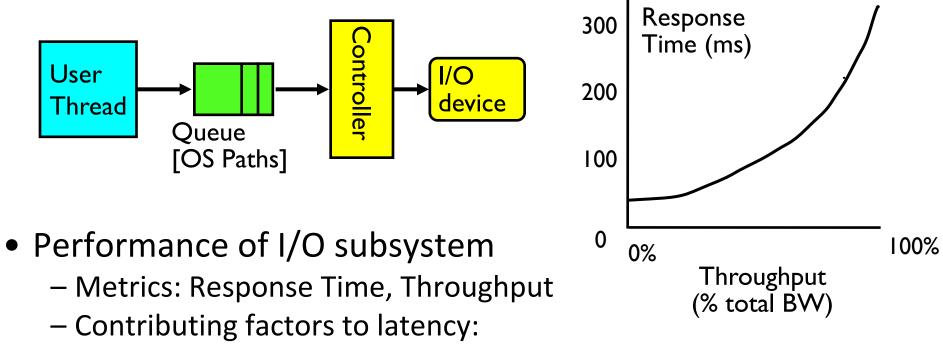
Operating Systems (Honor Track)

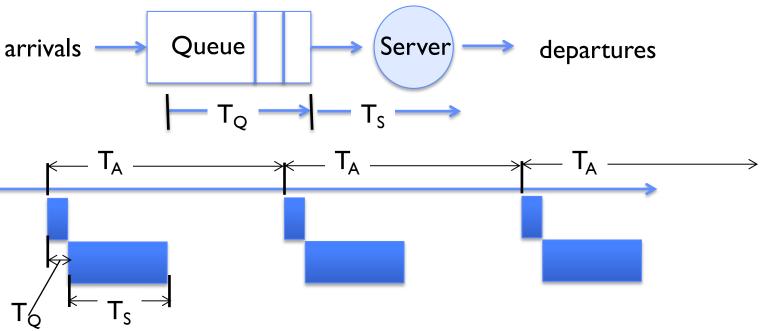
File System 1: IO Performance, File System Design

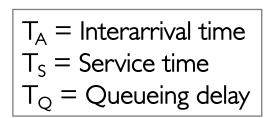
Xin Jin Spring 2022


Acknowledgments: Ion Stoica, Berkeley CS 162

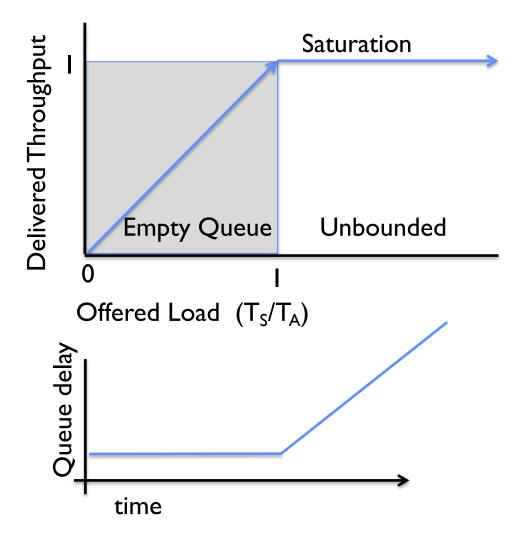
Basic Performance Concepts

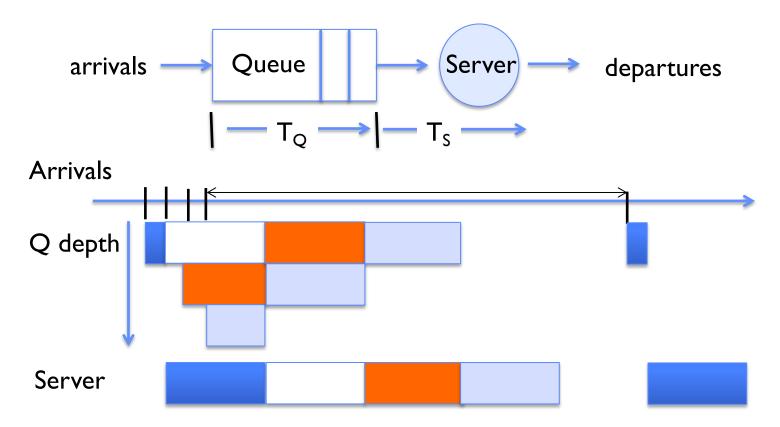
- *Response Time* or *Latency*: Time to perform an operation
- *Bandwidth* or *Throughput*: Rate at which operations are performed


