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Recap: Approximating LRU: Clock Algorithm

Set of all pages
in Memory

Single Clock Hand:
Advances only on page fault!
Check for pages not used recently
Mark pages as not used recently

• Clock Algorithm: Arrange physical pages in circle with single clock hand
– Approximate LRU (approximation to approximation to MIN)
– Replace an old page, not the oldest page

• Details:
– Hardware “use” bit per physical page (called “accessed” in Intel architecture):

» Hardware sets use bit on each reference
» If use bit isn’t set, means not referenced in a long time

– On page fault:
» Advance clock hand (not real time)
» Check use bit: 1® used recently; clear and leave alone

0® selected candidate for replacement
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Recap: Nth Chance version of Clock Algorithm
• Nth chance algorithm: Give page N chances

– OS keeps counter per page: # sweeps
– On page fault, OS checks use bit:

» 1 ® clear use and also clear counter (used in last sweep)
» 0 ® increment counter; if count=N, replace page

– Means that clock hand has to sweep by N times without page being used before page is 
replaced

• How do we pick N?
– Why pick large N? Better approximation to LRU

» If N ~ 1K, really good approximation
– Why pick small N? More efficient

» Otherwise might have to look a long way to find free page
• What about “modified” (or “dirty”) pages?

– Takes extra overhead to replace a dirty page, so give dirty pages an extra chance before 
replacing?

– Common approach:
» Clean pages, use N=1
» Dirty pages, use N=2 (and write back to disk when N=1)
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Group Discussion

• Topic: Clock algorithm variations
– Do we really need a hardware-supported “modified” bit?
– Do we really need a hardware-supported “use” bit?

• Discuss in groups of two to three students
– Each group chooses a leader to summarize the discussion
– In your group discussion, please do not dominate the discussion, and give 

everyone a chance to speak
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Clock Algorithms Variations
• Do we really need hardware-supported “modified” bit?

– No.  Can emulate it using read-only bit
» Need software DB of which pages are allowed to be written (needed this anyway)
» We will tell MMU that pages have more restricted permissions than the actually do to force 

page faults (and allow us notice when page is written)
– Algorithm (Clock-Emulated-M):

» Initially, mark all pages as read-only (W®0), even writable data pages.  
Further, clear all software versions of the “modified” bit ® 0 (page not dirty)

» Writes will cause a page fault. Assuming write is allowed, OS sets software “modified” bit ®
1, and marks page as writable (W®1).

» Whenever page written back to disk, clear “modified” bit ® 0, mark read-only
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Clock Algorithms Variations (continued)
• Do we really need a hardware-supported “use” bit?

– No. Can emulate it similar to above (e.g. for read operation)
» Kernel keeps a “use” bit and “modified” bit for each page

– Algorithm (Clock-Emulated-Use-and-M):
» Mark all pages as invalid, even if in memory.  

Clear emulated “use” bits ® 0 and “modified” bits ® 0 for all pages (not used, not dirty)
» Read or write to invalid page traps to OS to tell use page has been used
» OS sets “use” bit ® 1 in software to indicate that page has been “used”. 

Further:
1) If read, mark page as read-only, W®0 (will catch future writes)
2) If write (and write allowed), set “modified” bit ® 1, mark page as writable (W®1)

» When clock hand passes, reset emulated “use” bit ® 0 and mark page as invalid again
» Note that “modified” bit left alone until page written back to disk 

• Remember, however, clock is just an approximation of LRU!
– Can we do a better approximation, given that we have to take page faults on some reads 

and writes to collect use information?
– Need to identify an old page, not oldest page!
– Answer: second chance list
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Second-Chance List Algorithm (VAX/VMS)

• Split memory in two: Active list (RW), SC list (Invalid)
• Access pages in Active list at full speed
• Otherwise, Page Fault

– Always move overflow page from end of Active list to front of Second-chance list (SC) 
and mark invalid

– Desired Page in SC List: move to it front of Active list, mark it RW
– Not in SC list: page in to front of Active list, mark RW; page out LRU victim at end of SC 

list

Directly
Mapped Pages

Marked: RW
List: FIFO

Second 
Chance List

Marked: Invalid
List: LRU

LRU victim

Page-in
From disk

New
Active Pages

Acc
es

s

New
SC Victims

O
verflow
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Second-Chance List Algorithm (continued)
• How many pages for second chance list?

