
Acknowledgments: Ion Stoica, Berkeley CS 162

Xin Jin
Spring 2022

Operating Systems
(Honor Track)

File System 1: IO Performance, File System Design

2

Basic Performance Concepts

• Response Time or Latency: Time to perform an operation

• Bandwidth or Throughput: Rate at which operations are performed
– Operations: op/s, Files: MB/s, Networks: Mb/s, Arithmetic: GFLOP/s

3

I/O Performance

User
Thread

Queue
[OS Paths]

C
ontroller

I/O
device

• Performance of I/O subsystem
– Metrics: Response Time, Throughput
– Contributing factors to latency:

» Software paths (can be loosely modeled by a queue)
» Hardware controller
» I/O device service time

• Queuing behavior:
– Can lead to big increases of latency as utilization increases
– Solutions?

100%

Response
Time (ms)

Throughput
(% total BW)

0

100

200

300

0%

4

A Simple Deterministic World

• Assume requests arrive at regular intervals, take a fixed time
to process, with plenty of time between …

• Service rate (μ = 1/TS) - operations per second
• Arrival rate: (λ = 1/TA) - operations per second
• Utilization: U = λ/μ = TS/TA, where λ < μ

Queue Serverarrivals departures

TQ TS

TA TA TA

TSTQ

TA = Interarrival time
TS = Service time
TQ = Queueing delay

5

An Ideal Linear World

• What does the queue wait time look like?
– Grows unbounded

time

Q
ue

ue
 d

el
ay

D
el

iv
er

ed
 T

hr
ou

gh
pu

t
0 1

1

Offered Load (TS/TA)

Empty Queue

Saturation

Unbounded

6

A Bursty World

• Requests arrive in a burst, must queue up till served
• Same average arrival time, but almost all of the requests

experience large queue delays
• Even though average utilization is low

Queue Serverarrivals departures

TQ TS

Q depth

Server

Arrivals

7

• Elegant mathematical framework if you start with exponential distribution
– Probability density function of a continuous random variable with a mean of 1/λ
– f(x) = λe-λx

– “Memoryless”

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10

Likelihood of an event occurring
is independent of how long
we’ve been waiting

So how do we model the burstiness of arrival?

Lots of short arrival
intervals (i.e., high
instantaneous rate)
Few long gaps (i.e., low

instantaneous rate)
x (λ)

mean arrival interval (1/λ)

8

Background: General Use of Random Distributions

• Server spends variable time (T) with customers
– Mean (Average) m = Sp(T)´T
– Variance (stddev2) s2 = Sp(T)´(T-m)2 = Sp(T)´T2-m2

– Squared coefficient of variance: C = s2/m2

Aggregate description of the distribution

• Important values of C:
– No variance or deterministic Þ C=0
– “Memoryless” or exponential Þ C=1

» Past tells nothing about future
» Many complex systems (or aggregates)

are well described as memoryless
– Disk response times C » 1.5 (majority seeks < average)

Mean
(m)

mean

Memoryless

Distribution
of service times

s

9

DeparturesArrivals
Queuing System

Introduction to Queuing Theory

• What about queuing time??
– Let’s apply some queuing theory
– Queuing Theory applies to long term, steady state behavior Þ

Arrival rate = Departure rate

• Arrivals characterized by some probabilistic distribution

• Departures characterized by some probabilistic
distribution

Queue

C
ontroller

Disk

10

A Little Queuing Theory: Some Results (1/2)
• Assumptions:

– System in equilibrium; No limit to the queue
– Time between successive arrivals is random and memoryless

• Parameters that describe our system:
– l: mean number of arriving customers/second
– Tser: mean time to service a customer (“m”)
– C: squared coefficient of variance = s2/m2

– μ: service rate = 1/Tser
– u: server utilization (0£u£1): u = l/μ = l ´ Tser

• Parameters we wish to compute:
– Tq: Time spent in the queue
– Lq: Length of queue = l ´ Tq (by Little’s law)

Arrival Rate
l

Queue Server
Service Rate

μ=1/Tser

11

A Little Queuing Theory: Some Results (2/2)

