
Acknowledgments: Ion Stoica, Berkeley CS 162

Xin Jin
Spring 2022

Operating Systems
(Honor Track)

File System 5: Storage and File Systems in
Modern Computer Systems

2

Storage and File Systems in Modern Computer Systems

• IO devices: disks with dedup
– FAST’08 Dedup

• IO: end-to-end management
– SOSP’13 IOFlow

• Modern file systems
– SOSP’03 GFS

• RAID and erasure coding
– OSDI’16 EC-Cache

• File systems for distributed applications
– SIGCOMM’01 Chord

3

Avoiding the Disk Bottleneck in the Data
Domain Deduplication File System

Benjamin Zhu, Kai Li, Hugo Patterson
USENIX FAST 2008

Acknowledgments: Kai Li

What is “Deduplication?”

4

u Deduplication is global compression that
removes the redundant segments globally
(across many files)

u Local compression tools (gzip, winzip, …)
encode redundant strings in a small window
(within a file)

Idea of Deduplication

Traditional local
compression

~2-3X compression ~10-50X compression

Large window Þ more redundant data

Encode a sliding window
of bytes (e.g. 100K)

[Ziv&Lempel77]

Deduplication

5

Backup Data Example
View from Backup Software (tar or similar format)

First Full Backup Incr 2 Second Full Backup

A B C D E F G H I JDeduplicated Storage:
Redundancies pooled, compressed

= Unique variable segments
= Redundant data segments
= Compressed unique segments

A B C D A E F G
Incr 1

A B H A E I B J C D E F G H

Data
Stream

6

Deduplication Process

Fingerprint
IndexLookup

(Fingerprinting)

Divide data streams
into segments

Index size for 80TB
w/ 8KB segments
= (80TB/8KB) * 20B
= 200GB!

7

Yes: Fingerprint

No: pack segment into
container, apply
local compression,
write out to disk

High-Speed High Compression
at Low HW Cost

8

uThree techniques
l Summary vector
l Stream informed segment layout
l Locality preserved caching (LPC)

Summary Vector
Goal: Use minimal memory to test for new data
Þ Summarize what segments have been stored, with

Bloom filter (Bloom’70) in RAM
Þ If Summary Vector says no, it’s new segment

Summary Vector

Approximation

Index Data Structure

9

Stream Informed Segment Layout
Goal: Capture “duplicate locality” on disk

l Segments from the same stream are stored in the
same “containers”

l Metadata (index data) are also in the containers

11

Locality Preserved Caching (LPC)
Goal: Maintain “duplicate locality” in the cache

l Disk Index has all <fingerprint, containerID> pairs
l Index Cache caches a subset of such pairs
l On a miss, lookup Disk Index to find containerID
l Load the metadata of a container into Index Cache, replace if

needed

12

Putting Them Together

Index
CacheDuplicate

No

A fingerprint

Disk
Index data

metadata

data

metadata

data

metadata

data

metadata

Summary
VectorNew

13

Maybe

Replacement

Real World Example at Datacenter A

14

Real World Compression at Datacenter A

15

Real World Example at Datacenter B

16

Real World Compression at Datacenter B

17

Summary

18

u Deduplication removes redundant data globally
u Advanced deduplication file system

l Has become a de facto standard to store highly
redundant data because of reduction in cost,
performance, power, space, …

u Three techniques to improve performance
l Summary vector
l Stream informed segment layout
l Locality preservedcaching (LPC)

19

Storage and File Systems in Modern Computer Systems

• IO devices: disks with dedup
– FAST’08 Dedup

• IO: end-to-end management
– SOSP’13 IOFlow

• Modern file systems
– SOSP’03 GFS

• RAID and erasure coding
– OSDI’16 EC-Cache

• File systems for distributed applications
– SIGCOMM’01 Chord

IOFlow: a Software-Defined Storage
Architecture

Eno Thereska, Hitesh Ballani, Greg O’Shea, Thomas Karagiannis,
Antony Rowstron, Tom Talpey, Richard Black, Timothy Zhu

Microsoft Research

“IOFlow: A Software-Defined Storage Architecture. Eno Thereska, Hitesh Ballani, Greg O'Shea, Thomas Karagiannis,
Antony Rowstron, Tom Talpey, and Timothy Zhu. In SOSP'13, Farmington, PA, USA. November 3-6, 2013. “

