
Acknowledgments: Ion Stoica, Berkeley CS 162

Xin Jin
Spring 2022

Operating Systems
(Honor Track)

File System 3: Buffering, Reliability, and Transactions

2

Recap: Buffer Cache
• Kernel must copy disk blocks to main memory to access their contents and write

them back if modified
– Could be data blocks, inodes, directory contents, etc.
– Possibly dirty (modified and not written back)

• Key Idea: Exploit locality by caching disk data in memory
– Name translations: mapping from paths ® inodes

– Disk blocks: mapping from block address ® disk content

• Buffer Cache: Memory used to cache kernel resources, including disk blocks and
name translations

– Can contain “dirty” blocks (with modifications not on disk)

3

Recap: Buffer Cache Discussion
• Implemented entirely in OS software

– Unlike memory caches and TLB
• Blocks go through transitional states between free and in-use

– Being read from disk, being written to disk
• Blocks are used for a variety of purposes

– inodes, data for dirs and files, freemap
– OS maintains pointers into them

• Termination – e.g., process exit – open, read, write
• Replacement – what to do when it fills up?

4

File System Caching
• Replacement policy? LRU

– Can afford overhead for full LRU implementation
– Advantages:

» Works well in general as long as memory is big enough to accommodate a host’s
working set of files.

– Disadvantages:
» Fails when some application scans through file system, thereby flushing the cache with

data used only once

• Other replacement policies?
– Some systems allow applications to request other policies
– Example, ‘Use Once’:

» File system can discard blocks as soon as they are used

5

File System Caching (con’t)
• Cache Size: How much memory should the OS allocate to the buffer cache vs virtual

memory?
– Too much memory to the file system cache Þ won’t be able to run many applications
– Too little memory to file system cache Þ many applications may run slowly (disk

caching not effective)
– Solution: adjust boundary dynamically so that the disk access rates for paging and file

access are balanced

6

File System Prefetching
• Read Ahead Prefetching: fetch sequential blocks early

– Key Idea: exploit fact that most common file access is sequential by prefetching
subsequent disk blocks ahead of current read request

– Elevator algorithm can efficiently interleave prefetches from concurrent
applications

• How much to prefetch?
– Too much prefetching imposes delays on requests by other applications

– Too little prefetching causes many seeks (and rotational delays) among concurrent
file requests

7

Delayed Writes
• Buffer cache is a writeback cache (writes are termed “Delayed Writes”)

• write() copies data from user space to kernel buffer cache
– Quick return to user space

• read() is fulfilled by the cache, so reads see the results of writes
– Even if the data has not reached disk

• When does data from a write syscall finally reach disk?
– When the buffer cache is full (e.g., we need to evict something)
– When the buffer cache is flushed periodically (in case we crash)

8

Delayed Writes (Advantages)
• Performance advantage: return to user quickly without writing to disk!

• Disk scheduler can efficiently order lots of requests
– Elevator Algorithm can rearrange writes to avoid random seeks

• Delay block allocation:
– May be able to allocate multiple blocks at same time for file, keep them contiguous

• Some files never actually make it all the way to disk
– Many short-lived files!

9

Buffer Caching vs. Demand Paging
• Demand paging

– LRU is infeasible; use approximation (like Clock)
– Evict not-recently-used pages when memory is close to full

• Buffer Cache
– LRU is OK
– Buffer Cache: write back dirty blocks periodically, even if used recently

» Why? To minimize data loss in case of a crash

10

Dealing with Persistent State
• Buffer Cache: write back dirty blocks periodically, even if used recently

– Why? To minimize data loss in case of a crash
– Linux does periodic flush every 30 seconds

• Not foolproof! Can still crash with dirty blocks in the cache
– What if the dirty block was for a directory?

» Lose pointer to file’s inode (leak space)
» File system now in inconsistent state L

11

Important “ilities”
• Availability: the probability that the system can accept and process requests

– Measured in “nines” of probability: e.g. 99.9% probability is “3-nines of availability”
– Key idea here is independence of failures

• Durability: the ability of a system to recover data despite faults
– This idea is fault tolerance applied to data
– Doesn’t necessarily imply availability: data in disk is durable, but cannot be accessed when

the machine is down

• Reliability: the ability of a system or component to perform its required functions
under stated conditions for a specified period of time (IEEE definition)

– Usually stronger than simply availability: means that the system is not only “up”, but also
working correctly

– Includes availability, security, fault tolerance/durability
– Must make sure data survives system crashes, disk crashes, other problems

12

HOW TO MAKE FILE SYSTEMS MORE DURABLE?