• Parameters that describe our system:
– l: mean number of arriving customers/second l= 1/TA
– Tser: mean time to service a customer (“m”)
– C: squared coefficient of variance = s2/m2

– μ: service rate = 1/Tser
– u: server utilization (0£u£1): u = l/μ = l ´ Tser

• Parameters we wish to compute:
– Tq: Time spent in the queue
– Lq: Length of queue = l ´ Tq (by Little’s law)

• Results (M: Poisson arrival process, 1 server):
– Memoryless service time distribution (C = 1): Called an M/M/1 queue

» Tq = Tser x u/(1 – u)
– General service time distribution (no restrictions): Called an M/G/1 queue

» Tq = Tser x ½(1+C) x u/(1 – u)

Arrival Rate
l

Queue Server
Service Rate

μ=1/Tser

12

A Little Queuing Theory: An Example (1/2)

• Example Usage Statistics:
– User requests 10 x 8KB disk I/Os per second
– Requests & service exponentially distributed (C=1.0)
– Avg. service = 20 ms (From controller + seek + rotation + transfer)

• Questions:
– How utilized is the disk (server utilization)? Ans:, u = lTser
– What is the average time spent in the queue? Ans: Tq
– What is the number of requests in the queue? Ans: Lq
– What is the avg response time for disk request? Ans: Tsys = Tq + Tser

13

A Little Queuing Theory: An Example (2/2)
• Questions:

– How utilized is the disk (server utilization)? Ans:, u = lTser
– What is the average time spent in the queue? Ans: Tq
– What is the number of requests in the queue? Ans: Lq
– What is the avg response time for disk request? Ans: Tsys = Tq + Tser

• Computation:
l (avg # arriving customers/s) = 10/s
Tser (avg time to service customer) = 20 ms (0.02s)
u (server utilization) = l x Tser= 10/s x .02s = 0.2
Tq (avg time spent in queue) = Tser x u/(1 – u)

= 20 x 0.2/(1-0.2) = 20 x 0.25 = 5 ms (0 .005s)
Lq (avg length of queue) = l x Tq=10/s x .005s = 0.05
Tsys (avg response time for disk request) =Tq + Tser= 25 ms

14

Optimize I/O Performance

• How to improve performance?
– Speed: make everything faster J
– Parallelism: More Decoupled systems

» multiple independent buses or controllers
– Overlap: do other useful work while waiting
– Optimize the bottleneck to increase service rate

» Use the queue to optimize the performance
• Queues absorb bursts and smooth the flow
• Admissions control (finite queues)

– Limits delays, but may introduce unfairness and livelock

User
Thread

Queue
[OS Paths]

C
ontroller

I/O
device

100%

Response
Time (ms)

Throughput
(% total BW)

0

100

200

300

0%

15

When is Disk Performance Highest?
• When there are big sequential reads, or ….
• … when there is so much work to do so that they can be piggybacked

(reordering queues—one moment)

• OK to be inefficient when things are mostly idle
• Bursts are both a threat and an opportunity

– Treat: they can increase latency
– Opportunity: enable piggyback (e.g., reordering of requests) & batching (e.g.,

one context switch to handle multiple requests)

• Other techniques:
– Reduce overhead through user level drivers (e.g., avoid context switching)
– Reduce the impact of I/O delays by doing other useful work in the meantime

16

Disk Scheduling (1/3)
• Disk can do only one request at a time; What order do you choose to

do queued requests?

• FIFO Order
– Fair among requesters, but order of arrival may be

to random spots on the disk Þ Very long seeks
• SSTF: Shortest seek time first

– Pick the request that’s closest on the disk
– Although called SSTF, today must include

rotational delay in calculation, since
rotation can be as long as seek

– Con: SSTF good at reducing seeks, but
may lead to starvation

2,3
2,1
3,10
7,2
5,2
2,2 HeadUser

Requests

1

4

2

D
isk H

ead

3

cylinder
sector

17

Disk Scheduling (2/3)
• Disk can do only one request at a time; What order do you choose to

do queued requests?

• SCAN: Implements an Elevator Algorithm: take the closest request in
the direction of travel

– No starvation, but retains flavor of SSTF

2,3
2,1
3,10
7,2
5,2
2,2 HeadUser

Requests

18

Disk Scheduling (3/3)
• Disk can do only one request at a time; What order do you choose to

do queued requests?

