many

User Application1 Application2 Infiniswap Application1 Application2 User
Space Daemon Application User Space Space
Kernel Kernel
Space Virtual Memory Manager (VMM) Virtual Memory Manager (VMM) Space

RNIC

Machine 3

Infiniswap Block Device Infiniswap Infiniswap Block Device
Daemon Application User 

Space
Async Sync Sync Async

Local Disk RNIC RNIC RNIC Local Disk

Machine 1 Machine 2 Machine 4

How to scale remote memory?

3/30/17 33

• How to find remote memory in the cluster?
• Which remote mapping should be evicted?



Objectives Ideas

No hardware design
Remote paging

No application modification

Fault-tolerance Local backup disk

Scalability Decentralized remote memory 
management

How to meet the design objectives?

3/30/17 34



Management unit: memory page?

IInnffiinniisswwaapp BBlloocckk DDeevviiccee

IInnffiinniisswwaapp
DDaaeemmoon

n

IInnffiinniisswwaapp
DDaaeemmoon

n
IInnffiinniisswwaapp

DDaaeemmoon
n

Local Page Remote Page

p100 <s1, p1>

1GB = 256K entries 
1GB = 256K RTTs3/30/17 36



Management unit: memory slab!

Infiniswap Block Device

Infiniswap 
Daemon

Infiniswap 
Daemon

Infiniswap 
Daemon

3/30/17 37



Management unit: memory slab!

Infiniswap Block Device

Infiniswap 
Daemon

Infiniswap 
Daemon

Infiniswap 
Daemon

3/30/17 38



Infiniswap Block Device

Infiniswap 
Daemon

Infiniswap 
Daemon

Infiniswap 
Daemon

Which remote machine should be selected?

3/30/17 39



Infiniswap Block Device

Infiniswap 
Daemon

Infiniswap 
Daemon

Infiniswap
Daemon

Which remote machine should be selected?

Goal: balance memory utilization
3/30/17 40



Infiniswap Block Device

Infiniswap 
Daemon

Infiniswap 
Daemon

Infiniswap 
Daemon

Which remote machine should be selected?

3/30/17 41

► Central controller



Infiniswap Block Device

Infiniswap 
Daemon

Infiniswap 
Daemon

Infiniswap 
Daemon

Which remote machine should be selected?

► Central controller

► Decentralized approach
3/30/17 42



Power of two choices[1]

Infiniswap Block Device

Infiniswap 
Daemon

Infiniswap 
Daemon

Infiniswap 
Daemon

3/30/17 43

[1] Mitzenmacher, Michael. "The power of two choices in randomized load balancing.”, Ph.D. thesis, U.C. Berkeley, 1996



Power of two choices[1]

Infiniswap Block Device

Infiniswap 
Daemon

Infiniswap 
Daemon

Infiniswap 
Daemon

3/30/17 44

[1] Mitzenmacher, Michael. "The power of two choices in randomized load balancing.”, Ph.D. thesis, U.C. Berkeley, 1996



Agenda
•Motivation and related work

•Design and system overview

• Implementation and evaluation

• Future work and conclusion

53

3/30/17



Implementation

• Connection Management
• One RDMA connection per active block device - daemon pair

• Control Plane
• SEND, RECV

• Data Plane
• One-sided RDMA READ, WRITE

Infiniswap 
Block Device

Kernel Space User Space

Infiniswap 
Daemon

RDMA

54

3/30/17



What are we expecting from Infiniswap?

■ Application performance

■ Cluster memory utilization

■ Network usage

■ Eviction overhead

■ Fault-tolerance overhead

■ Performance as a block device

55

3/30/17



Evaluation

2 x 8 cores (32 vcores) 
64GB DRAM
56Gbps InfiniBandNIC

32-node cluster

InfiniBand 
Network

56

3/30/17



Application performance

59



• 90 containers (applications), mixing all applications and memory constraints.

Cluster memory utilization

60

40

20

0
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Rank of Machines
• Cluster memory utilization is improved from 40.8% to 60% (1.47x)

80

100
M
em

or
y
U
til
iz
at
io
n
(%

) Infiniswap
w/o Infiniswap

3/30/17 60



Agenda
•Motivation and related work

•Design and system overview

• Implementation and evaluation

• Future work and conclusion
3/30/17 61



3/30/17 62

Limitations and future work

• Trade-off in fault-tolerance
• Local disk is the bottleneck
• Multiple remote replicas

• Fault-tolerance vs. space-efficiency

• Performance isolation among applications



3/30/17 63

Conclusion
• Infiniswap: remote paging over RDMA
• Application performance
• Cluster memory utilization