13

How to Make File Systems more Durable?
• Disk blocks contain Reed-Solomon error correcting codes (ECC) to deal with small

defects in disk drive
– Can allow recovery of data from small media defects

• Make sure writes survive in short term
– Either abandon delayed writes or
– Use special, battery-backed RAM (called non-volatile RAM or NVRAM) for dirty blocks in

buffer cache

• Make sure that data survives in long term
– Need to replicate! More than one copy of data!
– Important element: independence of failure

» Could put copies on one disk, but if disk head fails…
» Could put copies on different disks, but if server fails…
» Could put copies on different servers, but if building is struck by lightning….
» Could put copies on servers in different continents…

14

RAID

• RAID: Redundant array of inexpensive/independent disks

• Goal: reliability, performance, capacity

• Data storage virtualization
– Build a logical disk drive from multiple physical disk drives
– Better reliability, performance and capacity than a single physical drive

15

RAID 1: Disk Mirroring/Shadowing

• Each disk is fully duplicated onto its “shadow”
– For high I/O rate, high availability environments
– Most expensive solution: 100% capacity overhead

• Bandwidth sacrificed on write:
– Logical write = two physical writes
– Highest bandwidth when disk heads

and rotation synchronized (challenging)
• Reads may be optimized

– Can have two independent reads to same data
• Recovery:

– Disk failure Þ replace disk and copy data to new disk
– Hot Spare: idle disk attached to system for immediate replacement

recovery
group

AND

Write

OR

Read

16

• Data stripped across multiple disks
– Successive blocks stored on successive

(non-parity) disks
– Increased bandwidth over single disk

• Parity block (in green) constructed
by XORing data bocks in stripe

– P0=D0ÅD1ÅD2ÅD3
– Can destroy any one disk and still

reconstruct data

• Suppose Disk 3 fails, then can reconstruct:
D2=D0ÅD1ÅD3ÅP0

• Can spread information widely across internet for durability
– RAID algorithms work over geographic scale

RAID 5+: High I/O Rate Parity

Increasing
Logical
Disk

Addresses

Stripe Unit

D0 D1 D2 D3 P0

D4 D5 D6 P1 D7

D8 D9 P2 D10 D11

D12 P3 D13 D14 D15

P4 D16 D17 D18 D19

D20 D21 D22 D23 P5

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5

17

RAID 6 and other Erasure Codes
• In general: RAIDX is an “erasure code”

– Must have ability to know which disks are bad
– Treat missing disk as an “Erasure”

• Today, disks so big that: RAID 5 not sufficient!
– Time to repair disk sooooo long, another disk might fail in process!
– “RAID 6” – allow 2 disks in replication stripe to fail
– Requires more complex erasure code, such as EVENODD code

• More general option for general erasure code: Reed-Solomon codes
– 𝑚 data fragments
– generate n - m extra fragments
– can tolerate n – m failures

• Erasure codes not just for disk arrays. For example, geographic replication
– E.g., split data into 𝑚 = 4 fragments, generate 𝑛 = 16 fragments and distribute across

Internet
– Any 4 fragments can be used to recover the original data --- very durable!

19

• Highly durable – hard to destroy all copies
• Highly available for reads

– Simple replication: read any copy
– Erasure coded: read m of n

• Low availability for writes
– Can’t write if any one replica is not up
– Or – need relaxed consistency model

• Reliability? – availability, security, durability, fault-tolerance

Replica/Frag #1

Replica/Frag #2

Replica/Frag #n

Higher Durability through Geographic Replication

20

HOW TO MAKE FILE SYSTEMS MORE RELIABLE?

21

File System Reliability:
(Difference from Block-level reliability)

• What can happen if disk loses power or software crashes?
– Some operations in progress may complete
– Some operations in progress may be lost
– Overwrite of a block may only partially complete

• Having RAID doesn’t necessarily protect against all such failures
– No protection against writing bad state
– What if one disk of RAID group not written?

• File system needs durability (as a minimum!)
– Data previously stored can be retrieved (maybe after some recovery step), regardless

of failure

• But durability is not quite enough…!

22

Storage Reliability Problem
• Single logical file operation can involve updates to multiple physical disk

blocks
– inode, indirect block, data block, bitmap, …
– With sector remapping, single update to physical disk block can require multiple

(even lower level) updates to sectors

• At a physical level, operations complete one at a time
– Want concurrent operations for performance

• How do we guarantee consistency regardless of when crash occurs?

23

Threats to Reliability
• Interrupted Operation

– Crash or power failure in the middle of a series of related updates may leave stored data in
an inconsistent state

– Example: transfer funds from one bank account to another
– What if transfer is interrupted after withdrawal and before deposit?

• Loss of stored data
– Failure of non-volatile storage media may cause previously stored data to disappear or be

corrupted

24

Two Reliability Approaches

Careful Ordering and Recovery
• FAT & FFS + fsck
• Each step builds structure
• Data block Ü inode Ü free Ü directory
• Last step links it in to rest of FS
• Recover scans structure looking for

incomplete actions

Versioning and Copy-on-Write
• ZFS, …
• Version files at some granularity
• Create new structure linking back to

unchanged parts of old
• Last step is to declare that the new

version is ready

25

Reliability Approach #1: Careful Ordering
• Sequence operations in a specific order

– Careful design to allow sequence to be interrupted safely

• Post-crash recovery
– Read data structures to see if there were any operations in progress
– Clean up/finish as needed

• Approach taken by
– FAT and FFS (fsck) to protect file system structure/metadata
– Many app-level recovery schemes (e.g., Word, emacs autosaves)

26

Question

• Assume you need to store
– A piece of data
– A directory entry / pointer for the data

• Assume each of these operations is atomic

• Which one you should write first ? Data or Pointer ?