– If 0 Þ FIFO
– If all Þ LRU, but page fault on every page reference

• Pick intermediate value.  Compared to FIFO:
– Pro: Few disk accesses (page only goes to disk if unused for a long time) 

– Con: Increased overhead trapping to OS (software / hardware tradeoff)

• History: The VAX architecture did not include a “use” bit.
Why did that omission happen???

– Strecker (architect) asked OS people, they said they didn’t need it, so didn’t implement it
– He later got blamed, but VAX did OK anyway
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Free List

• Keep set of free pages ready for use in demand paging
– Freelist filled in background by Clock algorithm or other technique (“Pageout daemon”)
– Dirty pages start copying back to disk when enter list

• Like VAX second-chance list
– If page needed before reused, just return to active set

• Advantage: faster for page fault
– Can always use page (or pages) immediately on fault

Set of all pages
in Memory

Single Clock Hand:  Advances as needed to keep 
freelist full (“background”)

D

D

Free Pages
For Processes
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• When evicting a page frame, how to know which PTEs to invalidate?
– Hard in the presence of shared pages (forked processes, shared memory, …)

• Reverse mapping mechanism must be very fast
– Must hunt down all page tables pointing at given page frame when freeing a page
– Must hunt down all PTEs when seeing if pages “active”

• Implementation options:
– For every page descriptor, keep linked list of page table entries that point to it

» Management nightmare – expensive
– Linux: Object-based reverse mapping

» Link together memory region descriptors instead (much coarser granularity)
» E.g., program code and files mapped in with mmap()

Reverse Page Mapping (Sometimes called “Coremap”)
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Allocation of Page Frames (Memory Pages)
• How do we allocate memory among different processes?

– Does every process get the same fraction of memory?  Different fractions?
– Should we completely swap some processes out of memory?

• Each process needs minimum number of pages
– Want to make sure that all processes that are loaded into memory can make forward progress
– Example:  IBM 370 – 6 pages to handle SS MOVE instruction:

» instruction is 6 bytes, might span 2 pages
» 2 pages to handle from
» 2 pages to handle to

• Possible Replacement Scopes:
– Global replacement – process selects replacement frame from set of all frames; one process can 

take a frame from another

– Local replacement – each process selects from only its own set of allocated frames
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Fixed/Priority Allocation

• Equal allocation (Fixed Scheme): 
– Every process gets same amount of memory
– Example: 100 frames, 5 processes ® process gets 20 frames

• Proportional allocation (Fixed Scheme)
– Allocate according to the size of process
– Computation proceeds as follows:

𝑠! = size of process 𝑝! and S = ∑𝑠!
𝑚 = total number of physical frames in the system
𝑎! = (allocation for 𝑝!) =

!!
"
×𝑚

• Priority Allocation:
– Proportional scheme using priorities rather than size

» Same type of computation as previous scheme
– Possible behavior: If process pi generates a page fault, select for replacement a frame from a process 

with lower priority number

• Perhaps we should use an adaptive scheme instead???
– What if some application just needs more memory?
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Page-Fault Frequency Allocation
• Can we reduce Capacity misses by dynamically changing 

the number of pages/application?