Background: Enterprise data centers

• General purpose applications
• Application runs on several VMs

• Separate network for VM-to-VM
traffic and VM-to-Storage traffic

• Storage is virtualized

• Resources are shared

Switch Switch Switch

S-NIC S-NIC

S-NIC NIC S-NIC NIC

VMVMVMVirtual
Machine

vDisk

VMVMVMVirtual
Machine

vDisk

2

Motivation

It is hard to provide such SLAs today

Want: predictable application behaviour and performance

Need system to provide end-to-end SLAs, e.g.,
• Guaranteed storage bandwidth B
• Guaranteed high IOPS and priority
• Per-application control over decisions along IOs’ path

22

Switch Switch Switch

S-NIC S-NIC

S-NIC NIC S-NIC NIC

VMVirtual
Machine

vDisk

VMVirtual
Machine

vDisk

Example: guarantee aggregate bandwidth B for Red tenant
App
OS

App
OS

…

23

Deep IO path with 18+ different layers that are
configured and operate independently and do not

understand SLAs

Challenges in enforcing end-to-end SLAs

• No storage control plane
• No enforcing mechanism along storage data plane
• Aggregate performance SLAs

- Across VMs, files and storage operations

• Want non-performance SLAs: control over IOs’ path
• Want to support unmodified applications and VMs

24

…

IOFlow architecture

App
OS

App
OS

Controller

High-level SLA

25

IOFlow API

Decouples the data plane (enforcement) from the
control plane (policy logic) IO Packets

...

Queue nQueue 1

Contributions

• Defined and built storage control plane
• Controllable queues in data plane
• Interface between control and data plane (IOFlow API)

• Built centralized control applications that
demonstrate power of architecture

26

Storage flows
Storage “Flow” refers to all IO requests to which an SLA applies

<{VMs}, {File Operations}, {Files}, {Shares}> ---> SLA

• Aggregate, per-operation and per-file SLAs, e.g.,
<{VM 1-100}, write, *, \\share\db-log}>---> high priority
<{VM 1-100}, *, *, \\share\db-data}> ---> min 100,000 IOPS

• Non-performance SLAs, e.g., path routing
<VM 1, *, *, \\share\dataset>---> bypass malware scanner

27

source set destination sets

IOFlow API: programming data plane queues

1. Classification [IO Header -> Queue]
2. Queue servicing [Queue -> <token rate, priority, queue size>]
3. Routing [Queue -> Next-hop]

Malware
scanner

28

Lack of common IO Header for storage traffic
SLA: <VM 4, *, *, \\share\dataset> --> Bandwidth B

29

VM
1

VM
2

VM
3

Application

VM
4

SMBc

Physical NIC

Network driver

Physical NIC

SMBs

File
system

Network
driver

Disk
driver

Compute Server Storage Server

Guest
OS

Hypervisor

File
system

Block
device

VHD
Scanner

Block device
Z: (/device/scsi1)

Server and VHD
\\serverX\AB79.vhd

Volume and file
H:\AB79.vhd

Block device
/device/ssd5

VM
1

VM
2

VM
3

Application

VM
4

SMBc

Physical NIC

Network driver

Physical NIC

SMBs

File
system

Network
driver

Disk
driver

Compute Server Storage Server

Guest
OS

Hypervisor

File
system

Block
device

VHD
Scanner

Flow name resolution through controller
SLA: {VM 4, *, *, //share/dataset} --> Bandwidth B

ControllerSMBc exposes IO Header it
understands:

<VM_SID, //server/file.vhd>

Queuing rule (per-file handle):
<VM4_SID, //serverX/AB79.vhd> --> Q1
Q1.token rate --> B

30

Rate limiting for congestion control
Queue servicing [Queue -> <token rate, priority, queue size>]

• Important for performance SLAs
• Today: no storage congestion control

Challenging for storage: e.g., how to rate limit two VMs, one
reading, one writing to get equal storage bandwidth?

