
Pintos Overview

TA : zhongyinmin
Email : zhongyinmin@pku.edu.cn
Github : PKUFlyingPig

TA Session
—— Why, What and How

mailto:zhongyinmin@pku.edu.cn

Some announcements:

Ø Lab 0 Code will due next Thursday 11:59 pm

Ø Lab 0 Design Doc will due next Sunday 11:59 pm

JOS

Educational OS Project Zoo

xv6

Nachos Pintos

IA32
MIT6.828

RISCV32
MIT6.S081

IA32
CS162

MIPS
Old CS162

Q : Why Pintos ?

Design and Implementation

Ø OSDI, NSDI, PLDI … …

Ø Your design matters !!

Ø Talk is cheap, show me the code

Ø Write 2000+ LOC in a 10000+ LOC codebase

Q : Why Pintos ?

You will learn by Read The Code

Ø important skill both in production and research

Ø learn from good coding style

Ø some tools may help you

Q : Why Pintos ?

You will learn by Design The Code

Ø think tenth, code once

Ø design doc template may help you

Ø not Pintos, but Your Pintos

Q : Why Pintos ?

You will learn by Write The Code

Ø maybe your first time writing 2000+ LOC

Ø tricky multi-threading synchronization

Ø test-driven development

Q : Why Pintos ?

You will learn by Debug The Code

Ø You will live in the GDB

Ø start early, start early, start early

Q : Why not Pintos ?

Ø IA32 architecture : CISC ISA, historical legacy

Pintos PKUos
?

Pintos reimplemented in Rust
based on RISCV64.

Q : Why not Pintos ?

Ø IA32 architecture : CISC ISA, historical legacy

Ø time consuming : 100 hours +++

Pintos PKUos
?

optional lab4, long long long lab document, per-lab TA session

Q : So … what will you do?

Students
Create

Support Code

P0: Boot Support
Pintos Kernel

Simple FIFO
Scheduler Device Support

Keyboard, VGA, Serial Port, Timer, PCI, IDE

MMU
Support

Physical
Memory
Manager

Basic
Filesystem

P1: Priority
Scheduler

P1: Priority
Donation

P1:Alarm Clock

P1:MLFQS

P2: System Call Layer

P2: Process Management P2: File Management

P3a: Page
Fault

Handler

P3a:
Demand
Paging

P3b: Mmap
File

P4: Hierarchical
Multi-threaded

Filesystem

P0: Getting Real

P1: Threading

P2: User Programs

P3: Virtual Memory

P4: File System

Typical workflow:
Lab released

on the Course Website

Read through the lab document
and design doc carefully

TA session

Read through the lab document

Design your data structures
and interfaces

Write and Debug code
Pass all the test cases
Submit code zip before code DDL

Answer the questions in design doc
submit it before design doc DDL

Q :How to survive? PintosBook

Set up you local development environment.

Look through it and look back if needed.

long, but helpful

Important, read it carefully.

Q :How to survive? PintosBook

Look through it before each TA Session.

Read it carefully during implementation.

Optional but rewarding Lab4.

Q :How to survive? PintosBook

Read when needed as the projects going.

Referenced in the previous chapters.

Q :How to survive? Your kind TA fat, but helpful

Learn to ask questions.

Do not be shy, ask in class, in office hour or in the Piazza.

But … … your TAs are not your personal assistants.

Ø“My program crashed.”

Ø“What does this error mean?”

Ø“I failed xxx testcase.”

Ø “My computer can not boot.”

Think twice, Ask once.

Ø How to ask questions the smart way.

Ø RTFM（Read The Fucking Manual）

Ø STFW（Search The Fucking Web）

https://github.com/ryanhanwu/How-To-Ask-Questions-The-Smart-Way/blob/main/README-zh_CN.md

Think twice, Ask once.

Ø“I encounter xxx under xxx condition.”

Ø“Google says xxx, StackOverflow says xxx,
Document says xxx, but yyy.”

Ø“Hey, fat TA, I found xxx and I think you do
not know about it !”

Q :How to survive? Good habits awkward, but helpful

Use Version Control tool —— Git

Newly written code

A week later

The same code

How to write good commit message.

https://cbea.ms/git-commit/

Q :How to survive? Good habits

Write concise but good comments.

Ø Summarize the function in one sentence first.

Ø Pre-condition: input constraints (You may ASSERT these
constraints)

Ø Post-condition: return value, exception (kernel panic)

Q :How to survive? Good habits

Module and Abstraction.

Ø A function should (only) do one thing

Ø A function more than 100 LOC

Ø A function more than 200 LOC

warning

Something may go wrong

clean

Q :How to survive?
Spend time

Be patient

Start early
It is hard,
but it deserves.

Lab0 FAQs

Booting Pintos
4GB physical address space == 4GB RAM ?

You can even set the RAM size in pintos options.

Physical Address Space

This MBR code is usually referred to as a boot loader.
Booting Pintos

Pintos Kernel
Partition

Pintos
kernel

Boot loader

Physical Address Space

Hard-wired by the hardware

The real-world booting
process can be much
more complicated

GRUB, UEFI, … …

X86 Mode (history legacy)

X86 Real Mode X86 Protected Mode
Enabled in start.S

Ø 16-bit Instructions and Registers

Ø 20-bit Memory Address Space (Up to 1MB)

AX, BX, CX, DX, SI, DI, BP, SP

16-bit segment registers

CS, DS, SS, ES, FS, GS

PAddr = SEG << 4 + Operand

Ø 32-bit Instructions and Registers

Ø 32-bit Memory Address Space (Up to 4GB)

EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP

Reserved segment registers, but for protection

Address translation enabled

Conclusion

ØWhy Pintos?

ØWhat will you do in the projects?

ØHow to survive the projects?

ØLab0 FAQs: Booting Pintos, X86 mode

• Design and Implementation
• Read, Design, Write, Debug the code

• Projects Map
• Typical workflow

• PintosBook
• Ask questions
• Good habits
• Good attitude

Learn it,
Master it,
Love it,
and Join us.

https://github.com/PKU-OS

Email : zhongyinmin@pku.edu.cn
Github : PKUFlyingPig

https://github.com/PKU-OS
mailto:zhongyinmin@pku.edu.cn