• Establish “acceptable” page-fault rate
– If actual rate too low, process loses frame
– If actual rate too high, process gains frame

• Question: What if we just don’t have enough memory?
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Thrashing
• If a process does not have “enough” pages, the 

page-fault rate is very high.  
This leads to:

– low CPU utilization
– operating system spends most of its time swapping to 

disk
• Thrashing º a process is busy swapping pages in and 

out with little or no actual progress
• Questions:

– How do we detect Thrashing?
– What is best response to Thrashing?
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Locality In A Memory-Reference Pattern
• Program Memory Access Patterns have 

temporal and spatial locality
– Group of Pages accessed along a given time 

slice called the “Working Set”
– Working Set defines minimum number of 

pages for process to behave well
• Not enough memory for Working Set Þ

Thrashing
– Better to swap out process?
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Working-Set Model

• D º working-set window º fixed number of page references 
– Example:  10,000 instructions

• WSi (working set of Process Pi) = total set of pages referenced in the most 
recent D (varies in time)

– if D too small will not encompass entire locality
– if D too large will encompass several localities
– if D = ¥Þ will encompass entire program

• D = S|WSi| º total demand frames 
• if D > m Þ Thrashing

– Policy: if D > m, then suspend/swap out processes
– This can improve overall system behavior by a lot!
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What about Compulsory Misses?
• Recall that compulsory misses are misses that occur the first time that a page 

is seen
– Pages that are touched for the first time
– Pages that are touched after process is swapped out/swapped back in

• Clustering:
– On a page-fault, bring in multiple pages “around” the faulting page
– Since efficiency of disk reads increases with sequential reads, makes sense to read 

several sequential pages
• Working Set Tracking:

– Use algorithm to try to track working set of application
– When swapping process back in, swap in working set
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Summary
• Second-Chance List algorithm: Yet another approximate  LRU

– Divide pages into two groups, one of which is truly LRU and managed on page faults.
• Working Set:

– Set of pages touched by a process recently
• Thrashing: a process is busy swapping pages in and out

– Process will thrash if working set doesn’t fit in memory
– Need to swap out a process
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Memory Management in Modern Computer Systems

• Memory Abstraction
– NSDI’14 FaRM

• Demand paging: remote memory over RDMA
– NSDI’17 InfiniSwap
– OSDI’20 AIFM

• Demand paging: memory swapping between GPU memory and host memory
– OSDI’20 PipeSwitch



FaRM: Fast Remote Memory
Aleksandar Dragojević, Dushyanth Narayanan, 
Orion Hodson, Miguel Castro
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Hardware trends
� Main memory is cheap

� 100 GB – 1 TB per server
� 10 – 100 TBs in a small cluster

� New data centre networks
� 40 Gbps throughput (100 this year)
� 1-3 µs latency
� RDMA primitives



Remote direct memory access
� Read / write remote memory

� NIC performs DMA requests

� FaRM uses RDMA extensively
� Reads to directly read data
� Writes into remote buffers for messaging

� Great performance
� Bypasses the kernel
� Bypasses the remote CPU

RAM CPU NIC

Machine A

RAM CPU NIC

Network

DMA

Machine B DMA

22
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Applications
� Data centre applications

� Irregular access patterns
� Latency sensitive

� Data serving
� Key-value store
� Graph store

� Enabling new applications



How to program a modern cluster?

We have:
• TBs of DRAM
• 100s of CPU cores
• RDMA network

Desirable:
• Keep data in memory
• Access data using RDMA
• Collocate data and computation

26



Traditional model
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Symmetric model
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Shared address space

O1 O2 O3 O4
O5

O6
O7

O8
O9
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Shared address space

O1

O2

O3

O4

O5 O6

O7
O8

O9

Shared address space

O10WriteWrite

Free
Alloc
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Optimizations: locality awareness
4

7
1

6

2
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Optimizations: locality awareness
4

7
6

2

1

RPC
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Local



Transactions

S1

S2

S3

RDMA

Execution Commit

Lock Validate

RDMA RDMA

Update and unlock

33

RDMA

Buffer writes
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TAO [Bronson ‘13, Armstrong ‘13]

6 Mops/s/srv
(10x improvement)

42 µs average latency 
(40 – 50x improvement)

� Facebook’s in-memory graph store
� Workload

� Read-dominated (99.8%)
� 10 operation types

� FaRM implementation
� Nodes and edges are FaRM objects
� Lock-free reads for lookups
� Transactions for updates
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FaRM
� Platform for distributed computing

� Data is in memory
� RDMA

� Shared memory abstraction
� Transactions
� Lock-free reads

� Order-of-magnitude performance improvements
� Enables new applications
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Memory Management in Modern Computer Systems