27

Berkeley FFS: Create a File

Normal operation:
• Allocate data block
• Write data block
• Allocate inode
• Write inode block
• Update bitmap of free blocks and

inodes
• Update directory with file name ®

inode number
• Update modify time for directory

Recovery:
• Scan inode table
• If any unlinked files (not in any

directory), delete or put in lost &
found dir

• Compare free block bitmap against
inode trees

• Scan directories for missing
update/access times

Time proportional to disk size

28

Reliability Approach #2: Copy on Write File Layout

• Recall: multi-level index structure lets us find the data blocks of a file
• Instead of over-writing existing data blocks and updating the index structure:

– Create a new version of the file with the updated data
– Reuse blocks that don’t change much of what is already in place
– This is called: Copy On Write (COW)

• Seems expensive! But
– Updates can be batched
– Almost all disk writes can occur in parallel

• Approach taken in network file server appliances
– NetApp’s Write Anywhere File Layout (WAFL)
– ZFS (Sun/Oracle) and OpenZFS

29

COW with Smaller-Radix Blocks

• If file represented as a tree of blocks, just need to
update the leading fringe

Write

old version new version

30

Example: ZFS and OpenZFS
• Variable sized blocks: 512 B – 128 KB
• Symmetric tree

– Know if it is large or small when we make the copy
• Store version number with pointers

– Can create new version by adding blocks and new pointers
• Buffers a collection of writes before creating a new version with them
• Free space represented as tree of extents in each block group

– Delay updates to free space (in log) and do them all when block group is activated

31

More General Reliability Solutions
• Use Transactions for atomic updates

– Ensure that multiple related updates are performed atomically
– i.e., if a crash occurs in the middle, the state of the systems reflects either all or none of

the updates
– Most modern file systems use transactions internally to update filesystem structures and

metadata
– Many applications implement their own transactions

• Provide Redundancy for media failures
– Redundant representation on media (Error Correcting Codes)
– Replication across media (e.g., RAID disk array)

32

Transactions
• Closely related to critical sections for manipulating shared data structures

• They extend concept of atomic update from memory to stable storage
– Atomically update multiple persistent data structures

• Many ad-hoc approaches
– FFS carefully ordered the sequence of updates so that if a crash occurred while

manipulating directory or inodes the disk scan on reboot would detect and recover
the error (fsck)

– Applications use temporary files and rename

33

Key Concept: Transaction
• A transaction is an atomic sequence of reads and writes that takes the system from

consistent state to another.

• Recall: Code in a critical section appears atomic to other threads
• Transactions extend the concept of atomic updates from memory to persistent

storage

consistent state 1 consistent state 2
transaction

34

Typical Structure
• Begin a transaction – get transaction id

• Do a bunch of updates
– If any fail along the way, roll-back
– Or, if any conflicts with other transactions, roll-back

• Commit the transaction

35

“Classic” Example: Transaction

UPDATE accounts SET balance = balance - 100.00 WHERE
name = 'Alice';

UPDATE branches SET balance = balance - 100.00 WHERE
name = (SELECT branch_name FROM accounts WHERE name
= 'Alice');

UPDATE accounts SET balance = balance + 100.00 WHERE
name = 'Bob';

UPDATE branches SET balance = balance + 100.00 WHERE
name = (SELECT branch_name FROM accounts WHERE name
= 'Bob');

BEGIN; --BEGIN TRANSACTION

COMMIT; --COMMIT WORK

Transfer $100 from Alice’s account to Bob’s account

36

Concept of a log
• One simple action is atomic – write/append a basic item
• Use that to seal the commitment to a whole series of actions

G
et

 1
0$

 fr
om

 a
cc

ou
nt

 A

G
et

 7
$

fro
m

 a
cc

ou
nt

 B

G
et

 1
3$

 fr
om

 a
cc

ou
nt

 C

Pu
t 1

5$
 in

to
 a

cc
ou

nt
 X

Pu
t 1

5$
 in

to
 a

cc
ou

nt
 Y

St
ar

t T
ra

n
N

C
om

m
it T

ra
n

N

37

Transactional File Systems
• Better reliability through use of log

– Changes are treated as transactions
– A transaction is committed once it is written to the log

» Data forced to disk for reliability
» Process can be accelerated with NVRAM

– Although File system may not be updated immediately, data preserved in the log

• Difference between “Log Structured” and “Journaled”
– In a Log Structured filesystem, data stays in log form
– In a Journaled filesystem, Log used for recovery

38

File System Summary
• Buffer Cache: Memory used to cache kernel resources, including disk blocks and

name translations
– Can contain “dirty” blocks (blocks yet on disk)

• File system operations involve multiple distinct updates to blocks on disk
– Need to have all or nothing semantics
– Crash may occur in the midst of the sequence

• Traditional file system perform check and recovery on boot
– Along with careful ordering so partial operations result in loose fragments, rather than

loss
• Copy-on-write provides richer function (versions) with much simpler recovery

– Little performance impact since sequential write to storage device is nearly free