31

IOs

tokens

Rate limiting on payload bytes does not work

32

VM VM

8KB Writes8KB Reads

Rate limiting on bytes does not work

33

VM VM

8KB Writes8KB Reads

Rate limiting on IOPS does not work

34

VM VM

8KB Writes64KB Reads

Need to rate limit based on cost

Rate limiting based on cost
§ Controller constructs empirical cost models based on

device type and workload characteristics
§ RAM, SSDs, disks: read/write ratio, request size

§ Cost models assigned to each queue
§ ConfigureTokenBucket [Queue -> cost model]

§ Large request sizes split for pre-emption

35

Recap: Programmable queues on data plane
§ Classification [IO Header -> Queue]

§ Per-layer metadata exposed to controller
§ Controller out of critical path

§ Queue servicing [Queue -> <token rate, priority, queue size>]
§ Congestion control based on operation cost

§ Routing [Queue -> Next-hop]

How does controller enforce SLA?
36

Distributed, dynamic enforcement

• SLA needs per-VM enforcement
• Need to control the aggregate rate of

VMs 1-4 that reside on different physical
machines

• Static partitioning of bandwidth is sub-
optimal

<{Red VMs 1-4}, *, * //share/dataset> --> Bandwidth 40 Gbps

37

VMVMVMVM VMVM
VM VM

40Gbps

Work-conserving solution

• VMs with traffic demand
should be able to send it as
long as the aggregate rate does
not exceed 40 Gbps

• Solution: Max-min fair sharing

38

VMVMVMVM VMVM
VM VM

Max-min fair sharing
Well studied problem in networks
§ Existing solutions are distributed

§ Each VM varies its rate based on congestion
§ Converge to max-min sharing

§ Drawbacks: complex and requires congestion signal

But we have a centralized controller
§ Converts to simple algorithm at controller

39

Controller-based max-min fair sharing

What does controller do?
• Infers VM demands
• Uses centralized max-min within

a tenant and across tenants
• Sets VM token rates
• Chooses best place to enforce

Controller

40

INPUT:
per-VM demands

OUTPUT:
per-VM allocated token rate

t
s

t = control interval
s = stats sampling interval

Controller decides where to enforce

41

SLA constraints
§ Queues where resources shared
§ Bandwidth enforced close to source
§ Priority enforced end-to-end

Efficiency considerations
§ Overhead in data plane ~ # queues
§ Important at 40+ Gbps

Minimize # times IO is queued and distribute rate limiting load

VMVMVMVM VMVM
VM VM

Centralized vs. decentralized control

Centralized controller in SDS allows for simple
algorithms that focus on SLA enforcement and not

on distributed system challenges
Analogous to benefits of centralized control in software-

defined networking (SDN)

42

IOFlow implementation
VM

1

VM
2

VM
3

Application

VM
4

SMBc

Physical NIC

Network driver

Physical NIC

SMBs

File
system

Network
driver

Disk
driver

Compute Server Storage Server

Guest
OS

Hypervisor

File
system

Block
device

VHD
Scanner

Controller

43

2 key layers for
VM-to-Storage
performance SLAs

4 other layers
. Scanner driver (routing)
. User-level (routing)

. Network driver

. Guest OS file system

Implemented as filter drivers on top of layers

Evaluation map

IOFlow’s ability to enforce end-to-end SLAs
Aggregate bandwidth SLAs
Priority SLAs and routing application in paper

Performance of data and control planes

44

Evaluation setup

45

VMVMVMVM

Switch

VMVM
VM VM

…

Clients:10 hypervisor servers, 12 VMs each
4 tenants (Red, Green, Yellow, Blue)
30 VMs/tenant, 3 VMs/tenant/server
Storage network:
Mellanox 40Gbps RDMA RoCE full-duplex
1 storage server:
16 CPUs, 2.4GHz (Dell R720)
SMB 3.0 file server protocol
3 types of backend: RAM, SSDs, Disks
Controller: 1 separate server
1 sec control interval (configurable)

Workloads
• 4 Hotmail tenants {Index, Data, Message, Log}

Used for trace replay on SSDs (see paper)
• IoMeter is parametrized with Hotmail tenant

characteristics (read/write ratio, request size)

46

Enforcing bandwidth SLAs
4 tenants with different storage bandwidth SLAs

Tenants have different workloads
§ Red tenant is aggressive: generates more requests/second

Tenant SLA
Red {VM1 – 30} -> Min 800 MB/s
Green {VM31 – 60} -> Min 800 MB/s
Yellow {VM61 – 90} -> Min 2500 MB/s
Blue {VM91 – 120} -> Min 1500 MB/s

47

Things to look for
Distributed enforcement across 4 competing tenants
§ Aggressive tenant(s) under control

Dynamic inter-tenant work conservation
§ Bandwidth released by idle tenant given to active tenants

Dynamic intra-tenant work conservation
§ Bandwidth of tenant’s idle VMs given to its active VMs

48

ResultsController
notices red

tenant’s
performanceTenants’ SLAs

enforced. 120
queues cfg.