• Memory Abstraction
– NSDI’14 FaRM

• Demand paging: remote memory over RDMA
– NSDI’17 InfiniSwap
– OSDI’20 AIFM

• Demand paging: memory swapping between GPU memory and host memory
– OSDI’20 PipeSwitch



Efficient Memory Disaggregation with 
Infiniswap

Juncheng Gu, Youngmoon Lee, Yiwen Zhang, 
Mosharaf Chowdhury, Kang G. Shin



Agenda
•Motivation and related work

•Design and system overview

• Implementation and evaluation

• Future work and conclusion

3/30/17 1



Memory-intensive applications

23/30/17



Memory-intensive applications
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[1] Reiss, Charles, et al. "Heterogeneity and dynamicity of clouds at scale: Google trace analysis." SoCC’12.
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Memory underutilization
• Google Cluster Analysis[1]

Allocated Used
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M
em

or
y

0.8

0.5
≈30%

itr
Po

Time (days)
Can we utilize this memory?

[1] Reiss, Charles, et al. "Heterogeneity and dynamicity of clouds at scale: Google trace analysis." SoCC’12.
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Disaggregate free memory

3/30/17 21
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What are the challenges?

• Minimize deployment overhead
• No hardware design
• No application modification

• Tolerate failures
• e.g. network disconnection, machine crash

• Manage remote memory at scale



No HW design
No app 

modification
Fault-

tolerance Scalability

Memory Blade[ISCA’09]

HPBD[CLUSTER’05] /NBDX[1]

RDMA key-value service
(e.g. HERD[SIGCOMM’14], FaRM[NSDI’14])

Intel Rack Scale Architecture 
(RSA)[2]

Infiniswap

3/30/17 23

Recent work on memory disaggregation

1 https://github.com/accelio/NBDX
2 http://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html

http://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html


Agenda
•Motivation and related work

•Design and system overview

• Implementation and evaluation

• Future work and conclusion
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System Overview

Application1 Application2User 
Space

Kernel 
Space Virtual MemoryManager (VMM)

Infiniswap Block Device

Local Disk RNIC

Machine 1

Application

Infiniswap 
Daemon User 

Space

Machine 2

RNIC

Sync

3/30/17 25

Async



System Overview

Application1 Application2User 
Space

Kernel 
Space Virtual MemoryManager (VMM)

Infiniswap Block Device

RNIC

Application

Infiniswap 
Daemon User 

Space

Machine 2

RNIC

SyncAsync

Local Disk

Machine 1

Infiniswap Block Device
• Swap space
• Request router

3/30/17 26



System Overview

Application1 Application2User 
Space

Kernel 
Space Virtual MemoryManager (VMM)

Infiniswap Block Device

Local Disk RNIC

Machine 1

ApplicationDaemon
Space

Machine 2

RNIC

SyncAsync

Local disk
• [ASYNC] backup swapped-out 

data
• Tolerate remote memory

failure
Infiniswap

User

3/30/17 27



System Overview

Application1 Application2User 
Space

Kernel 
Space Virtual MemoryManager (VMM)

Infiniswap Block Device

Local Disk RNIC

Machine 1

Application

Infiniswap 
Daemon User 

Space

Machine 2

RNIC

Sync

3/30/17 28

Async

Infiniswap Deamon
• Local memory region
• Remote memory service



System Overview

Application1 Application2User 
Space

Kernel 
Space Virtual MemoryManager (VMM)

Infiniswap Block Device

RNIC

Application

Infiniswap 
Daemon User 

Space

Machine 2

RNIC

SyncAsync

Local Disk

Machine 1

RDMA
• One-sided operations
• Bypass remote CPU

3/30/17 29



Objectives Ideas

No hardware design
Remote paging

No application modification

Fault-tolerance Local backup disk

Scalability Decentralized remote memory
management

How to meet the design objectives?