• Efficient, practical memory disaggregation
• No hardware design
• No application modification
• Fault-tolerance
• Scalability

https://github.com/Infiniswap/infiniswap.git



76

Memory Management in Modern Computer Systems

• Memory Abstraction
– NSDI’14 FaRM

• Demand paging: remote memory over RDMA
– NSDI’17 InfiniSwap
– OSDI’20 AIFM

• Demand paging: memory swapping between GPU memory and host memory
– OSDI’20 PipeSwitch



AIFM: High-Performance, 
Application-Integrated Far Memory

Zain (Zhenyuan) Ruan* Malte Schwarzkopf † Marcos K. Aguilera ‡ Adam Belay*

*MIT CSAIL †Brown University ‡VMware Research

7
7



In-Memory Applications

Data Analytics

Database

Web Caching

Graph Processing

7
8



Memory Is Inelastic

• Limited by the server physical boundary.
• Applications cannot overcommit memory.

ØExpensive solution: overprovision memory for peak usage.

7
9



Trending Solution: FarMemory

ØLeverage the idle memory of remote servers (with fast network).

Far MemoryLocal Memory

Local Server

NIC

Remote Server

NIC

8
0

Fast Network



state-of-the-art

0.2

0.4

0.6

0.8

1

N
or

m
al

ize
d

Pe
rf

or
m

an
ce

ideal

AIFM (this work)

Existing Far-Memory Systems Perform Poorly

0
81

• Real-world Data Analytics from Kaggle.
• Provision 25% of working set in local mem.

ØGoal: reclaim the wasted performance.

70% of
performance

wasted



82

Why Do Existing SystemsWaste Performance?

• Problem: based on OS paging.
‒ Semantic gap.
‒ High kernel overheads.



Challenge 1: Semantic Gap

• Page granularity èR/W amplification.

OS A sequence of random memory accesses.

Page

App

ØOS lacks app knowledge èhard to prefetch, etc.

App

OS

83



Challenge 2: High Kernel Overheads

• Expensive page faults.
Ø Busy Polling for in-kernel net I/O èburn CPU cycles.

APP

Remote Object

Page Fault
Handler (8 μs)

①

Net
(6 μs)

Kernel

User

③ Swap in page

④ Busy poll

② 1 μs

84



Design Space

Transparency
85

Manually manage 
objects with RDMA

AIFM (this work)

Perf.
Existing OS 
paging systems



86

AIFM’s Design Overview

ØKey idea: swap memory using a userspace runtime.

Challenge Solution
1. Semantic gap

(Amplification, Hard to prefetch)
Remoteable Data structure library

2. Kernel overheads
(page faults, busy poll for net I/O)

Userspace runtime

3. Impact of Memory Reclamation
(pause app threads)

Pauseless evacuator

4. network BW < DRAM BW Remote Agent



1. Remoteable Data Structure Library

Obj 0Ptr 0

Ptr 1

Remoteable 
Data Structure

App Semantics

Prefetcher

Local Memory 

Far Memory

library APIApp User-
Level Thread 0

Obj 1

ØSolved challenge: semantic gap.

87



2. Userspace Runtime

Obj 0Ptr 0

Ptr 1

Remoteable 
Data Structure

App Semantics

Prefetcher

Local Memory 

Far Memory

library APIApp User-
Level Thread 0

Obj 1

ØSolved challenge: kernel overheads.

88



2. Userspace Runtime

Obj 0Ptr 0

Ptr 1

Remoteable 
Data Structure

App Semantics

Prefetcher

Far Memory

library APIApp User-
Level Thread 0

Yield

App User-
Level Thread 1

Local Memory

Obj 1

ØSolved challenge: kernel overheads.

89



2. Userspace Runtime

Obj 0Ptr 0

Ptr 1

Remoteable 
Data Structure

App Semantics

Prefetcher

Far Memory

library APIApp User-
Level Thread 0
Yield Yield

App User-
Level Thread 1

Local Memory

Obj 1

ØSolved challenge: kernel overheads.

90



3. Pauseless Evacuator

Obj 0Ptr 0

Ptr 1

Ptr N

Pauseless
Evacuator

Remoteable 
Data Structure

App Semantics

Prefetcher

Far Memory

library APIApp User-
Level Thread 0
Yield Yield

App User-
Level Thread 1

Local Memory

Obj 1

Obj N

91

…

ØSolved challenge: impact of memory reclamation.



3. Pauseless Evacuator

Obj 0Ptr 0

Ptr 1

Ptr N

Pauseless 
Evacuator

Remoteable 
Data Structure

App Semantics

Prefetcher

Far Memory

Obj 1 Obj N…

library APIApp User-
Level Thread 0
Yield Yield

App User-
Level Thread 1

Local Memory

…

92

ØSolved challenge: impact of memory reclamation.