49

Inter-tenant
work

conservation

Intra-tenant
work

conservation

Data plane overheads at 40Gbps RDMA
Negligible in previous experiment. To bring out worst

case varied IO sizes from 512Bytes to 64KB

50Reasonable overheads for enforcing SLAs

Control plane overheads: network and CPU

51

O
ve

rh
ea

ds
 (M

B) <0.3% CPU
overhead at

controller

Controller configures queue rules, receives statistics
and updates token rates every interval

Summary of contributions

• Defined and built storage control plane
• Controllable queues in data plane
• Interface between control and data plane (IOFlow API)

• Built centralized control applications that
demonstrate power of architecture

• Ongoing work: applying to public cloud scenarios

52

58

Storage and File Systems in Modern Computer Systems

• IO devices: disks with dedup
– FAST’08 Dedup

• IO: end-to-end management
– SOSP’13 IOFlow

• Modern file systems
– SOSP’03 GFS

• RAID and erasure coding
– OSDI’16 EC-Cache

• File systems for distributed applications
– SIGCOMM’01 Chord

The Google File System
Firas Abuzaid

The Google File System. Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. In ACM SOSP’03.

Why build GFS?

● Node failures happen frequently

● Files are huge – multi-GB

● Most files are modified by appending at the end
○ Random writes (and overwrites) are practically non-existent

● High sustained bandwidth is more important than low latency
○ Place more priority on processing data in bulk

Typical workloads on GFS

● Two kinds of reads: large streaming reads & small random reads
○ Large streaming reads usually read 1MB or more
○ Oftentimes, applications read through contiguous regions in the file
○ Small random reads are usually only a few KBs at some arbitrary offset

● Also many large, sequential writes that append data to files
○ Similar operation sizes to reads
○ Once written, files are seldom modified again
○ Small writes at arbitrary offsets do not have to be efficient

● Multiple clients (e.g. ~100) concurrently appending to a single file
○ e.g. producer-consumer queues, many-way merging

Interface

• Not POSIX-compliant, but supports typical file system operations: create,
delete, open, close, read, and write

• snapshot: creates a copy of a file or a directory tree at low cost

• record append: allow multiple clients to append data to the same file
concurrently
○ At least the very first append is guaranteed to be atomic

Architecture

Architecture

● Very important: data flow is decoupled from control flow
○ Clients interact with the master for metadata operations
○ Clients interact directly with chunkservers for all files operations

○ This means performance can be improved by scheduling expensive data flow
based on the network topology

The Master Node

● Responsible for all system-wide activities
○ managing chunk leases, reclaiming storage space, load-balancing

● Maintains all file system metadata
○ Namespaces, ACLs, mappings from files to chunks, and current locations of chunks

○ all kept in memory, namespaces and file-to-chunk mappings are also stored persistently in
operation log

● Periodically communicates with each chunkserver in HeartBeat messages
○ This let’s master determines chunk locations and assesses state of the overall system

The Operation Log

● Only persistent record of metadata

● Also serves as a logical timeline that defines the serialized order of
concurrent operations

● Master recovers its state by replaying the operation log
○ To minimize startup time, the master checkpoints the log periodically

Why a Single Master?

● The master now has global knowledge of the whole system, which
drastically simplifies the design

● But the master is (hopefully) never the bottleneck
○ Clients never read and write file data through the master; client only requests from master

which chunkservers to talk to

○ Master can also provide additional information about subsequent chunks to further reduce
latency

○ Further reads of the same chunk don’t involve the master, either

Why a Single Master?