• C-SCAN: Circular-Scan: only goes in one direction
– Skips any requests on the way back
– Fairer than SCAN, not biased towards pages in middle

2,3
2,1
3,10
7,2
5,2
2,2 HeadUser

Requests

19

Network IO

• Packets in network IO vs. blocks in disk IO, but the general principles apply

• Network IO is critical in modern cloud systems
– Applications/systems are networked/distributed
– Accessing to storage is via network IO!

» It is a common approach today to organize storage devices as a storage pool
» Accessing the storage pool via the datacenter network from compute nodes

• Approaches to improve network IO performance
– Better abstractions for distributed applications, e.g., coflow
– Optimize TCP/IP stack in the kernel
– Kernel-bypass

» User-space network stack
» Offload to the NIC, e.g., RDMA, SmartNICs, and DPUs

20

Recall: I/O and Storage Layers

High Level I/O
Low Level I/O

Syscall

File System

I/O Driver

Application / Service

Streams

File Descriptors
open(), read(), write(), close(), …

Files/Directories/Indexes

Commands and Data Transfers

Disks, Flash, Controllers, DMA

What we covered earlier

Open File Descriptions

What we just covered…

What we will cover next…

21

From Storage to File Systems

I/O API and
syscalls Variable-Size Buffer

File System Block
Logical Index,
Typically, 4 KB

Hardware
Devices

Memory Address

HDD

Sector(s)

Physical Index,
512B or 4KB

SSD

Flash Trans. Layer

Phys. Block Phys Index., 4KBSector(s)Sector(s)

Erasure Page

22

Building a File System

• File System: Layer of OS that transforms block interface of disks (or other block
devices) into Files, Directories, etc.

• Classic OS situation: Take limited hardware interface (array of blocks) and
provide a more convenient/useful interface with:

– Naming: Find file by name, not block numbers

– Organization:
» File names in directories

» Map files to blocks

– Protection: Enforce access restrictions

– Reliability: Keep files intact despite crashes, hardware failures, etc.

23

User vs. System View of a File
• User’s view:

– Durable Data Structures

• System’s view (system call interface):
– Collection of Bytes (UNIX)
– Doesn’t matter to system what kind of data structures you want to store on disk!

• System’s view (inside OS):
– Collection of blocks (a block is a logical transfer unit, while a sector is the physical transfer

unit)
– Block size ³ sector size; in UNIX, block size is 4KB

24

Translation from User to System View

• What happens if user says: “give me bytes 2 – 12?”
– Fetch block corresponding to those bytes
– Return just the correct portion of the block

• What about writing bytes 2 – 12?
– Fetch block, modify relevant portion, write out block

• Everything inside file system is in terms of whole-size blocks
– Actual disk I/O happens in blocks
– read/write smaller than block size needs to translate and buffer

File
System

File
(Bytes)

25

Disk Management
• Basic entities on a disk:

– File: user-visible group of blocks arranged sequentially in logical space
– Directory: user-visible index mapping names to files

• The disk is accessed as linear array of sectors
• How to identify a sector?

– Physical position
» Sectors is a vector [cylinder, surface, sector]
» Not used any more
» OS/BIOS must deal with bad sectors

– Logical Block Addressing (LBA)
» Every sector has integer address
» Controller translates from address Þ physical position
» Shields OS from structure of disk

26

What Does the File System Need?

• Track which blocks contain data for which files
– Need to know where to read a file from

• Track files in a directory
– Find list of file's blocks given its name

• Track free disk blocks
– Need to know where to put newly written data

• Where do we maintain all of this?
– Somewhere on disk

27

Data Structures on Disk

• Data structure on disk different than data structures in memory

• Access a block at a time
– Can't efficiently read/write a single word
– Have to read/write full block containing it
– Ideally want sequential access patterns

• Durability
– Ideally, file system is in meaningful state upon shutdown
– This obviously isn't always the case…

28

FILE SYSTEM DESIGN

29

Critical Factors in File System Design
• (Hard) Disk Performance !!!