– Operations: op/s, Files: MB/s, Networks: Mb/s, Arithmetic: GFLOP/s


I/O Performance

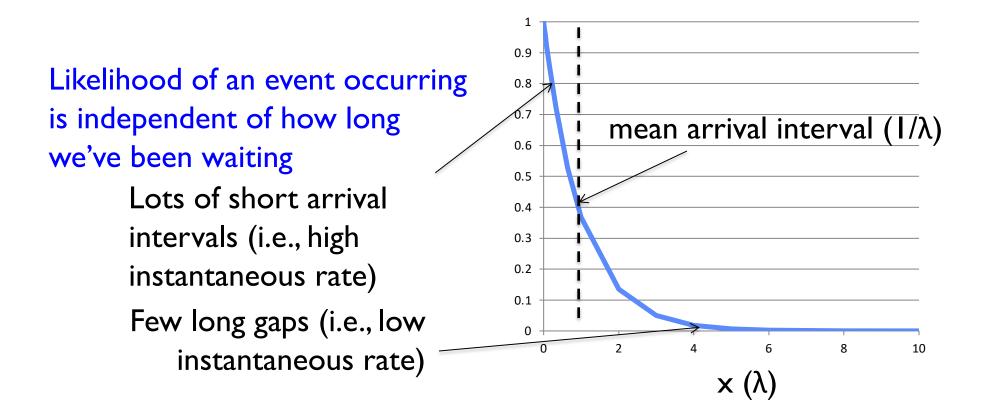
- » Software paths (can be loosely modeled by a queue)
- » Hardware controller
- » I/O device service time
- Queuing behavior:
 - Can lead to big increases of latency as utilization increases
 - Solutions?


A Simple Deterministic World

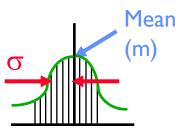

- Assume requests arrive at regular intervals, take a fixed time to process, with plenty of time between ...
- Service rate ($\mu = 1/T_s$) operations per second
- Arrival rate: $(\lambda = 1/T_A)$ operations per second
- Utilization: $U = \lambda/\mu = T_S/T_A$, where $\lambda < \mu$

An Ideal Linear World

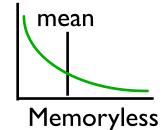
- What does the queue wait time look like?
 - Grows unbounded


A Bursty World

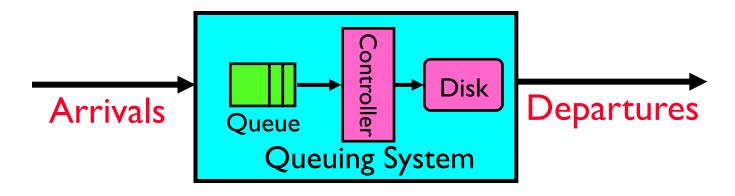
- Requests arrive in a burst, must queue up till served
- Same average arrival time, but almost all of the requests experience large queue delays
- Even though average utilization is low


So how do we model the burstiness of arrival?

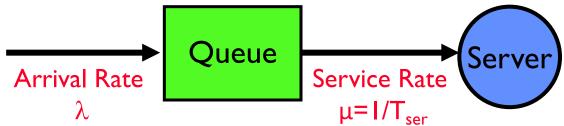
- Elegant mathematical framework if you start with *exponential distribution*
 - Probability density function of a continuous random variable with a mean of $1/\lambda$
 - $f(x) = \lambda e^{-\lambda x}$
 - "Memoryless"



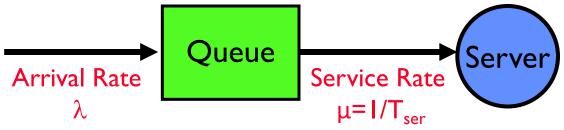
Background: General Use of Random Distributions


- Server spends variable time (T) with customers
 - Mean (Average) m = $\Sigma p(T) \times T$
 - Variance (stddev²) $\sigma^2 = \Sigma p(T) \times (T-m)^2 = \Sigma p(T) \times T^2 m^2$
 - Squared coefficient of variance: $C = \sigma^2/m^2$ Aggregate description of the distribution
- Important values of C:
 - No variance or deterministic \Rightarrow C=0
 - "Memoryless" or exponential \Rightarrow C=1
 - » Past tells nothing about future
 - » Many complex systems (or aggregates) are well described as memoryless
 - Disk response times $C \approx 1.5$ (majority seeks < average)

Distribution of service times


Introduction to Queuing Theory

- What about queuing time??
 - Let's apply some queuing theory
 - Queuing Theory applies to long term, steady state behavior ⇒
 Arrival rate = Departure rate
- Arrivals characterized by some probabilistic distribution
- Departures characterized by some probabilistic distribution


A Little Queuing Theory: Some Results (1/2)

- Assumptions:
 - System in equilibrium; No limit to the queue
 - Time between successive arrivals is random and memoryless

- Parameters that describe our system:
 - $-\lambda$: mean number of arriving customers/second
 - T_{ser}: mean time to service a customer ("m")
 - C: squared coefficient of variance = σ^2/m^2
 - $-\mu$: service rate = $1/T_{cer}$
 - server utilization ($0 \le u \le 1$): $u = \lambda / \mu = \lambda \times T_{ser}$ – u:
- Parameters we wish to compute:
 - Time spent in the queue
 - $-T_{q}$: L_{a} : Length of queue = $\lambda \times T_a$ (by Little's law)