● Master state is also replicated for reliability on multiple machines, using
the operation log and checkpoints
○ If master fails, GFS can start a new master process at any of these replicas and modify

DNS alias accordingly

○ “Shadow” masters also provide read-only access to the file system, even when primary
master is down

■ They read a replica of the operation log and apply the same sequence of changes
■ Not mirrors of master – they lag primary master by fractions of a second
■ This means we can still read up-to-date file contents while master is in recovery!

Chunks and Chunkservers

● Files are divided into fixed-size chunks, which has an immutable, globally
unique 64-bit chunk handle
○ By default, each chunk is replicated three times across multiple chunkservers (user can

modify amount of replication)

● Chunkservers store the chunks on local disks as Linux files
○ Metadata per chunk is < 64 bytes (stored in master)

■ Current replica locations
■ Reference count (useful for copy-on-write)
■ Version number (for detecting stale replicas)

Chunk Size

● 64 MB, a key design parameter (Much larger than most file systems.)
● Disadvantages:

○ Wasted space due to internal fragmentation
○ Small files consist of a few chunks, which then get lots of traffic from concurrent clients

■ This can be mitigated by increasing the replication factor

● Advantages:
○ Reduces clients’ need to interact with master (reads/writes on the same chunk only require one

request)

○ Since client is likely to perform many operations on a given chunk, keeping a persistent TCP
connection to the chunkserver reduces network overhead

○ Reduces the size of the metadata stored in master → metadata can be entirely kept in memory

System Interactions

● If the master receives a modification operation for a particular chunk:
○ Master finds the chunkservers that have the chunk and grants a chunk lease to one of them

■ This server is called the primary, the other servers are called secondaries

■ The primary determines the serialization order for all of the chunk’s modifications, and the
secondaries follow that order

○ After the lease expires (~60 seconds), master may grant primary status to a different server for
that chunk

■ The master can, at times, revoke a lease (e.g. to disable modifications when file is being
renamed)

■ As long as chunk is being modified, the primary can request an extension indefinitely
○ If master loses contact with primary, that’s okay: just grant a new lease after the old one expires

System Interactions
1. Client asks master for all chunkservers (including all

secondaries)
2. Master grants a new lease on chunk, increases the

chunk version number, tells all replicas to do the
same. Replies to client. Client no longer has to talk
to master

3. Client pushes data to all servers, not necessarily to
primary first

4. Once data is acked, client sends write request to
primary. Primary decides serialization order for all
incoming modifications and applies them to the
chunk

System Interactions
5. After finishing the modification, primary forwards

write request and serialization order to secondaries,
so they can apply modifications in same order. (If
primary fails, this step is never reached.)

6. All secondaries reply back to the primary once they
finish the modifications

7. Primary replies back to the client, either with
success or error

○ If write succeeds at primary but fails at any of

the secondaries, then we have inconsistent
state → error returned to client

○ Client can retry steps (3) through (7)
Note: If a write straddles chunk boundary, GFS splits this into multiple write operations

● Decouple data plane from control plane
● Control plane: centralized single master
● Data plane: distributed chuck servers

● Similar concept has been applied to many other systems

Conclusions

80

Google Hadoop

GFS Hadoop File System
(HDFS)

BigTable HBase

MapReduce Hadoop

File System

Structured Data
Management

Data Processing Engine Spark

81

Storage and File Systems in Modern Computer Systems

• IO devices: disks with dedup
– FAST’08 Dedup

• IO: end-to-end management
– SOSP’13 IOFlow

• Modern file systems
– SOSP’03 GFS

• RAID and erasure coding
– OSDI’16 EC-Cache

• File systems for distributed applications
– SIGCOMM’01 Chord

EC-Cache: Load-balanced,
Low-latency Cluster Caching with

Online Erasure Coding

Rashmi Vinayak
UC Berkeley

Joint work with

Mosharaf Chowdhury, Jack Kosaian (U Michigan)
Ion Stoica, Kannan Ramchandran (UC Berkeley)

Caching for data-intensive clusters

• Data-intensive clusters rely on distributed, in-memory
caching for high performance

. Reading from memory orders of magnitude faster than from
disk/ssd

Example: Alluxio (formerly Tachyon†).

