
Acknowledgments: Ion Stoica, Berkeley CS 162

Xin Jin
Spring 2022

Operating Systems
(Honor Track)

File System 4: Transactions &
Distributed Decision Making

2

Recap: Two Reliability Approaches

Careful Ordering and Recovery
• FAT & FFS + fsck
• Each step builds structure
• Data block Ü inode Ü free Ü directory
• Last step links it in to rest of FS
• Recover scans structure looking for

incomplete actions

Versioning and Copy-on-Write
• ZFS, …
• Version files at some granularity
• Create new structure linking back to

unchanged parts of old
• Last step is to declare that the new

version is ready

3

Recap: More General Reliability Solutions
• Use Transactions for atomic updates

– Ensure that multiple related updates are performed atomically
– i.e., if a crash occurs in the middle, the state of the systems reflects either all or none of

the updates
– Most modern file systems use transactions internally to update filesystem structures and

metadata
– Many applications implement their own transactions

• Provide Redundancy for media failures
– Redundant representation on media (Error Correcting Codes)
– Replication across media (e.g., RAID disk array)

4

Recap: Key Concept: Transaction
• A transaction is an atomic sequence of reads and writes that takes the system from

consistent state to another.

• Recall: Code in a critical section appears atomic to other threads
• Transactions extend the concept of atomic updates from memory to persistent

storage

consistent state 1 consistent state 2
transaction

5

Recap: Typical Structure
• Begin a transaction – get transaction id

• Do a bunch of updates
– If any fail along the way, roll-back
– Or, if any conflicts with other transactions, roll-back

• Commit the transaction

6

Recap: Transactional File Systems
• Better reliability through use of log

– Changes are treated as transactions
– A transaction is committed once it is written to the log

» Data forced to disk for reliability
» Process can be accelerated with NVRAM

– Although File system may not be updated immediately, data preserved in the log

• Difference between “Log Structured” and “Journaled”
– In a Log Structured filesystem, data stays in log form
– In a Journaled filesystem, Log used for recovery

7

Journaling File Systems
• Don’t modify data structures on disk directly
• Write each update as transaction recorded in a log

– Commonly called a journal or intention list
– Also maintained on disk (allocate blocks for it when formatting)

• Once changes are in the log, they can be safely applied to file system
– e.g. modify inode pointers and directory mapping

• Garbage collection: once a change is applied, remove its entry from the log

• Linux took original FFS-like file system (ext2) and added a journal to get ext3!
– Some options: whether or not to write all data to journal or just metadata

• Other examples: NTFS, Apple HFS+, Linux XFS, JFS, ext4

8

Creating a File (No Journaling Yet)

• Find free data block(s)
• Find free inode entry
• Find dirent insertion point

• Write map (i.e., mark used)
• Write inode entry to point to block(s)
• Write dirent to point to inode

Data blocks

Free space
map

…

Inode table

Directory
entries

9

Creating a File (With Journaling)

• Find free data block(s)
• Find free inode entry
• Find dirent insertion point

• [log] Write map (i.e., mark used)
• [log] Write inode entry to point to block(s)
• [log] Write dirent to point to inode

Data blocks

Free space
map

…

Inode table

Directory
entries

Log: in non-volatile storage (Flash or on Disk)

headtail

pendingdone

sta
rt

co
m

m
it

10

After Commit, Eventually Replay Transaction

• All accesses to the file system first looks in the log
– Actual on-disk data structure might be stale

• Eventually, copy changes to disk and discard
transaction from the log

Data blocks

Free space
map

…

Inode table

Directory
entries

Log: in non-volatile storage (Flash or on Disk)

head

pendingdone

sta
rt

co
m

m
it

tail tail tail tail tail

11

Crash Recovery: Discard Partial Transactions

• Upon recovery, scan the log

• Detect transaction start with no commit

• Discard log entries

• Disk remains unchanged

Data blocks

Free space
map

…

Inode table

Directory
entries

Log: in non-volatile storage (Flash or on Disk)

headtail

pendingdone

sta
rt

12

• Scan log, find start

• Find matching commit

• Redo it as usual
– Or just let it happen later

Data blocks

Free space
map

…

Inode table

Directory
entries

Log: in non-volatile storage (Flash or on Disk)

headtail

pendingdone

sta
rt

co
m

m
it

Crash Recovery: Keep Complete Transactions

13

Journaling Summary

Why go through all this trouble?
• Updates atomic, even if we crash:

– Update either gets fully applied or discarded
– All physical operations treated as a logical unit

Isn’t this expensive?
• Yes! We're now writing all data twice (once to log, once to actual data blocks in

target file)
• Modern filesystems journal metadata updates only

– Record modifications to file system data structures
– But apply updates to a file’s contents directly