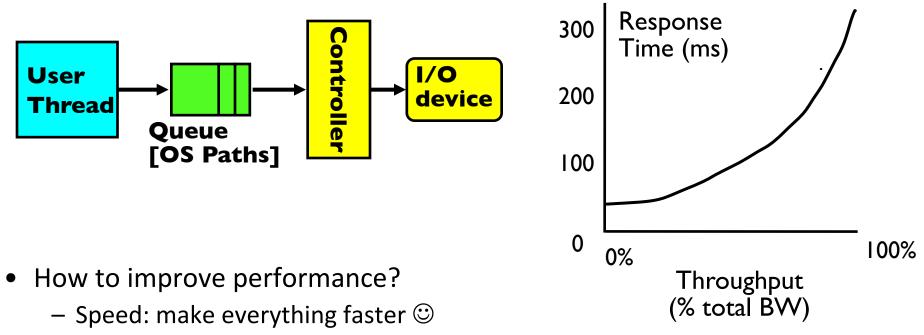
A Little Queuing Theory: Some Results (2/2)

- Parameters that describe our system:
 - $-\lambda$: mean number of arriving customers/second $\lambda = 1/T_A$
 - T_{ser}: mean time to service a customer ("m")
 - C: squared coefficient of variance = σ^2/m^2
 - $-\mu$: service rate = $1/T_{ser}$
 - u: server utilization ($0 \le u \le 1$): $u = \lambda / \mu = \lambda \times T_{ser}$
- Parameters we wish to compute:
 - $-T_q$: Time spent in the queue
 - $-L_q$: Length of queue = $\lambda \times T_q$ (by Little's law)
- Results (M: Poisson arrival process, server):
 - Memoryless service time distribution (C = 1): Called an M/M/I queue

» T_q = T_{ser} x u/(1 – u)

- General service time distribution (no restrictions): Called an M/G/I queue » $T_a = T_{ser} \times \frac{1}{2}(1+C) \times u/(1-u)$

A Little Queuing Theory: An Example (1/2)

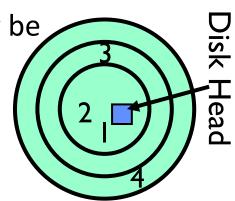

- Example Usage Statistics:
 - User requests 10 x 8KB disk I/Os per second
 - Requests & service exponentially distributed (C=1.0)
 - Avg. service = 20 ms (From controller + seek + rotation + transfer)
- Questions:
 - How utilized is the disk (server utilization)? Ans:, $u = \lambda T_{ser}$
 - What is the average time spent in the queue? Ans: T_q
 - What is the number of requests in the queue? Ans: L_q
 - What is the avg response time for disk request? Ans: $T_{sys} = T_q + T_{ser}$

A Little Queuing Theory: An Example (2/2)

• Questions:

- How utilized is the disk (server utilization)? Ans:, $u = \lambda T_{ser}$
- What is the average time spent in the queue? Ans: T_q
- What is the number of requests in the queue? Ans: L_q
- What is the avg response time for disk request? Ans: $T_{sys} = T_q + T_{ser}$
- Computation:
 - λ (avg # arriving customers/s) = 10/s
 - T_{ser} (avg time to service customer) = 20 ms (0.02s)
 - u (server utilization) = $\lambda \times T_{ser}$ = 10/s x .02s = 0.2
 - $T_{q} (avg time spent in queue) = T_{ser} \times u/(1 u)$ = 20 x 0.2/(1-0.2) = 20 x 0.25 = 5 ms (0.005s)
 - $\begin{array}{ll} \mathsf{L}_{\mathsf{q}} & (\text{avg length of queue}) = \lambda \ x \ \mathsf{T}_{\mathsf{q}} = 10/s \ x \ .005s = 0.05 \\ \mathsf{T}_{\mathsf{sys}} & (\text{avg response time for disk request}) = \mathsf{T}_{\mathsf{q}} + \mathsf{T}_{\mathsf{ser}} = 25 \ \mathrm{ms} \end{array}$

Optimize I/O Performance


- Parallelism: More Decoupled systems
 - » multiple independent buses or controllers
- Overlap: do other useful work while waiting
- Optimize the bottleneck to increase service rate
 - » Use the queue to optimize the performance
- Queues absorb bursts and smooth the flow
- Admissions control (finite queues)
 - Limits delays, but may introduce unfairness and livelock

When is Disk Performance Highest?

- When there are big sequential reads, or
- ... when there is so much work to do so that they can be piggybacked (reordering queues—one moment)
- OK to be inefficient when things are mostly idle
- Bursts are both a threat and an opportunity
 - Treat: they can increase latency
 - Opportunity: enable piggyback (e.g., reordering of requests) & batching (e.g., one context switch to handle multiple requests)
- Other techniques:
 - Reduce overhead through user level drivers (e.g., avoid context switching)
 - Reduce the impact of I/O delays by doing other useful work in the meantime

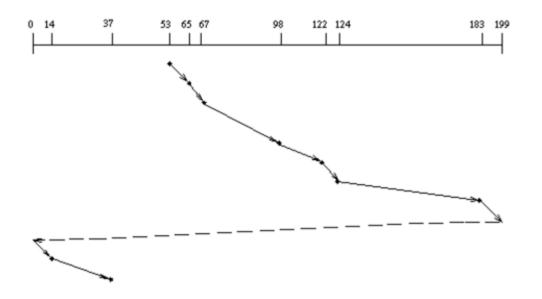
Disk Scheduling (1/3)