4. Remote Agent

Obj 0Ptr 0

Ptr 1

Ptr N

Pauseless 
Evacuator

Remoteable 
Data Structure

App Semantics

Prefetcher

Far Memory

Obj 1 Obj N…Remote 
Agent

library APIApp User-
Level Thread 0
Yield Yield

App User-
Level Thread 1

Local Memory Light Operations

93

…

ØSolved challenge: network BW < DRAM BW.



4. Remote Agent

Obj 0Ptr 0

Ptr 1

Ptr N

Pauseless 
Evacuator

Remoteable 
Data Structure

App Semantics

Prefetcher

library APIApp User-
Level Thread 0
Yield Yield

App User-
Level Thread 1

…

e.g., Copy Obj 1Local Memory

Far Memory
Remote
Agent …Obj 1 Obj N

94

ØSolved challenge: network BW < DRAM BW.



4. Remote Agent

Obj 0Ptr 0

Ptr 1

Ptr N

… Pauseless 
Evacuator

Remoteable 
Data Structure

App Semantics

Prefetcher

Far Memory

Obj 1 Obj N…Remote 
Agent

Copy

library APIApp User-
Level Thread 0
Yield Yield

App User-
Level Thread 1

Local Memory e.g., Copy Obj 1

95

ØSolved challenge: network BW < DRAM BW.



LargeData ret = arr.at(sum);
return ret;

}
96

Sample Code

std::unordered_map<key_t, int> hashtable; 
std::array<LargeData> arr;

LargeData foo(std::list<key_t> &keys_list) {
int sum = 0;
for (auto key : keys_list) {

sum += hashtable.at(key);
}



Sample Code

RemHashTable<key_t, int> hashtable; 
RemArray<LargeData> arr;

LargeData foo(RemList<key_t> &keys_list) {
int sum = 0;
for (auto key : keys_list) {

DerefScope scope;

}
DerefScope scope;

sum += hashtable.at(key, scope); Cache hot objects.

LargeData ret = arr.at</*don’t cache*/ true>(sum, scope); Avoid polluting local mem.

Prefetch list data.

return ret;
}

97



98

Implementation

• Implemented 6 data structures.
• Array, List, Hashtable, Vector, Stack, and Queue.

• Runtime is built on top of Shenango [NSDI’ 19].
• TCP far-memory backend.
ØLoC: 6.5K (runtime) + 5.5K (data structures) + 0.8K (Shenango)



Performance on Different Compute Intensities

0.8

0.6

0.4

0.2

0

1

0 2 4 6 8 10 12N
or

m
al

ize
d

Pe
rf

or
m

an
ce ideal

Microseconds of compute per far memory access

AIFM hides far memory latency with moderate compute.
99



NYC Taxi Analysis (C++ DataFrame)

0.4

0.2

0

0.6

0.8

1

0 20 40 60 80 100N
or

m
al

ize
d

Pe
rf

or
m

an
ce ideal

(x=3%, y=0.77)

(x=23%, y=0.95)

Local Memory Ratio (%)

AIFM achieves near-ideal performance with small local memory.
10
0



10
1

Other Experiments

• Synthetic web frontend: up to 13X end-to-end speedup.
• Data structures microbenchmarks: up to 61X speedup.
• Design Drill-Down.

Read our paper for details.



10
2

RelatedWork

• OS-paging systems.
• Fastswap [EuroSys’ 20], Leap [ATC’ 20]

• Distributed shared memory.
• Treadmarks [IEEE Computer’ 96]

• Garbage collection (GC).



10
3

Conclusion

• AIFM: Application-Integrated Far Memory.
• Key idea: swap memory using a userspace runtime.

• Data Structure Library: captures application semantics.
• Userspace Runtime: efficiently manages objects and memory.

• Achieves 13X end-to-end speedup over Fastswap.
ØCode released at https://github.com/AIFM-sys/AIFM

Please send your questions to us 
zainruan@csail.mit.edu

https://github.com/AIFM-sys/AIFM
mailto:zainruan@csail.mit.edu


104

Memory Management in Modern Computer Systems

• Memory Abstraction
– NSDI’14 FaRM

• Demand paging: remote memory over RDMA
– NSDI’17 InfiniSwap
– OSDI’20 AIFM

• Demand paging: memory swapping between GPU memory and host memory
– OSDI’20 PipeSwitch



PipeSwitch: Fast Pipelined Context 
Switching for Deep Learning Applications

Zhihao Bai, Zhen Zhang, Yibo Zhu, Xin Jin

105



Deep learning powers intelligent 
applications in many domains

106



Training and inference

107

Training Inference

High throughput Low latency



GPUs clusters for DL workloads

108

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU



Separate clusters for training and inference

109

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

Cluster for 
training

Cluster for 
inference



Utilization of GPU clusters is low

110

Training

Inference

100%

75%

Daytime Midnight

50%

25%

Daytime Midnight

50%

25%

Today: separate clusters Ideal: shared clusters

Daytime Midnight

50%

25%



Context switching overhead is high

111

New model

Old model



Context switching overhead is high

112

Infer
ResNet

Train
BERT

NVIDIA T4

Latency: 6s



Drawbacks of existing solutions

113

Latency: 6s

• NVIDIA MPS
• High overhead due to contention

• Salus[MLSys’20]
• Requires all the models to be preloaded into the GPU memory



Goal: fast context switching

114

Latency: 6s

• Enable GPU-efficient multiplexing of multiple DL apps 
with fine-grained time-sharing