†Li et al. SOCC 2014 2

Imbalances prevalent in clusters

3

Sources of imbalance:

•

•

•

Skew in object popularity
Background network imbalance

Failures/unavailabilities

➡ Adverse effects:

7

• load imbalance

• high read latency

Imbalances prevalent in cluster

Sources of imbalance:

•

•

•

Skew in object popularity
Background network imbalance

Failures/unavailabilities

Single copy in memory often not sufficient to get good performance

Popular approach: Selective Replication
• Uses some memory overhead to cache replicas of objects

based on their popularity
. more replicas for more popular objects

Server 1 Server 2 Server 3

A B

GET A

8

1x
GET B

2x

…

Popular approach: Selective Replication
• Uses some memory overhead to cache replicas of objects

based on their popularity
. more replicas for more popular objects

Server 1 Server 2 Server 3

A B A

1x
GET A

8

1x
GET A

1x
GET B

• Used in data-intensive clusters† as well as widely used in key-
value stores for many web services such as Facebook Tao‡

†Ananthanarayanan et al. NSDI 2011, ‡Bronson et al. ATC 2013

…

Read performance
& Load balance

Single copy
in memory

Memory Overhead

Selective
replication

“Erasure Coding”

EC-Cache

9

Quick primer on erasure coding
• Takes in k data units and creates r “parity” units

• Any k of the (k+r) units are sufficient to decode the original
k data units

• k = 5
• r = 4

data units parity units

Read

d1 d2 d3 d4 d5 p1 p2 p3 p4

Decode

d1 d2 d3 d4 d5

10

EC-Cache bird’s eye view:Writes

…

k = 2
r = 1

X

Encode

p1

k = 2Split
d2

d1 d2

p1d1 d2

Put

d1

11

• Object split into k data units

• Encoded to generate r parity
units

• (k+r) units cached on distinct
servers chosen uniformly at
random Caching servers

EC-Cache bird’s eye view: Reads

… k = 2
r = 1

Decode

Δ = 1
k + Δ = 3Read units

d1 d2

p1d1 d2

d2

X

Get X

p1

Combine

•

12

Read from (k + Δ) units of the
object chosen uniformly at
random
. “Additional reads”

• Use the first k units that arrive

• Decode the data units

• Combine the decoded units

Caching servers

Erasure coding: How does it help?

1. Finer control over memory overhead
.

.

.

Selective replication allows only integer control

Erasure coding allows fractional control

E.g., k = 10 allows control in of multiples of 0.1

2. Object splitting helps in load balancing
.

.

Smaller granularity reads help to smoothly spread load
Analysis on a certain simplified model:

Var(LEC-Cache)
Var(LSelective Replication) =

k

1

13

Erasure coding: How does it help?

14

3. Object splitting reduces median latency but hurts
tail latency

.

.

Read parallelism helps reduce median latency
Straggler effect hurts tail latency (if no additional reads)

4. “Any k out of (k+r)” property helps to reduce tail latency
.

.

Read from (k + Δ) and use the first k that arrive
Δ = 1 often sufficient to reign in tail latency

Design considerations

15

Storage systems EC-Cache

• Space-efficient fault tolerance • Reduce read latency

• Load balance

1. Purpose of erasure codes

†Rashmi et al. SIGCOMM 2014, Sathiamoorthy et al. VLDB 2013, Huang et al. ATC 2012 16

Storage systems EC-Cache

• Optimize resource usage
during reconstruction
operations†

• No reconstruction operations in
caching layer; data persisted in
underlying storage

• Some codes do not have “any k
out of (k+r)” property

• “Any k out of (k+r)” property
helps in load balancing and
reducing latency when reading
objects

2. Choice of erasure code

Design considerations

†Rashmi et al. SIGCOMM 2014, HotStorage 2013 17

Storage systems EC-Cache

• Some systems encode
across objects (e.g., HDFS-
RAID); some within (e.g.,
Ceph)

• Does not affect fault tolerance

• Need to encode within
objects

. To spread load across
both data & parity

• Encoding across: Very high
BW overhead for reading
object using parities†

3. How do we use erasure coding: across vs. within objects

Design considerations

Implementation

18

• EC-Cache on top of Alluxio (formerly Tachyon)
. Backend caching servers: cache data — unaware of erasure coding

EC-Cache client library: all read/write logic handled.