- Disk can do only one request at a time; What order do you choose to do queued requests?
 User
 Requests
- FIFO Order
 - Fair among requesters, but order of arrival may be to random spots on the disk \Rightarrow Very long seeks
- SSTF: Shortest seek time first
 - Pick the request that's closest on the disk
 - Although called SSTF, today must include rotational delay in calculation, since rotation can be as long as seek
 - Con: SSTF good at reducing seeks, but may lead to starvation

Disk Scheduling (2/3)

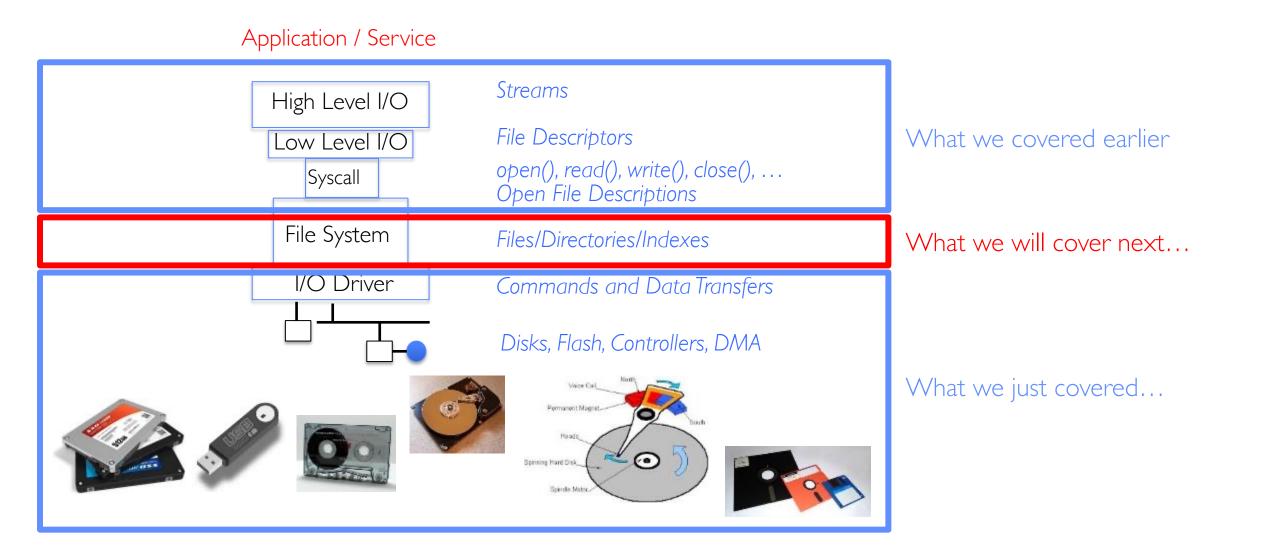
 Disk can do only one request at a time; What order do you choose to do queued requests?

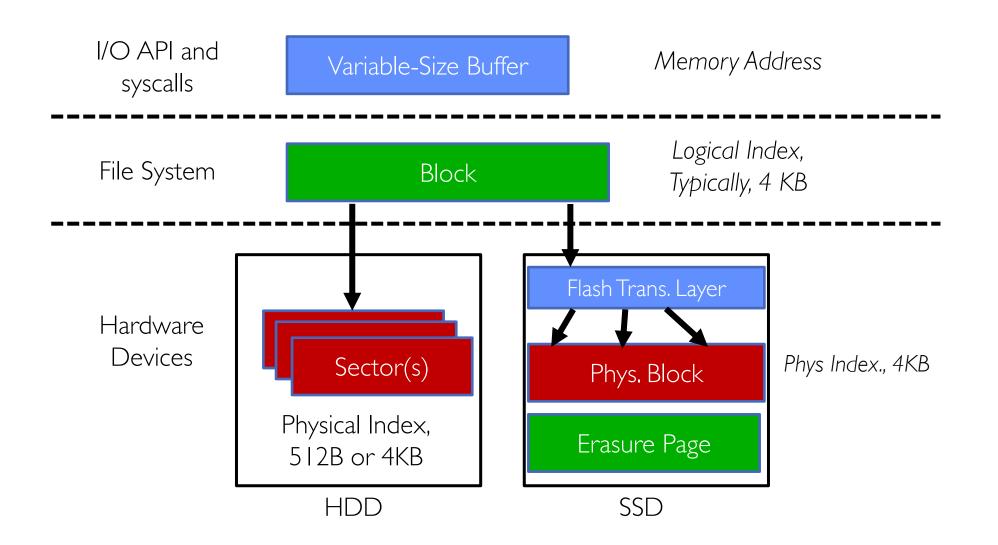
- SCAN: Implements an Elevator Algorithm: take the closest request in the direction of travel
 - No starvation, but retains flavor of SSTF



Disk Scheduling (3/3)

 Disk can do only one request at a time; What order do you choose to do queued requests?