14

Scalable, Reliable,
Secure Services

MEMS for
Sensor Nets

Internet
Connectivity

Databases
Information Collection
Remote Storage
Online Games
Commerce

…

• The world is a large distributed system
– Microprocessors in everything
– Vast infrastructure behind them Clusters

Massive Cluster

Gigabit Ethernet

Clusters

Massive Cluster

Gigabit Ethernet

Recall: Societal Scale Information Systems

15

Centralized vs Distributed Systems

• Centralized System: System in which major functions are
performed by a single physical computer

– Originally, everything on single computer
– Later: client/server model

Server

Client/Server Model
Peer-to-Peer Model

16

Centralized vs Distributed Systems

• Distributed System: physically separate computers working
together on some task

– Early model: multiple servers working together
» Probably in the same room or building
» Often called a “cluster”

– Later models: peer-to-peer/wide-spread collaboration

Server

Client/Server Model
Peer-to-Peer Model

17

Distributed Systems: Motivation/Issues/Promise

• Why do we want distributed systems?
– Cheaper and easier to build lots of simple computers
– Easier to add power incrementally
– Users can have complete control over some components
– Collaboration: much easier for users to collaborate through network resources

(such as network file systems)

• The promise of distributed systems:
– Higher availability: one machine goes down, use another
– Better durability: store data in multiple locations
– More security: each piece easier to make secure

18

Distributed Systems: Reality
• Reality has been disappointing

– Worse availability: depend on every machine being up
» Lamport: “A distributed system is one in which the failure of a computer

you didn’t even know existed can render your own computer unusable.”
– Worse reliability: can lose data if any machine crashes
– Worse security: anyone in world can break into system

• Coordination is more difficult
– Must coordinate multiple copies of shared state information
– What would be easy in a centralized system becomes a lot more difficult

• Trust/Security/Privacy/Denial of Service
– Many new variants of problems arise as a result of distribution
– Can you trust the other members of a distributed application enough to even perform a

protocol correctly?
– Corollary of Lamport’s quote: “A distributed system is one where you can’t do work

because some computer you didn’t even know existed is successfully coordinating an
attack on my system!”

Leslie Lamport

19

Distributed Systems: Goals/Requirements
• Transparency: the ability of the system to mask its complexity behind a simple

interface
• Possible transparencies:

– Location: Can’t tell where resources are located
– Migration: Resources may move without the user knowing
– Replication: Can’t tell how many copies of resource exist
– Concurrency: Can’t tell how many users there are
– Parallelism: System may speed up large jobs by splitting them into smaller pieces
– Fault Tolerance: System may hide various things that go wrong

• Transparency and collaboration require some way for different processors to
communicate with one another

20

How do entities communicate? A Protocol!

• A protocol is an agreement on how to communicate, including:
– Syntax: how a communication is specified & structured

» Format, order messages are sent and received
– Semantics: what a communication means

» Actions taken when transmitting, receiving, or when a timer expires
• Described formally by a state machine

– Often represented as a message transaction diagram
– Can be a partitioned state machine: two parties synchronizing duplicate sub-state machines

between them
– Stability in the face of failures!

Protocol
ExchangeB

A

DC
E

B
A

DC
E

Stable
Storage

Stable
Storage

21

Examples of Protocols in Human Interactions

• Telephone
1. (Pick up / open up the phone)
2. Listen for a dial tone / see that you have service
3. Dial
4. Should hear ringing …
5. Callee: “Hello?”
6. Caller: “Hi, it’s John….”

Or: “Hi, it’s me” (¬ what’s that about?)
7. Caller: “Hey, do you think … blah blah blah …” pause

1. Callee: “Yeah, blah blah blah …” pause
2. Caller: Bye
3. Callee: Bye
4. Hang up

22

Distributed Applications
• How do you actually program a distributed application?

– Need to synchronize multiple threads, running on different machines
» No shared memory, so cannot use test&set

– One Abstraction: send/receive messages
» Already atomic: no receiver gets portion of a message and two receivers cannot get

same message
• Interface:

– Mailbox (mbox): temporary holding area for messages
» Includes both destination location and queue

– Send(message,mbox)
» Send message to remote mailbox identified by mbox

– Receive(buffer,mbox)
» Wait until mbox has message, copy into buffer, and return
» If threads sleeping on this mbox, wake up one of them

Network

Send

Receive

23

Distributed Consensus Making
• Consensus problem

– All nodes propose a value
– Some nodes might crash and stop responding
– Eventually, all remaining nodes decide on the same value from set of proposed values

• Distributed Decision Making
– Choose between “true” and “false”
– Or Choose between “commit” and “abort”

• Equally important (but often forgotten!): make it durable!
– How do we make sure that decisions cannot be forgotten?