• Achieve millisecond-scale context switching latencies 
and high throughput



PipeSwitch overview: architecture

115

Controller

Active
Worker

GPU

Memory
Daemon

Standby
Worker

Standby
Worker

New
Task



PipeSwitch overview: execution

• Stop the current task and 
prepare for the next task.
• Execute the task with pipelined 

model transmission.
• Clean the environment for the 

previous task.

116

Controller

Active
Worker GPU

Memory
Daemon

Standby
Worker

Standby
Worker

New
Task



Sources of context switching overhead

117

Task cleaning

Task initialization

Memory allocation

Model transmission



How to reduce the overhead?

118

Pipelined
model transmissionModel transmission



DL models have layered structures

119

Input

Layer-1

Layer-2

…

Layer-N

Output

Forward
Propagation

Backward
Propagation



Sequential model transmission and execution

120

T0 E0

model transmission
over PCIe

task execution
on GPU

T1 Tn-1 E1 En-1T2 E2

Transmit layer 0 Execute layer 0



Pipelined model transmission and execution

121

PCIe

GPU

T0 T1 Tn-1T2

E0 E1 En-1E2



Pipelined model transmission and execution

122

PCIe

GPU

Transmit layer 0

T0 T1 Tn-1T2

E0 E1 En-1E2



Pipelined model transmission and execution

123

Transmit layer 1

Execute layer 0

PCIe

GPU

T0 T1 Tn-1T2

E0 E1 En-1E2



Pipelined model transmission and execution

124

Transmit layer 2

Execute layer 1

PCIe

GPU

T0 T1 Tn-1T2

E0 E1 En-1E2



Pipelined model transmission and execution

125

1.Multiple calls to PCIe;
2.Synchronize transmission and execution.



Pipelined model transmission and execution

126

PCIe

GPU Group
(0, i)

Group
(i+1, j)

Group
(0, i)

Group
(i+1, j)

Group
(k, n-1)

Group
(k, n-1)



Pipelined model transmission and execution

127

• Exponential time to find the optimal strategy
• Two heuristics for pruning



How to reduce the overhead?

128

Unified
memory management

Task cleaning

Task initialization

Memory allocation

Model transmission



Unified memory management

129

GPU memory

Memory
Daemon Workers

Pointer

Offset

Manage model parameters.
Allocate GPU memory.



How to reduce the overhead?

130

Active-standby
worker switching

Task cleaning

Task initialization

Memory allocation

Model transmission



Active-standby worker switching

131

Old Task

New Task

Init. Execute

Init. Execute Clean

Time

Clean

New Task Starts



Active-standby worker switching

132

Old Task

New Task

Init. Execute

Time

Clean

New Task Starts

Init.
2

Init.
1

Execute Clean



Active-standby worker switching

133

Old Task

New Task

Init. Execute

Time

Clean

New Task Starts

Init.
2

Init.
1

Execute Clean

Launch the process.
Create CUDA context. Allocate GPU memory.



Active-standby worker switching

134

Old Task

New Task

Init. Execute

Time

Clean

New Task Starts

Init.
2

Init.
1

Execute Clean



Implementation

• Testbed: AWS EC2
• p3.2xlarge: PCIe 3.0x16, NVIDIA Tesla V100 GPU
• g4dn.2xlarge: PCIe 3.0x8, NVIDIA Tesla T4 GPU

• Software
• CUDA 10.1
• PyTorch 1.3.0

• Models
• ResNet-152
• Inception-v3
• BERT-base

135



Evaluation

• Can PipeSwitch satisfy SLOs?

• Can PipeSwitch provide high utilization?

• How well do the design choices of PipeSwitch work?

136



Evaluation

• Can PipeSwitch satisfy SLOs?

• Can PipeSwitch provide high utilization?

137



PipeSwitch satisfies SLOs
NVIDIA Tesla V100 NVIDIA Tesla T4

138
PipeSwitch achieves low context switching latency.



PipeSwitch provide high utilization

139

Scheduling cycles

PipeSwitch achieves near 100% utilization.



Summary

• GPU clusters for DL applications suffer from low utilization
• Limited share between training and inference workloads

• PipeSwitch introduces pipelined context switching
• Enable GPU-efficient multiplexing of DL apps with fine-grained time-sharing
• Achieve millisecond-scale context switching latencies and high throughput

140