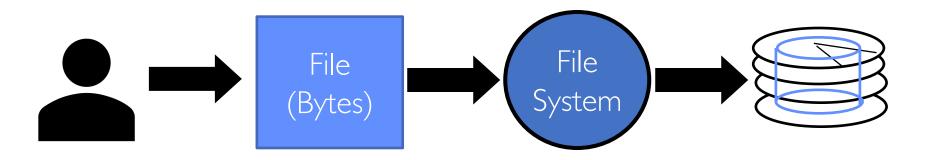

- C-SCAN: Circular-Scan: only goes in one direction
 - Skips any requests on the way back
 - Fairer than SCAN, not biased towards pages in middle


Network IO

- Packets in network IO vs. blocks in disk IO, but the general principles apply
- Network IO is critical in modern cloud systems
 - Applications/systems are networked/distributed
 - Accessing to storage is via network IO!
 - » It is a common approach today to organize storage devices as a storage pool
 - » Accessing the storage pool via the datacenter network from compute nodes
- Approaches to improve network IO performance
 - Better abstractions for distributed applications, e.g., coflow
 - Optimize TCP/IP stack in the kernel
 - Kernel-bypass
 - » User-space network stack
 - » Offload to the NIC, e.g., RDMA, SmartNICs, and DPUs

Recall: I/O and Storage Layers

From Storage to File Systems


Building a File System

- File System: Layer of OS that transforms block interface of disks (or other block devices) into Files, Directories, etc.
- Classic OS situation: Take limited hardware interface (array of blocks) and provide a more convenient/useful interface with:
 - Naming: Find file by name, not block numbers
 - Organization:
 - » File names in directories
 - » Map files to blocks
 - Protection: Enforce access restrictions
 - Reliability: Keep files intact despite crashes, hardware failures, etc.

User vs. System View of a File

- User's view:
 - Durable Data Structures
- System's view (system call interface):
 - Collection of Bytes (UNIX)
 - Doesn't matter to system what kind of data structures you want to store on disk!
- System's view (inside OS):
 - Collection of blocks (a block is a logical transfer unit, while a sector is the physical transfer unit)
 - Block size \geq sector size; in UNIX, block size is 4KB

Translation from User to System View

- What happens if user says: "give me bytes 2 12?"
 - Fetch block corresponding to those bytes
 - Return just the correct portion of the block
- What about writing bytes 2 12?
 - Fetch block, modify relevant portion, write out block
- Everything inside file system is in terms of whole-size blocks
 - Actual disk I/O happens in blocks
 - read/write smaller than block size needs to translate and buffer

Disk Management

- Basic entities on a disk:
 - File: user-visible group of blocks arranged sequentially in logical space
 - Directory: user-visible index mapping names to files
- The disk is accessed as linear array of sectors
- How to identify a sector?
 - Physical position
 - » Sectors is a vector [cylinder, surface, sector]
 - » Not used any more
 - » OS/BIOS must deal with bad sectors
 - Logical Block Addressing (LBA)
 - » Every sector has integer address
 - » Controller translates from address \Rightarrow physical position
 - » Shields OS from structure of disk

What Does the File System Need?

- Track which blocks contain data for which files
 Need to know where to read a file from
- Track files in a directory