» This is the “D” of “ACID” in a regular database
– In a global-scale system?

» What about erasure coding or massive replication?

24

Two General’s Paradox

• Two General’s paradox:
– Constraints of problem:

» Two generals, on separate mountains
» Can only communicate via messengers
» Messengers can be captured

– Problem: need to coordinate attack
» If they attack at different times, they all die
» If they attack at same time, they win

– Named after Custer, who died at Little Big Horn because he arrived a couple of
days too early

25

Two General’s Paradox (con’t)
• Can messages over an unreliable network be used to guarantee two entities

do something simultaneously?
– Remarkably, “no”, even if all messages get through

– No way to be sure last message gets through!
– In real life, use radio for simultaneous (out of band) communication

• So, clearly, we need something other than simultaneity!

Yeah, but what if you

Don’t get this ack?

11 am ok?

So, 11 it is?
Yes, 11 works

26

Two-Phase Commit
• Since we can’t solve the Two General’s Paradox

(i.e., simultaneous action), let’s solve a related problem

• Distributed transaction: Two or more machines agree to do
something, or not do it, atomically

– No constraints on time, just that it will eventually happen!

• Two-Phase Commit protocol: Developed by Turing award winner Jim
Gray

– (first Berkeley CS PhD, 1969)
– Many important database breakthroughts also from Jim Gray

Jim Gray

27

Two-Phase Commit Protocol
• Persistent stable log on each machine: keep track of whether commit has happened

– If a machine crashes, when it wakes up it first checks its log to recover state of world at
time of crash

• Prepare Phase:
– The global coordinator requests that all participants will promise to commit or rollback

the transaction
– Participants record promise in log, then acknowledge
– If anyone votes to abort, coordinator writes "Abort" in its log and tells everyone to abort;

each records "Abort" in log
• Commit Phase:

– After all participants respond that they are prepared, then the coordinator writes
"Commit" to its log

– Then asks all nodes to commit; they respond with ACK
– After receive ACKs, coordinator writes "Got Commit" to log

• Log used to guarantee that all machines either commit or don’t

28

Two-Phase Commit Algorithm
• One coordinator
• N workers (replicas)
• High level algorithm description:

– Coordinator asks all workers if they can commit
– If all workers reply “VOTE-COMMIT”, then coordinator broadcasts “GLOBAL-COMMIT”

Otherwise, coordinator broadcasts “GLOBAL-ABORT”
– Workers obey the GLOBAL messages

• Use a persistent, stable log on each machine to keep track of what you are doing
– If a machine crashes, when it wakes up it first checks its log to recover state of world at

time of crash

29

Two-Phase Commit: Setup

• One machine (coordinator) initiates the protocol
• It asks every machine to vote on transaction

• Two possible votes:
– Commit
– Abort

• Commit transaction only if unanimous approval

30

Two-Phase Commit: Preparing

Worker Agrees to Commit
• Machine has guaranteed that it will accept transaction
• Must be recorded in log so machine will remember this decision if it fails and

restarts
Worker Agrees to Abort
• Machine has guaranteed that it will never accept this transaction
• Must be recorded in log so machine will remember this decision if it fails and

restarts

31

Two-Phase Commit: Finishing
Commit Transaction
• Coordinator learns all machines have agreed to commit
• Record decision to commit in local log
• Apply transaction, inform voters
Abort Transaction
• Coordinator learns at least on machine has voted to abort
• Record decision to abort in local log
• Do not apply transaction, inform voters

32

Two-Phase Commit: Finishing
Commit Transaction
• Coordinator learns all machines have agreed to commit
• Record decision to commit in local log
• Apply transaction, inform voters
Abort Transaction
• Coordinator learns at least on machine has voted to abort
• Record decision to abort in local log
• Do not apply transaction, inform votersBeca

use
 no

 mach
ine

 can
 tak

e b
ack

 its

dec
isio

n, e
xac

tly
one

of th
ese

 will

hap
pen

33

Detailed Algorithm

Coordinator sends VOTE-REQ to all
workers

– Wait for VOTE-REQ from coordinator
– If ready, send VOTE-COMMIT to

coordinator
– If not ready, send VOTE-ABORT to

coordinator

– And immediately abort
– If receive VOTE-COMMIT from all N

workers, send GLOBAL-COMMIT to
all workers

– If don’t receive VOTE-COMMIT from
all N workers, send GLOBAL-ABORT
to all workers

– If receive GLOBAL-COMMIT then
commit

– If receive GLOBAL-ABORT then abort

Coordinator Algorithm Worker Algorithm

34

Failure Free Example Execution

coordinator

worker 1

time

VOTE-
REQ

VOTE-
COMMIT

GLOBAL-
COMMIT

worker 2

worker 3

35

State Machine of Coordinator
• Coordinator implements simple state machine:

INIT

WAIT

ABORT COMMIT

Recv: START
Send: VOTE-REQ

Recv: VOTE-ABORT
Send: GLOBAL-ABORT

Recv: all VOTE-COMMIT
Send: GLOBAL-COMMIT

36

State Machine of Workers

INIT

READY

ABORT COMMIT

Recv: VOTE-REQ
Send: VOTE-ABORT Recv: VOTE-REQ

Send: VOTE-COMMIT

Recv:
GLOBAL-ABORT

Recv:
GLOBAL-COMMIT

37

Dealing with Worker Failures

• Failure only affects states in which the coordinator is
waiting for messages

• Coordinator only waits for votes in “WAIT” state
• In WAIT, if doesn’t receive N votes, it times out and

sends GLOBAL-ABORT

INIT

WAIT

ABORT COMMIT

Recv: START
Send: VOTE-REQ

Recv: VOTE-ABORT
Send: GLOBAL-ABORT

Recv: VOTE-COMMIT
Send: GLOBAL-COMMIT

38

Example of Worker Failure

coordinator

worker 1

time

VOTE-REQ

VOTE-
COMMIT

GLOBAL-
ABORT

INIT

WAIT

ABORT COMM timeout

worker 2

worker 3

39

Dealing with Coordinator Failure

• Worker waits for VOTE-REQ in INIT
– Worker can time out and abort (coordinator handles it)

• Worker waits for GLOBAL-* message in READY
– If coordinator fails, workers must BLOCK waiting for

coordinator to recover and send GLOBAL_* message

INIT

READY

ABORT COMMIT

Recv: VOTE-REQ
Send: VOTE-ABORT

Recv: VOTE-REQ
Send: VOTE-COMMIT

Recv:
GLOBAL-ABORT

Recv:
GLOBAL-COMMIT

40

Example of Coordinator Failure #1

coordinator

worker 1

VOTE-
REQ

VOTE-
ABORT

timeout

INIT

READY

ABORT COMM

timeout

timeout

worker 2

worker 3

41

Example of Coordinator Failure #2

VOTE-REQ

VOTE-
COMMIT

INIT

READY

ABORT COMM

block waiting for
coordinator

restarted

GLOBAL-
ABORT

coordinator

worker 1

worker 2

worker 3

42

Durability

• All nodes use stable storage to store current state
– stable storage is non-volatile storage (e.g. backed by disk) that guarantees

atomic writes.
– E.g.: SSD, NVRAM

• Upon recovery, nodes can restore state and resume:
– Coordinator aborts in INIT, WAIT, or ABORT
– Coordinator commits in COMMIT
– Worker aborts in INIT, ABORT
– Worker commits in COMMIT
– Worker “asks” Coordinator in READY

44

Distributed Decision Making Discussion (1/2)

• Why is distributed decision making desirable?
– Fault Tolerance!
– A group of machines can come to a decision even if one or more of them fail during

the process
» Simple failure mode called “failstop”

– After decision made, result recorded in multiple places
• Why is 2PC not subject to the Two General’s paradox?

– Because 2PC is about all nodes eventually coming to the same decision – not
necessarily at the same time!

– Allowing us to reboot and continue allows time for collecting and collating decisions

45

Distributed Decision Making Discussion (2/2)

• Undesirable feature of Two-Phase Commit: Blocking
– One machine can be stalled until another site recovers:

» Site B writes "prepared to commit" record to its log, sends a "yes" vote to the
coordinator (site A) and crashes

» Site A crashes
» Site B wakes up, check its log, and realizes that it has voted "yes" on the update. It sends

a message to site A asking what happened. At this point, B cannot decide to abort,
because update may have committed

» B is blocked until A comes back
– A blocked site holds resources (locks on updated items, pages pinned in memory,

etc) until learns fate of update

49

Summary (1/2)
• Important system properties

– Availability: how often is the resource available?
– Durability: how well is data preserved against faults?
– Reliability: how often is resource performing correctly?

• RAID: Redundant Arrays of Inexpensive Disks
– RAID1: mirroring, RAID5: Parity block

• Copy-on-write provides richer function (versions) with much simpler
recovery

– Little performance impact since sequential write to storage device is nearly free
• Use of Log to improve Reliability

– Journaled file systems such as ext3, NTFS

50

Summary (2/2)
• Transactions over a log provide a general solution

– Commit sequence to durable log, then update the disk
– Log takes precedence over disk
– Replay committed transactions, discard partials

• Protocol: Agreement between two parties as to how information is to
be transmitted

• Two-phase commit: distributed decision making
– First, make sure everyone guarantees they will commit if asked (prepare)
– Next, ask everyone to commit