3/30/17 30



One-to-many

Application1 Application2

Virtual MemoryManager (VMM)

Infiniswap Block Device

RNIC

Application

Infiniswap 
Daemon User 

Space

Machine 1 Machine 2

RNIC

Application
Infiniswap 
Daemon User 

Space

RNIC

Machine 3

Local Disk

3/30/17 31

User 
Space

Kernel 
Space

Async Sync



Many-to-many

Application1 Application2User 
Space

Kernel 
Space Virtual Memory Manager (VMM)

Infiniswap Block Device

RNIC

Application

Infiniswap 
Daemon User 

Space

Machine 1 Machine 2

RNIC

Application

Infiniswap 
Daemon User 

Space

RNIC

Machine 3

Application1 Application2 User 
Space

Kernel 
SpaceVirtual Memory Manager (VMM)

Infiniswap Block Device

RNIC

Machine 4

Local Disk Local Disk

Async

3/30/17 32

Sync AsyncSync



Many-to-many

User Application1 Application2 Infiniswap Application1 Application2 User
Space Daemon Application User Space Space
Kernel Kernel
Space Virtual Memory Manager (VMM) Virtual Memory Manager (VMM) Space

RNIC

Machine 3

Infiniswap Block Device Infiniswap Infiniswap Block Device
Daemon Application User 

Space
Async Sync Sync Async

Local Disk RNIC RNIC RNIC Local Disk

Machine 1 Machine 2 Machine 4

How to scale remote memory?

3/30/17 33

• How to find remote memory in the cluster?
• Which remote mapping should be evicted?



Objectives Ideas

No hardware design
Remote paging

No application modification

Fault-tolerance Local backup disk

Scalability Decentralized remote memory 
management

How to meet the design objectives?

3/30/17 34



Management unit: memory page?

IInnffiinniisswwaapp BBlloocckk DDeevviiccee

IInnffiinniisswwaapp
DDaaeemmoon

n

IInnffiinniisswwaapp
DDaaeemmoon

n
IInnffiinniisswwaapp

DDaaeemmoon
n

Local Page Remote Page

p100 <s1, p1>

1GB = 256K entries 
1GB = 256K RTTs3/30/17 36



Management unit: memory slab!

Infiniswap Block Device

Infiniswap 
Daemon

Infiniswap 
Daemon

Infiniswap 
Daemon

3/30/17 37



Management unit: memory slab!

Infiniswap Block Device

Infiniswap 
Daemon

Infiniswap 
Daemon

Infiniswap 
Daemon

3/30/17 38



Infiniswap Block Device

Infiniswap 
Daemon

Infiniswap 
Daemon

Infiniswap 
Daemon

Which remote machine should be selected?

3/30/17 39



Infiniswap Block Device

Infiniswap 
Daemon

Infiniswap 
Daemon

Infiniswap
Daemon

Which remote machine should be selected?

Goal: balance memory utilization
3/30/17 40



Infiniswap Block Device

Infiniswap 
Daemon

Infiniswap 
Daemon

Infiniswap 
Daemon

Which remote machine should be selected?

3/30/17 41

► Central controller



Infiniswap Block Device

Infiniswap 
Daemon

Infiniswap 
Daemon

Infiniswap 
Daemon

Which remote machine should be selected?

► Central controller

► Decentralized approach
3/30/17 42



Power of two choices[1]

Infiniswap Block Device

Infiniswap 
Daemon

Infiniswap 
Daemon

Infiniswap 
Daemon

3/30/17 43

[1] Mitzenmacher, Michael. "The power of two choices in randomized load balancing.”, Ph.D. thesis, U.C. Berkeley, 1996



Power of two choices[1]

Infiniswap Block Device

Infiniswap 
Daemon

Infiniswap 
Daemon

Infiniswap 
Daemon

3/30/17 44

[1] Mitzenmacher, Michael. "The power of two choices in randomized load balancing.”, Ph.D. thesis, U.C. Berkeley, 1996



Agenda
•Motivation and related work

•Design and system overview

• Implementation and evaluation

• Future work and conclusion

53
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Implementation

• Connection Management
• One RDMA connection per active block device - daemon pair

• Control Plane
• SEND, RECV

• Data Plane
• One-sided RDMA READ, WRITE

Infiniswap 
Block Device

Kernel Space User Space

Infiniswap 
Daemon

RDMA

54
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What are we expecting from Infiniswap?