- Find list of file's blocks given its name

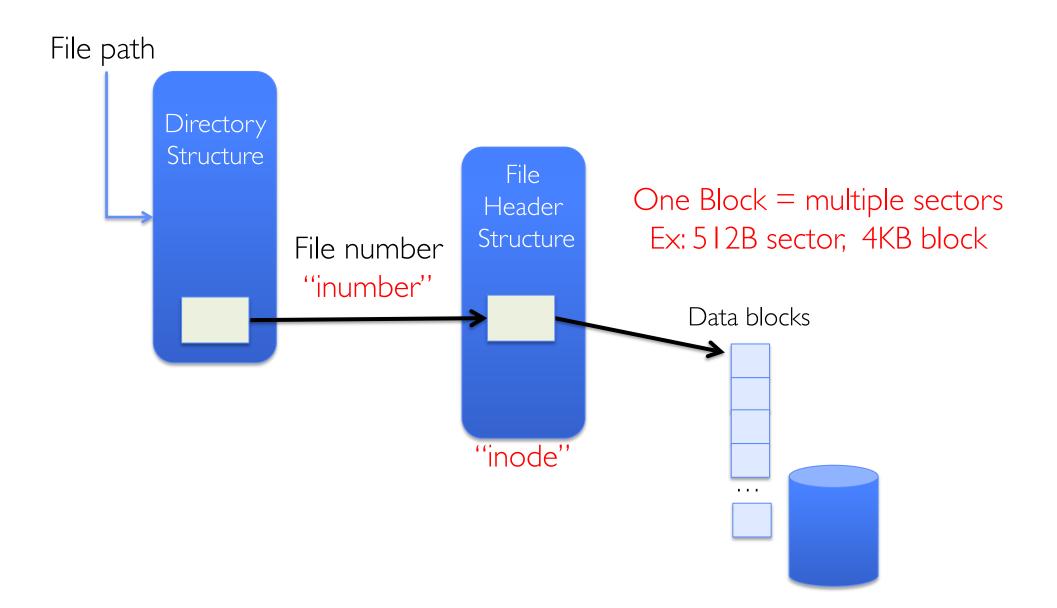
• Track free disk blocks

- Need to know where to put newly written data

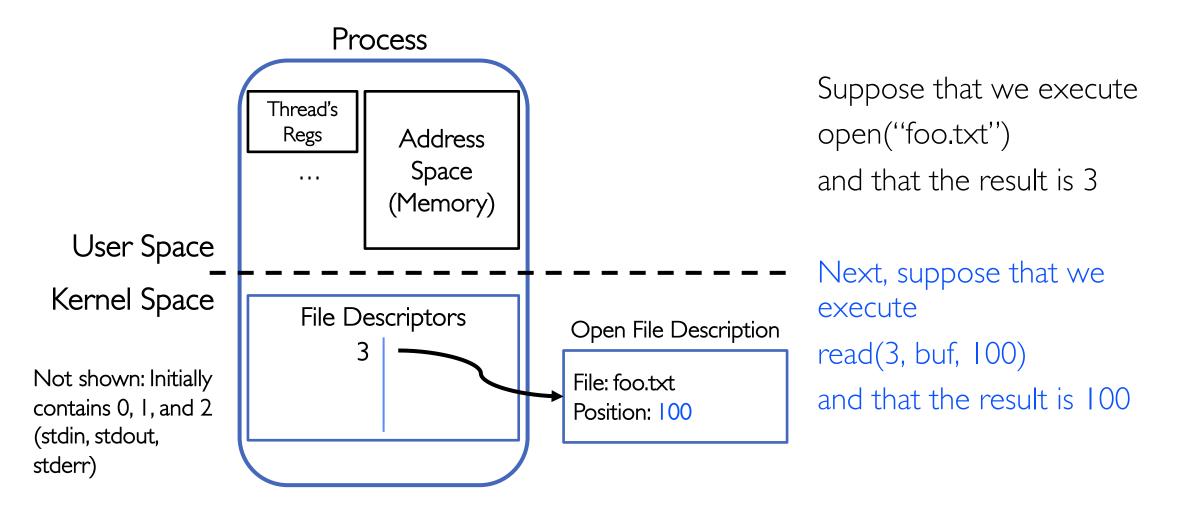
• Where do we maintain all of this?

-Somewhere on disk

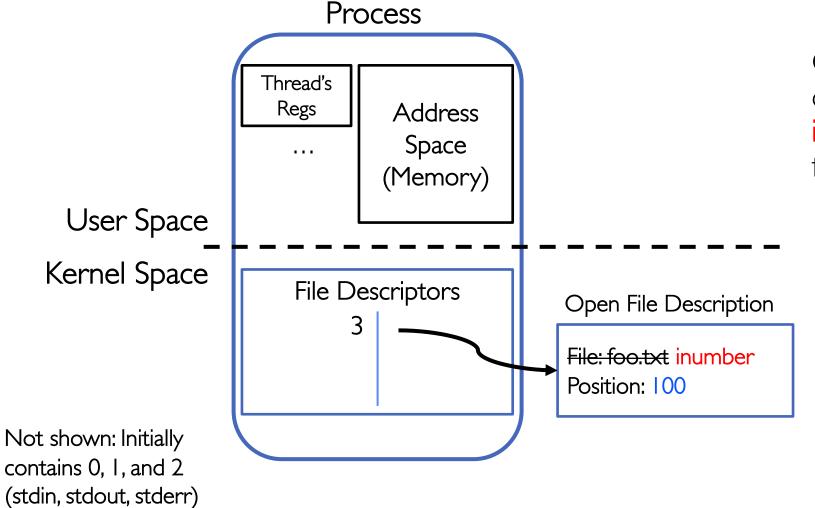
Data Structures on Disk


- Data structure on disk different than data structures in memory
- Access a block at a time
 - Can't efficiently read/write a single word
 - Have to read/write full block containing it
 - Ideally want sequential access patterns
- Durability
 - Ideally, file system is in meaningful state upon shutdown
 - This obviously isn't always the case...

FILE SYSTEM DESIGN


Critical Factors in File System Design

- (Hard) Disk Performance !!!
 - Maximize sequential access, minimize seeks
- Open before Read/Write
 - Can perform protection checks and look up where the actual file resource are, in advance
- Size is determined as files are used !!!
 - Can write to expand the file
 - Start small and grow, need to make room
- Organized into directories
 - What data structure (on disk) for that?
- Need to carefully allocate / free blocks
 - Such that access remains efficient


Components of a File System

Recall: Abstract Representation of a Process

Components of a File System

Open file description is better described as remembering the **inumber (file number)** of the file, not its name

