
Pintos Lab3a/3b
Overview
TA: Yinmin Zhong

Stolen from Spring’22 slides made by Zhineng Zhong

Today

• Lab 3 overview

• Lab 3a/3b tasks

• Bitmap and hash

• Tips

• Q&A

Today

• Lab 3 overview

• Lab 3a/3b tasks

• Bitmap and hash

• Tips

• Q&A

Virtual Memory Overview

• a memory management technique

• an idealized abstraction of the storage resources

• address translation using a combination of hardware and software

• easy to implement linking

• easy to implement loading

• easy to implement sharing

• increased security due to memory isolation

• …

Much of our focus

• Virtual memory management

• Virtual pages

• Physical memory management

• Physical frames

• Replacement policy

• Page table

• Address translation

• Page fault

• Swap Space

Before we dive in …

• A good design goes a long way towards accomplishing your tasks and has a long way
to go.

• Get your hands on early.

Today

• Lab 3 overview

• Lab 3a/3b tasks

• Bitmap and hash

• Tips

• Q&A

A brief look at lab 3a tasks

• 1.1

• load an executable

• lazy loading

• write back

• swap space

• 1.2

• replacement policy

• 1.3

• modify previous
implementation

A brief look at lab 3b tasks

• 1.1

• allocate a new page when
stack grows past current
page

• 1.2

• mmap, munmap

• can map many kinds of files

Let’s look at the tasks in another way…

• When we load an executable…

• Only build the mappings

• map user pages to file content

• Q:How to maintain the mappings?

• first access will trigger page fault and then load the page

• Store disk address in PTE like we have already known?

When we execute a program…

• What do we know about Pintos PTE?

• Check lab document

• OK! It is designed as we expected.

• Do you think storing information in PTE is a good design and easy to implement
in THIS PINTOS LAB?

• 31-bit might be a challenge?

• You decide.

When we execute a program…

• When we load an executable…

• Only build the mappings

• map user pages to file content

• Q:How to maintain the mappings?

• first access will trigger page fault

• Idea 1: Store disk address in PTE like we have already known?

• Idea 2: You can design other data structures and stored in thread

• Use these newly designed data structures when handling page fault

When we execute a program…

• When we access it…

• Trigger page fault on first access

• Turn to page fault handler to load the page

• Q:How can we know it’s time to load the page instead of other cases?

• Q:How to load the page?

• Read the page into memory

• Replacement policy

• Update pte etc.

• Interfaces in threads/pte.h, userprog/pagedir.h, userprog/pagedir.c …

When we execute a program…

Replacement policy

• Require one that approximates LRU

• second chance, clock, …

• some interfaces may be useful: userprog/pagedir.h

• All algorithms have a common thing to do…

• Q:How to manage the frames and their related information?

• Frame management

Frame management

• Q:What frames do we need to manage?

• Claim: In lab3, you only need to manage frames in
user pool.

• Why?

• Let’s look at the definitions of the two pools again.

Physical Address Space

BIOS ROM
0x00100000 (1MB)

0x000F0000 (960kB)

BIOS Data
0x00000600 (1536B)

0x00000400 (1024B)
CPU-owned

0x00000000 (0B)

Pintos Loader
0x00007e00 (31.5kB)

0x00007c00 (31kB)

Pintos Kernel
0x000a0000 (640kB)

0x00020000 (128kB)
page tables
for startup

0x00010000 (64kB)
page directory

for startup0x0000f000 (60kB) kernel stack
and initial thread struct0x0000e000 (56kB)

the end of RAM
user pool

kernel pool

Frame management

• The fact that an executable or another kind of file is mapped to user space indicates
that you can only load it or reload it into user pool.

• No allocation in user pool before lab3 means that if you manage all frames in user
pool you don’t need to worry about evicting a frame that you don’t know.

Frame management

• Q:What frames do we need to manage?

• Claim: In lab3, you only need to manage frames in
user pool.

• So there will be no replacement in kernel pool?

• We use palloc to allocate memory in kernel pool.

• At least our tests will not ask for that much memory
allocation in kernel pool. So you don’t need to
consider that.

• BUTTHIS IS ACTUALLY A PROBLEM.