■ Application performance

■ Cluster memory utilization

■ Network usage

■ Eviction overhead

■ Fault-tolerance overhead

■ Performance as a block device

55
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Evaluation

2 x 8 cores (32 vcores) 
64GB DRAM
56Gbps InfiniBandNIC

32-node cluster

InfiniBand 
Network

56
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Application performance
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• 90 containers (applications), mixing all applications and memory constraints.

Cluster memory utilization

60
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Rank of Machines
• Cluster memory utilization is improved from 40.8% to 60% (1.47x)
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Agenda
•Motivation and related work

•Design and system overview

• Implementation and evaluation

• Future work and conclusion
3/30/17 61
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Limitations and future work

• Trade-off in fault-tolerance
• Local disk is the bottleneck
• Multiple remote replicas

• Fault-tolerance vs. space-efficiency

• Performance isolation among applications
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Conclusion
• Infiniswap: remote paging over RDMA
• Application performance
• Cluster memory utilization

• Efficient, practical memory disaggregation
• No hardware design
• No application modification
• Fault-tolerance
• Scalability

https://github.com/Infiniswap/infiniswap.git
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Memory Management in Modern Computer Systems

• Memory Abstraction
– NSDI’14 FaRM

• Demand paging: remote memory over RDMA
– NSDI’17 InfiniSwap
– OSDI’20 AIFM

• Demand paging: memory swapping between GPU memory and host memory
– OSDI’20 PipeSwitch



AIFM: High-Performance, 
Application-Integrated Far Memory

Zain (Zhenyuan) Ruan* Malte Schwarzkopf † Marcos K. Aguilera ‡ Adam Belay*

*MIT CSAIL †Brown University ‡VMware Research

7
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In-Memory Applications

Data Analytics

Database

Web Caching

Graph Processing

7
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Memory Is Inelastic

• Limited by the server physical boundary.
• Applications cannot overcommit memory.

ØExpensive solution: overprovision memory for peak usage.

7
9



Trending Solution: FarMemory

ØLeverage the idle memory of remote servers (with fast network).

Far MemoryLocal Memory

Local Server

NIC

Remote Server

NIC

8
0

Fast Network



state-of-the-art
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AIFM (this work)

Existing Far-Memory Systems Perform Poorly

0
81

• Real-world Data Analytics from Kaggle.
• Provision 25% of working set in local mem.

ØGoal: reclaim the wasted performance.

70% of
performance

wasted
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Why Do Existing SystemsWaste Performance?

• Problem: based on OS paging.
‒ Semantic gap.
‒ High kernel overheads.



Challenge 1: Semantic Gap

• Page granularity èR/W amplification.

OS A sequence of random memory accesses.

Page

App

ØOS lacks app knowledge èhard to prefetch, etc.

App

OS

83



Challenge 2: High Kernel Overheads

• Expensive page faults.
Ø Busy Polling for in-kernel net I/O èburn CPU cycles.

APP

Remote Object

Page Fault
Handler (8 μs)

①

Net
(6 μs)

Kernel

User

③ Swap in page

④ Busy poll

② 1 μs

84



Design Space

Transparency
85

Manually manage 
objects with RDMA

AIFM (this work)

Perf.
Existing OS 
paging systems
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AIFM’s Design Overview

ØKey idea: swap memory using a userspace runtime.