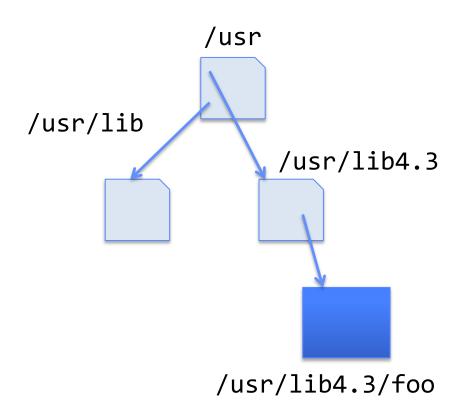
Components of a File System

- Open performs Name Resolution
 - Translates path name into a "file number"
- Read and Write operate on the file number
 - Use file number as an "index" to locate the blocks

• 4 components:

- directory, index structure, storage blocks, free space map

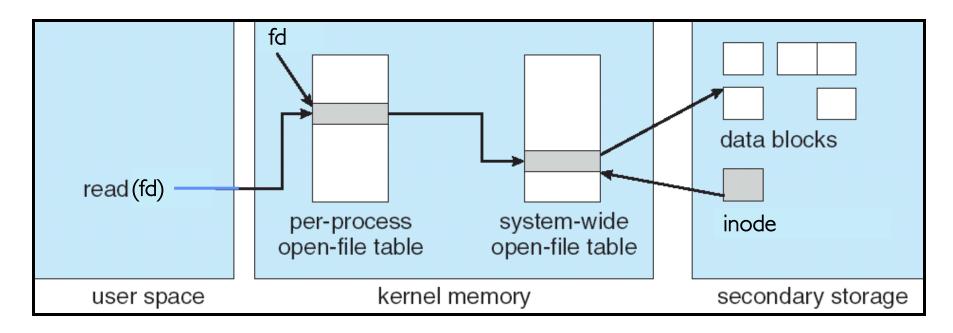
How to get the File Number?


- Look up in *directory structure*
- A directory is a file containing <file_name : file_number> mappings
 - File number could be a file or another directory
 - Operating system stores the mapping in the directory in a format it interprets
 - Each <file_name : file_number> mapping is called a directory entry
- Process isn't allowed to read the raw bytes of a directory
 - The read function doesn't work on a directory
 - Instead, see readdir, which iterates over the map without revealing the raw bytes
- Why shouldn't the OS let processes read/write the bytes of a directory?

Directories

< >		> ↓ ↓				Q Search
			Data Madified	0 inc	Mad	-
avorites	Name static	^	Date Modified Feb 10, 2016, 12:45 PM	Size	Folder	
😺 Dropbox			Jan 14, 2016, 11:51 AM		Folder	
iCloud Drive	exams		Mar 10, 2016, 9:03 PM		Folder	
	fonts		Jan 14, 2016, 11:51 AM		Folder	
(AirDrop	T hw		Mar 1, 2016, 7:29 PM		Folder	
Desktop	hw0.pdf		Jan 20, 2016, 3:19 PM	175 KB	PDF Document	
adj	hw1.pdf		Feb 11, 2016, 9:42 AM	128 KB	PDF Document	
	hw2.pdf		Feb 16, 2016, 9:00 PM	180 KB	PDF Document	
Applications	hw3.pdf		Mar 1, 2016, 7:29 PM	200 KB	PDF Document	
Documents	▶ is		Jan 14, 2016, 11:51 AM		Folder	
O Downloads	lectures		Apr 1, 2016, 5:41 PM		Folder	
•	▶ 📄 pics		Jan 18, 2016, 6:13 PM		Folder	
H Movies	profiles		Jan 25, 2016, 3:32 PM		Folder	
box Box Sync	projects		Mar 26, 2016, 10:07 AM		Folder	
Google Drive	🔻 🚞 readings		Jan 14, 2016, 11:51 AM		Folder	
_	endtoend.pdf		Jan 14, 2016, 11:51 AM	38 KB	PDF Document	
Devices	FFS84.pdf		Jan 14, 2016, 11:51 AM	1.3 MB	PDF Document	
Remote Disc	garman_bug_81.pdf		Jan 14, 2016, 11:51 AM	610 KB	PDF Document	
	jacobson-congestion.pdf		Jan 14, 2016, 11:51 AM	1.2 MB	PDF Document	
Shared	Original_Byzantine.pdf		Jan 14, 2016, 11:51 AM	1.2 MB	PDF Document	
adj-MBP	patterson_queue.pdf		Jan 14, 2016, 11:51 AM	1.3 MB	PDF Document	
🕀 adj-mini	TheracNew.pdf		Jan 14, 2016, 11:51 AM	299 KB	PDF Document	
🖨 fido	v ections		Mar 17, 2016, 10:03 AM		Folder	
	section1.pdf		Jan 18, 2016, 6:13 PM	130 KB	PDF Document	
@ All	section2.pdf		Jan 26, 2016, 7:13 PM	108 KB	PDF Document	
Tags	section2sol.pdf		Jan 28, 2016, 10:10 AM	127 KB	PDF Document	
	section3.pdf		Feb 5, 2016, 10:15 AM	115 KB	PDF Document	
	section3sol.pdf		Feb 5, 2016, 10:15 AM	134 KB	PDF Document	
	e section4.pdf		Feb 10, 2016, 12:45 PM	114 KB	PDF Document	
	section4sol.pdf		Feb 11, 2016, 9:42 AM	134 KB	PDF Document	
	A section5 odf Macintosh HD > total Macintosh HD > total	CitHub is Drawb	Eah 16 2016 1:55 DM	109 KB	PDE Document	
	au macinitosi no + 🚺 osers + 🝸 adj + 🚺 Documents +					
		51 item	is, 39.01 GB available			