Physical Address Space

BIOS ROM
0x00100000 (1MB)

0x000F0000 (960kB)

BIOS Data
0x00000600 (1536B)

0x00000400 (1024B)
CPU-owned

0x00000000 (0B)

Pintos Loader
0x00007e00 (31.5kB)

0x00007c00 (31kB)

Pintos Kernel
0x000a0000 (640kB)

0x00020000 (128kB)
page tables
for startup

0x00010000 (64kB)
page directory

for startup0x0000f000 (60kB) kernel stack
and initial thread struct0x0000e000 (56kB)

the end of RAM
user pool

kernel pool

Frame management

• Q:What frames do we need to manage?

• Claim: In lab3, you only need to manage frames in
user pool.

• So what’s good about this claim?

• The data not in user pool resides in physical memory

• Feel free to allocate your global data structures in
kernel pool and use them to manage all the user
frames!

• Initialization can be done in pintos_init

Physical Address Space

BIOS ROM
0x00100000 (1MB)

0x000F0000 (960kB)

BIOS Data
0x00000600 (1536B)

0x00000400 (1024B)
CPU-owned

0x00000000 (0B)

Pintos Loader
0x00007e00 (31.5kB)

0x00007c00 (31kB)

Pintos Kernel
0x000a0000 (640kB)

0x00020000 (128kB)
page tables
for startup

0x00010000 (64kB)
page directory

for startup0x0000f000 (60kB) kernel stack
and initial thread struct0x0000e000 (56kB)

the end of RAM
user pool

kernel pool info about user frames

Replacement policy

• Require one that approximates LRU

• second chance, clock, …

• some interfaces may be useful: userprog/pagedir.h

• All algorithms have a common thing to do…

• Q:How to manage the frames and their related information?

• Frame management

• Swap space management

Swap space management

• Swap space is a space on a hard disk that is a substitute for physical memory.

• In pintos, swap space is a block device.

• The interfaces of block device have been provided.

Swap space management

• Block device

• devices/block.h, devices/block.c

• Initialized in pintos_init

• Get a block device

• block_get_role

• Read from a block device

• block_read

• Write to a block device

• block_write

• Other interfaces you may use

Swap space management

• Are all these interfaces enough for our task?

• How to manage swap space?

• When we access it…

• Trigger page fault on first access

• Turn to page fault handler to load the page

• Q:How can we know it’s time to load the page instead of other cases?

• Q:How to load the page?

• Read the page into memory

• Replacement policy

• Update pte

• Interfaces in threads/pte.h, userprog/pagedir.h, userprog/pagedir.c …

When we execute a program…

• When we read it…

• …

• When we write it…

• write back instead of write through

• dirty bit

• some interfaces may be useful: userprog/pagedir.h

When we execute a program…

Revisit lab 3a tasks

• 1.1

• load an executable

• lazy loading

• write back

• swap space

• 1.2

• replacement policy

• 1.3

• modify previous
implementation

Revisit lab 3b tasks

• 1.1

• allocate a new page when
stack grows past current
page

• 1.2

• mmap, munmap

• can map many kinds of files

Key parts

• User pages mapping maintenance

• Frame management

• Swap space management

Today

• Lab 3 overview

• Lab 3a/3b tasks

• Bitmap and hash

• Tips

• Q&A

Bitmap

• lib/kernel/bitmap.h, lib/kernel/bitmap.c

• Bitmap is an effective way to make marks.

• Bitmap is used in memory pool to mark whether the pages in pool are used.

Hash

• lib/kernel/hash.h, lib/kernel/hash.c

• The element stored in the hash table can be quickly retrieved.

• Like list_elem for List, hash_elem is used in hash.

How to use hash table to implement a fast mapping (hash map)

• Given a key k, get its correspondent value v efficiently

• This is quite helpful in implementing our mapping from user pages to swap space
content or file content.

• Just use hash table to maintain keys, and combine correspondent values
with keys.

• e.g. put key and value in a struct, and use key as the hash key

0

1

2

3

4

insert k Hash

Hash(k)=1
k1

k3

k2 k4

k

0

1

2

3

4

insert (k, v) Hash

Hash(k)=1
(k1, v1)

(k3, v3)

(k2, v3) (k4. v4)

(k, v)

Today

• Lab 3 overview

• Lab 3a/3b tasks

• Bitmap and hash

• Tips

• Q&A

Other things you may need to give attention to…

• Synchronization problem

• especially when accessing some global variables

• Remember to free the resources when the process exits

• Note that a disk sector is 512B while a page is 4096B

• Read requirements in document carefully

• …

Today

• Lab 3 overview

• Lab 3a/3b tasks

• Bitmap and hash

• Tips

• Q&A

Thanks for
your listening.