• Reed-Solomon code
. Any k out of (k+r) property

• Intel ISA-L hardware acceleration library
. Fast encoding and decoding

Evaluation set-up

19

• Amazon EC2
25 backend caching servers and 30 client servers

Object popularity: Zipf distribution with high skew

EC-Cache uses k = 10, Δ = 1

•

•

•

. BW overhead = 10%

• Varying object sizes

Load balancing

0

100

200

300

400

D
at

a
R

ea
d

(G
B)

Servers Sorted by Load

400
350
300
250
200
150
100
50
0

D
at

a
R

ea
d

(G
B

)

Servers Sorted by Load

Selective Replication EC-Cache

λSR = 43.45% λEC = 13.14%

• Percent imbalance metric: 入= maxL —L avg
Lavg

20
> 3x reduction in load imbalance metric

*100

Read latency

•

•

Median: 2.64x improvement
99th and 99.9th: ~1.75x improvement

24
2

23
8

88
1

96 90

28
3

13
4 34

0
19

3

49
2

1400
1200
1000
800
600
400
200

0
Mean Median 95th 99th 99.9th

R
ea

d
L

at
en

cy
(m

s)

Selective Replication
EC-Cache

21

Varying object sizes

5.5x improvement for 100MB

More improvement for larger object sizes

0

500

1000

2000

1500

10 30 90

R
ea

d
L

at
en

cy
(m

s)

50 70
Object Size (MB)

EC-Cache (Median)
Selective Replication (Median)

Median latency

0

500

1000

2000

1500

10 30 90

R
ea

d
L

at
en

cy
(m

s)

50 70
Object Size (MB)

EC-Cache (99th)
Selective Replication (99th)

Tail latency

22

3.85x improvement for 100 MB

0

0.2

1

0.8

0.6

0.4

0 20 40 60 80
Read Latency (ms)

C
D
F

EC-Cache, L = 0
EC-Cache, L = 1
Selective Replication

Significant degradation in tail latency
without additional reads (i.e., Δ = 0)

23

Role of additional reads (Δ)

Summary

• EC-Cache
. Cluster cache employing erasure coding for load balancing and

reducing read latencies

Demonstrates new application and new goals for which erasure
coding is highly effective

.

• Implementation on Alluxio

Evaluation•

.

.

.

Load balancing: > 3x improvement
Median latency: > 5x improvement
Tail latency: > 3x improvement

Thanks!

104

Storage and File Systems in Modern Computer Systems

• IO devices: disks with dedup
– FAST’08 Dedup

• IO: end-to-end management
– SOSP’13 IOFlow

• Modern file systems
– SOSP’03 GFS

• RAID and erasure coding
– OSDI’16 EC-Cache

• File systems for distributed applications
– SIGCOMM’01 Chord

Ion Stoica, Robert Morris, David Karger,
M. Frans Kaashoek, Hari Balakrishnan

ACM SIGCOMM 2001

Chord: A Scalable Peer-to-peer Lookup
Service for Internet Applications

口 presentation based on slides by Daniel Figueiredo and Robert Morris

OutlineOutline

口 Motivation and background

口 Consistency caching

口 Chord

口 Performance evaluation

口 Conclusion and discussion

MotivationMotivation

How to find data in a distributed file sharing system?

口 Lookup is the key problem

Internet

Publisher
Key=“LetItBe”

Value=MP3 data

Client ?
Lookup(“LetItBe”)

N1
N2 N3

N5N4

Centralized SolutionCentralized Solution

口 Requires O(M) state
口 Single point of failure

Internet

Publisher
Key=“LetItBe”

Value=MP3 data

Client
Lookup(“LetItBe”)

N1
N2 N3

N5N4

DB

口 Central server (Napster)

Distributed Solution (1)Naïve Distributed Solution

口 Worst case O(N) messages per lookup

Internet

Publisher
Key=“LetItBe”

Value=MP3 data

Client
Lookup(“LetItBe”)

N1
N2 N3

N5N4

口 Flooding (Gnutella, Morpheus, etc.)

Distributed Solution (2)Chord: Routed messages

Internet

Publisher
Key=“LetItBe”

Value=MP3 data

Client
Lookup(“LetItBe”)

N1
N2 N3

N5N4

Routing ChallengesRouting Challenges

口 Define a useful key nearness metric

口 Keep the hop count small
口 Keep the routing tables “right size”

口 Stay robust despite rapid changes in membership

Chord OverviewChord Overview

口 Provides peer-to-peer hash lookup service:
口 Lookup(key) ® IP address

口 Chord does not store the data

口 How does Chord locate a node?