Directory Abstraction


- Directories are specialized files
 - Contents: List of pairs <file name, file number>
- System calls to access directories
 - open / creat / readdir traverse the structure
 - mkdir / rmdir add/remove entries
 - link / unlink

Directory Structure

- How many disk accesses to resolve "/my/book/count"?
 - Read in file header for root (fixed position on disk)
 - Read in first data block for root
 - » Table of file name/index pairs.
 - » Search linearly ok since directories typically very small
 - Read in file header for "my"
 - Read in first data block for "my"; search for "book"
 - Read in file header for "book"
 - Read in first data block for "book"; search for "count"
 - Read in file header for "count"
- Current working directory: Per-address-space pointer to a directory used for resolving file names
 - Allows user to specify relative filename instead of absolute path (say CWD="/my/book" can resolve "count")

In-Memory File System Structures

- Open syscall: find inode on disk from pathname (traversing directories)
 - Create "in-memory inode" in system-wide open file table
 - One entry in this table no matter how many instances of the file are open
- Read/write syscalls look up in-memory inode using the file handle

Characteristics of Files

A Five-Year Study of File-System Metadata

NITIN AGRAWAL University of Wisconsin, Madison and WILLIAM J. BOLOSKY, JOHN R. DOUCEUR, and JACOB R. LORCH Microsoft Research Published in FAST 2007

annual snapshots of file-system metadata from over 60,000 Windows PC file systems in a large corporation

Observation #1: Most Files Are Small

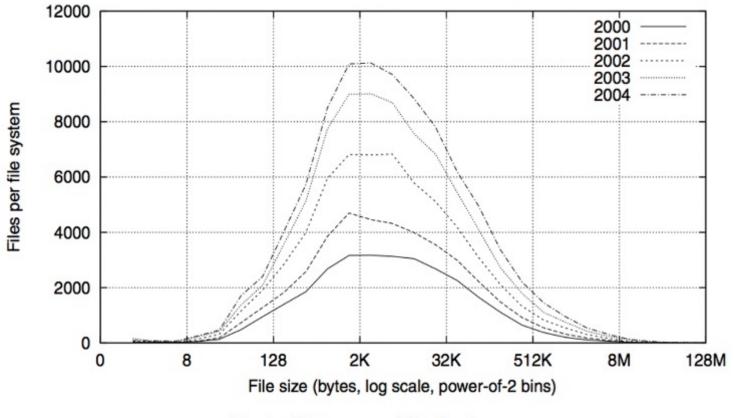


Fig. 2. Histograms of files by size.

Observation #2: Most Bytes are in Large Files

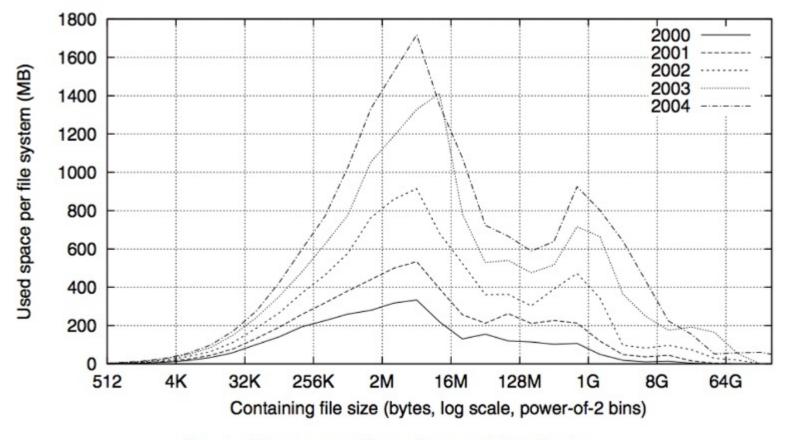


Fig. 4. Histograms of bytes by containing file size.

Conclusion

- Systems (e.g., file system) designed to optimize performance and reliability
 - Relative to performance characteristics of underlying device
- Bursts & High Utilization introduce queuing delays
- Queuing Latency:
 - M/M/1 and M/G/1 queues: simplest to analyze
 - As utilization approaches 100%, latency $\rightarrow\infty$

 $T_q = T_{ser} \times \frac{1}{2}(1+C) \times \frac{u}{1-u}$

- File System:
 - Transforms blocks into Files and Directories
 - Optimize for access and usage patterns
 - Maximize sequential access, allow efficient random access
- File (and directory) defined by header, called "inode"
- Naming: translating from user-visible names to actual sys resources
 - Directories used for naming for local file systems
 - Linked or tree structure stored in files