– Maximize sequential access, minimize seeks
• Open before Read/Write

– Can perform protection checks and look up where the actual file resource are, in
advance

• Size is determined as files are used !!!
– Can write to expand the file
– Start small and grow, need to make room

• Organized into directories
– What data structure (on disk) for that?

• Need to carefully allocate / free blocks
– Such that access remains efficient

30

Components of a File System

File path

Directory
Structure

File
Header
StructureFile number

“inumber”

…

Data blocks

“inode”

One Block = multiple sectors
Ex: 512B sector, 4KB block

31

Recall: Abstract Representation of a Process

Suppose that we execute
open(“foo.txt”)
and that the result is 3

Next, suppose that we
execute
read(3, buf, 100)
and that the result is 100

User Space
Kernel Space

Address
Space

(Memory)

Thread’s
Regs

File Descriptors

Not shown: Initially
contains 0, 1, and 2
(stdin, stdout,
stderr)

3
File: foo.txt
Position: 100

Open File Description

Process

…

32

Components of a File System

Open file description is better
described as remembering the
inumber (file number) of the
file, not its name

User Space
Kernel Space

Address
Space

(Memory)

Thread’s
Regs

File Descriptors

Not shown: Initially
contains 0, 1, and 2
(stdin, stdout, stderr)

3
File: foo.txt inumber
Position: 100

Open File Description

Process

…

33

Components of a File System

• Open performs Name Resolution
– Translates path name into a “file number”

• Read and Write operate on the file number
– Use file number as an “index” to locate the blocks

• 4 components:
– directory, index structure, storage blocks, free space map

file name
offset directory structure

file number
offset index structure

(“inode”)

storage block

34

How to get the File Number?

• Look up in directory structure

• A directory is a file containing <file_name : file_number> mappings
– File number could be a file or another directory
– Operating system stores the mapping in the directory in a format it interprets
– Each <file_name : file_number> mapping is called a directory entry

• Process isn’t allowed to read the raw bytes of a directory
– The read function doesn’t work on a directory
– Instead, see readdir, which iterates over the map without revealing the raw bytes

• Why shouldn’t the OS let processes read/write the bytes of a directory?

35

Directories

36

Directory Abstraction

• Directories are specialized files
– Contents: List of pairs

<file name, file number>
• System calls to access directories

– open / creat / readdir traverse the structure
– mkdir / rmdir add/remove entries
– link / unlink

/usr

/usr/lib4.3

/usr/lib4.3/foo

/usr/lib

37

Directory Structure
• How many disk accesses to resolve “/my/book/count”?

– Read in file header for root (fixed position on disk)
– Read in first data block for root

» Table of file name/index pairs.
» Search linearly – ok since directories typically very small

– Read in file header for “my”
– Read in first data block for “my”; search for “book”
– Read in file header for “book”
– Read in first data block for “book”; search for “count”
– Read in file header for “count”

• Current working directory: Per-address-space pointer to a directory used for resolving
file names

– Allows user to specify relative filename instead of absolute path (say CWD=“/my/book” can
resolve “count”)

38

In-Memory File System Structures

• Open syscall: find inode on disk from pathname (traversing directories)
– Create “in-memory inode” in system-wide open file table
– One entry in this table no matter how many instances of the file are open

• Read/write syscalls look up in-memory inode using the file handle

(fd)

fd

inode

39

Characteristics of Files

Published in FAST 2007

annual snapshots of file-system metadata from over
60,000 Windows PC file systems in a large corporation

40

Observation #1: Most Files Are Small

41

Observation #2: Most Bytes are in Large Files

42

Conclusion
• Systems (e.g., file system) designed to optimize performance and reliability

– Relative to performance characteristics of underlying device
• Bursts & High Utilization introduce queuing delays
• Queuing Latency:

– M/M/1 and M/G/1 queues: simplest to analyze
– As utilization approaches 100%, latency ®¥

Tq = Tser x ½(1+C) x u/(1 – u)
• File System:

– Transforms blocks into Files and Directories
– Optimize for access and usage patterns
– Maximize sequential access, allow efficient random access

• File (and directory) defined by header, called “inode”
• Naming: translating from user-visible names to actual sys resources

– Directories used for naming for local file systems
– Linked or tree structure stored in files