口 How does Chord maintain routing tables?

口 How does Chord cope with changes in membership?

Chord propertiesChord properties

口 Efficient: O(Log N) messages per lookup

口 N is the total number of servers
口 Scalable: O(Log N) state per node

口 Robust: survives massive changes in membership

口 Proofs are in paper / tech report

口 Assuming no malicious participants

Chord IDsChord IDs

口 m bit identifier space for both keys and nodes

口 Key identifier = SHA-1(key)

Key=“LetItBe” ID=60SHA-1

IP=“198.10.10.1” ID=123SHA-1
口 Node identifier = SHA-1(IP address)

口 Both are uniformly distributed

口 How to map key IDs to node IDs?

Consistent Hashing [Karger 97]Consistent Hashing [Karger 97]

口 A key is stored at its successor: node with next higher ID

N32

N90

N123 K20

Circular 7-bit
ID space

0 K5IP=“198.10.10.1”

K101

K60
Key=“LetItBe”

Consistent HashingConsistent Hashing
口 Every node knows of every other node

口 requires global information
口 Routing tables are large O(N)
口 Lookups are fast O(1)

0

N32

N90

N123

Where is “LetItBe”?
Hash(“LetItBe”) = K60

N10

N55

“N90 has K60”

K60

Chord: Basic LookupChord: Basic Lookup

N32

N90

N123
N10

N55

Where is “LetItBe”?
Hash(“LetItBe”) = K60

“N90 has K60”

K60

口 Every node knows its successor in the ring

0

口 requires O(N) time

“Finger Tables”“Finger Tables”

口 Every node knows m other nodes in the ring

口 Increase distance exponentially

N80

N112

N96

N16

80 + 24

80 + 23

80 + 22
80 + 21
80 + 20

80 + 25 80 + 26

“Finger Tables”“Finger Tables”

口 Finger i points to successor of n+2i

N120

N80

N112

N96

N16

80 + 24

80 + 23

80 + 22
80 + 21
80 + 20

80 + 25 80 + 26

Lookups are FasterLookups are Faster

口 Lookups take O(Log N) hops

N32

N10

N5

N20
N110

N99

N80

N60

Lookup(K19)

K19

Joining the RingJoining the Ring

口 Three step process:
口 Initialize all fingers of new node

口 Update fingers of existing nodes

口 Transfer keys from successor to new node

口 Less aggressive mechanism (lazy finger update):
口 Initialize only the finger to successor node

口 Periodically verify immediate successor, predecessor

口 Periodically refresh finger table entries

Joining the Ring - Step 1Joining the Ring - Step 1

口 Initialize the new node finger table
口 Locate any node p in the ring

口 Ask node p to lookup fingers of new node N36

口 Return results to new node

N36

1. Lookup(37,38,40,… ,100,164)

N60

N40

N5

N20
N99

N80

Joining the Ring - Step 2Joining the Ring - Step 2

口 Updating fingers of existing nodes
口 new node calls update function on existing nodes
口 existing nodes can recursively update fingers of other nodes

N36

N60

N40

N5

N20
N99

N80

Joining the Ring - Step 3Joining the Ring - Step 3

口 Transfer keys from successor node to new node
口 only keys in the range are transferred

Copy keys 21..36
from N40 to N36K30

K38

N36

N60

N40

N5

N20
N99

N80

K30

Evaluation OverviewEvaluation Overview

口 Quick lookup in large systems

口 Low variation in lookup costs

口 Robust despite massive failure

口 Experiments confirm theoretical results

Cost of lookupCost of lookup
口 Cost is O(Log N) as predicted by theory

Number of Nodes

Av
er

ag
e

M
es

sa
ge

s
pe

rL
oo

ku
p

StrengthsSummary

• Pioneering work in peer-to-peer networks
• Elegant solution that bridges theory and practice
• Scalability with theoretical guarantees

• Later developments
• DHTs à Key-value stores, e.g., Amazon Dynamo
• Distributed applications à Blockchain, Bitcoin, Ethereum, etc.