Challenge Solution
1. Semantic gap

(Amplification, Hard to prefetch)
Remoteable Data structure library

2. Kernel overheads
(page faults, busy poll for net I/O)

Userspace runtime

3. Impact of Memory Reclamation
(pause app threads)

Pauseless evacuator

4. network BW < DRAM BW Remote Agent



1. Remoteable Data Structure Library

Obj 0Ptr 0

Ptr 1

Remoteable 
Data Structure

App Semantics

Prefetcher

Local Memory 

Far Memory

library APIApp User-
Level Thread 0

Obj 1

ØSolved challenge: semantic gap.
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2. Userspace Runtime

Obj 0Ptr 0

Ptr 1

Remoteable 
Data Structure

App Semantics

Prefetcher

Local Memory 

Far Memory

library APIApp User-
Level Thread 0

Obj 1

ØSolved challenge: kernel overheads.
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2. Userspace Runtime

Obj 0Ptr 0

Ptr 1

Remoteable 
Data Structure

App Semantics

Prefetcher

Far Memory

library APIApp User-
Level Thread 0

Yield

App User-
Level Thread 1

Local Memory

Obj 1

ØSolved challenge: kernel overheads.
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2. Userspace Runtime

Obj 0Ptr 0

Ptr 1

Remoteable 
Data Structure

App Semantics

Prefetcher

Far Memory

library APIApp User-
Level Thread 0
Yield Yield

App User-
Level Thread 1

Local Memory

Obj 1

ØSolved challenge: kernel overheads.
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3. Pauseless Evacuator

Obj 0Ptr 0

Ptr 1

Ptr N

Pauseless
Evacuator

Remoteable 
Data Structure

App Semantics

Prefetcher

Far Memory

library APIApp User-
Level Thread 0
Yield Yield

App User-
Level Thread 1

Local Memory

Obj 1

Obj N

91

…

ØSolved challenge: impact of memory reclamation.
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ØSolved challenge: impact of memory reclamation.



4. Remote Agent
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…

ØSolved challenge: network BW < DRAM BW.



4. Remote Agent
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ØSolved challenge: network BW < DRAM BW.



4. Remote Agent
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95

ØSolved challenge: network BW < DRAM BW.



LargeData ret = arr.at(sum);
return ret;

}
96

Sample Code

std::unordered_map<key_t, int> hashtable; 
std::array<LargeData> arr;

LargeData foo(std::list<key_t> &keys_list) {
int sum = 0;
for (auto key : keys_list) {

sum += hashtable.at(key);
}



Sample Code

RemHashTable<key_t, int> hashtable; 
RemArray<LargeData> arr;

LargeData foo(RemList<key_t> &keys_list) {
int sum = 0;
for (auto key : keys_list) {

DerefScope scope;

}
DerefScope scope;

sum += hashtable.at(key, scope); Cache hot objects.

LargeData ret = arr.at</*don’t cache*/ true>(sum, scope); Avoid polluting local mem.

Prefetch list data.

return ret;
}
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Implementation

• Implemented 6 data structures.
• Array, List, Hashtable, Vector, Stack, and Queue.

• Runtime is built on top of Shenango [NSDI’ 19].
• TCP far-memory backend.
ØLoC: 6.5K (runtime) + 5.5K (data structures) + 0.8K (Shenango)



Performance on Different Compute Intensities

0.8

0.6

0.4

0.2

0

1

0 2 4 6 8 10 12N
or

m
al

ize
d

Pe
rf

or
m

an
ce ideal

Microseconds of compute per far memory access

AIFM hides far memory latency with moderate compute.
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NYC Taxi Analysis (C++ DataFrame)
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AIFM achieves near-ideal performance with small local memory.
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Other Experiments

• Synthetic web frontend: up to 13X end-to-end speedup.
• Data structures microbenchmarks: up to 61X speedup.
• Design Drill-Down.

Read our paper for details.
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RelatedWork

• OS-paging systems.
• Fastswap [EuroSys’ 20], Leap [ATC’ 20]

• Distributed shared memory.
• Treadmarks [IEEE Computer’ 96]

• Garbage collection (GC).
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Conclusion

• AIFM: Application-Integrated Far Memory.
• Key idea: swap memory using a userspace runtime.

• Data Structure Library: captures application semantics.
• Userspace Runtime: efficiently manages objects and memory.

• Achieves 13X end-to-end speedup over Fastswap.
ØCode released at https://github.com/AIFM-sys/AIFM

Please send your questions to us 
zainruan@csail.mit.edu

https://github.com/AIFM-sys/AIFM
mailto:zainruan@csail.mit.edu
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Memory Management in Modern Computer Systems

• Memory Abstraction
– NSDI’14 FaRM

• Demand paging: remote memory over RDMA
– NSDI’17 InfiniSwap
– OSDI’20 AIFM

• Demand paging: memory swapping between GPU memory and host memory
– OSDI’20 PipeSwitch



PipeSwitch: Fast Pipelined Context 
Switching for Deep Learning Applications

Zhihao Bai, Zhen Zhang, Yibo Zhu, Xin Jin
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Deep learning powers intelligent 
applications in many domains
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Training and inference
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Training Inference

High throughput Low latency



GPUs clusters for DL workloads
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Separate clusters for training and inference
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Utilization of GPU clusters is low
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Context switching overhead is high
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New model

Old model



Context switching overhead is high
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Infer
ResNet

Train
BERT

NVIDIA T4

Latency: 6s



Drawbacks of existing solutions
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Latency: 6s

• NVIDIA MPS
• High overhead due to contention

• Salus[MLSys’20]
• Requires all the models to be preloaded into the GPU memory



Goal: fast context switching
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Latency: 6s

• Enable GPU-efficient multiplexing of multiple DL apps 
with fine-grained time-sharing

• Achieve millisecond-scale context switching latencies 
and high throughput



PipeSwitch overview: architecture
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PipeSwitch overview: execution

• Stop the current task and 
prepare for the next task.
• Execute the task with pipelined 

model transmission.
• Clean the environment for the 

previous task.
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Sources of context switching overhead
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Task cleaning

Task initialization

Memory allocation

Model transmission



How to reduce the overhead?
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Pipelined
model transmissionModel transmission



DL models have layered structures
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Sequential model transmission and execution
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Transmit layer 0 Execute layer 0



Pipelined model transmission and execution
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Pipelined model transmission and execution
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Pipelined model transmission and execution
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Pipelined model transmission and execution
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Transmit layer 2

Execute layer 1

PCIe

GPU

T0 T1 Tn-1T2
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Pipelined model transmission and execution
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1.Multiple calls to PCIe;
2.Synchronize transmission and execution.



Pipelined model transmission and execution
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Pipelined model transmission and execution
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• Exponential time to find the optimal strategy
• Two heuristics for pruning



How to reduce the overhead?
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Unified
memory management
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Task initialization

Memory allocation

Model transmission



Unified memory management
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GPU memory

Memory
Daemon Workers

Pointer

Offset

Manage model parameters.
Allocate GPU memory.



How to reduce the overhead?
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Active-standby
worker switching

Task cleaning

Task initialization

Memory allocation

Model transmission



Active-standby worker switching
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Active-standby worker switching
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Active-standby worker switching
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Launch the process.
Create CUDA context. Allocate GPU memory.



Active-standby worker switching
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Implementation

• Testbed: AWS EC2
• p3.2xlarge: PCIe 3.0x16, NVIDIA Tesla V100 GPU
• g4dn.2xlarge: PCIe 3.0x8, NVIDIA Tesla T4 GPU

• Software
• CUDA 10.1
• PyTorch 1.3.0

• Models
• ResNet-152
• Inception-v3
• BERT-base

135



Evaluation

• Can PipeSwitch satisfy SLOs?

• Can PipeSwitch provide high utilization?

• How well do the design choices of PipeSwitch work?
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Evaluation

• Can PipeSwitch satisfy SLOs?

• Can PipeSwitch provide high utilization?
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PipeSwitch satisfies SLOs
NVIDIA Tesla V100 NVIDIA Tesla T4

138
PipeSwitch achieves low context switching latency.



PipeSwitch provide high utilization
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Scheduling cycles

PipeSwitch achieves near 100% utilization.



Summary

• GPU clusters for DL applications suffer from low utilization
• Limited share between training and inference workloads

• PipeSwitch introduces pipelined context switching
• Enable GPU-efficient multiplexing of DL apps with fine-grained time-sharing
• Achieve millisecond-scale context switching latencies and high throughput
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