
Operating Systems
(Honor Track)

Abstraction 3: IPC, Pipes and Sockets
A quick, programmer’s viewpoint

Acknowledgments: Ion Stoica, Berkeley CS 162

Xin Jin
Spring 2023

2

Recap: Key Unix I/O Design Concepts
• Uniformity – everything is a file

– file operations, device I/O, and interprocess communication through open, read/write, close
– Allows simple composition of programs

» find | grep | wc …
• Open before use

– Provides opportunity for access control and arbitration
– Sets up the underlying machinery, i.e., data structures

• Byte-oriented
– Even if blocks are transferred, addressing is in bytes

• Kernel buffered reads
– Streaming and block devices looks the same, read blocks yielding processor to other task

• Kernel buffered writes
– Completion of out-going transfer decoupled from the application, allowing it to continue

• Explicit close

3

Recap: I/O and Storage Layers

High Level I/O

Low Level I/O
Syscall

File System

I/O Driver

Application / Service

Streams

File Descriptors
open(), read(), write(), close(), …

Files/Directories/Indexes

Commands and Data Transfers

Disks, Flash, Controllers, DMA

Open File Descriptions

4

// character oriented
int fputc(int c, FILE *fp); // rtn c or EOF on err
int fputs(const char *s, FILE *fp); // rtn > 0 or EOF

int fgetc(FILE * fp);
char *fgets(char *buf, int n, FILE *fp);

// block oriented
size_t fread(void *ptr, size_t size_of_elements,

size_t number_of_elements, FILE *a_file);
size_t fwrite(const void *ptr, size_t size_of_elements,

size_t number_of_elements, FILE *a_file);

// formatted
int fprintf(FILE *restrict stream, const char *restrict format, ...);
int fscanf(FILE *restrict stream, const char *restrict format, ...);

Recap: C High-Level File API

5

Recap: C High-Level File API: Positioning The Pointer
int fseek(FILE *stream, long int offset, int whence); // Reposition stream
position indicator
long int ftell (FILE *stream) // Get current position in stream
void rewind (FILE *stream) // Set position of stream to the beginning

• For fseek(), the offset is interpreted based on the whence argument
(constants in stdio.h):
– SEEK_SET: Then offset interpreted from beginning (position 0)
– SEEK_END: Then offset interpreted backwards from end of file
– SEEK_CUR: Then offset interpreted from current position

• Overall preserves high-level abstraction of a uniform stream of objects
offset (SEEK_CUR)

offset (SEEK_SET) offset (SEEK_END)

whence

6

Recap: Low-Level File API
• Read data from open file using file descriptor:

ssize_t read (int filedes, void *buffer, size_t maxsize)

– Reads up to maxsize bytes – might actually read less!
– returns bytes read, 0 => EOF, -1 => error

• Write data to open file using file descriptor

ssize_t write (int filedes, const void *buffer, size_t size)

– returns number of bytes written

• Reposition file offset within kernel (this is independent of any position held by high-
level FILE descriptor for this file!)

off_t lseek (int filedes, off_t offset, int whence)

7

Recap: High-Level vs. Low-Level File API

High-Level Operation:
size_t fread(…) {

Do some work like a normal fn…

asm code … syscall # into %eax
put args into registers %ebx, …
special trap instruction

get return values from regs
Do some more work like a normal fn…

};

Kernel:
get args from regs
dispatch to system func
Do the work to read from the file
Store return value in %eax

Low-Level Operation:
ssize_t read(…) {

asm code … syscall # into %eax
put args into registers %ebx, …
special trap instruction

get return values from regs

};

Kernel:
get args from regs
dispatch to system func
Do the work to read from the file
Store return value in %eax

8

Recap: fork() in a Multithreaded Processes

User Space

Kernel Space

Address
Space

(Memory)

Thread 1
Regs

File Descriptors

Not shown: Initially
contains 0, 1, and 2
(stdin, stdout, stderr)

3
File: foo.txt
Position: 100

Process 1

Address
Space

(Memory)

Thread 1
Regs

File Descriptors
3

Process 2

…

…

Open File Description

• Only the thread that
called fork() exists in the
new processThread 2

Regs

9

Recap: Avoid Mixing FILE* and File Descriptors
char x[10];
char y[10];
FILE* f = fopen(“foo.txt”, “rb”);
int fd = fileno(f);
fread(x, 10, 1, f); // read 10 bytes from f
read(fd, y, 10); // assumes that this returns data starting at offset 10

• Which bytes from the file are read into y?
A. Bytes 0 to 9
B. Bytes 10 to 19
C. None of these?

• Answer: C! None of the above.
– The fread() reads a big chunk of file into user-level buffer
– Might be all of the file!

10

Group Discussion

• Topic: High-level vs. low-level File API
– What are the differences between high-level and low-level file APIs?
– What are the pros and cons of high-level and low-level file APIs?
– When to use high-level file API? When to use low-level file API?
– How are you going to design file API?

• Discuss in groups of two to three students
– Each group chooses a leader to summarize the discussion
– In your group discussion, please do not dominate the discussion, and give

everyone a chance to speak

11

IPC and Sockets

• Key Idea: Communication between processes and
across the world looks like File I/O

• Introduce Pipes and Sockets
• Introduce TCP/IP Connection setup for Webserver

write(wfd, wbuf, wlen);

n = read(rfd, rbuf, rmax);

SocketProcess

Socket Process

12

• What if processes wish to communicate with one another?
– Why? Shared Task, Cooperative Venture with Security Implications

• Process Abstraction Designed to Discourage Inter-Process Communication!
– Prevent one process from interfering with/stealing information from another

• So, must do something special (and agreed upon by both processes)
– Must “Punch Hole” in security

• This is called “Interprocess Communication” (or IPC)

Communication Between Processes

13

• Producer (writer) and consumer (reader) may be distinct processes
– Potentially separated in time
– How to allow selective communication?

• Simple option: use a file!
– We have already shown how parents and children share file descriptions:

• Why might this be wasteful?
– Very expensive if you only want transient communication (non-persistent)

Communication Between Processes

write(wfd, wbuf, wlen);

n = read(rfd, rbuf, rmax);

Process A Process BPersistent
Storage

14

Communication Between Processes
• Suppose we ask Kernel to help?

– Consider an in-memory queue
– Accessed via system calls (for security reasons):

• Data written by A is held in memory until B reads it
– Same interface as we use for files!
– Internally more efficient, since nothing goes to disk

• Some questions:
– How to set up?
– What if A generates data faster than B can consume it?
– What if B consumes data faster than A can produce it?

write(wfd, wbuf, wlen);

n = read(rfd, rbuf, rmax);

Process A Process BIn-Memory
Queue

15

One example of this pattern: POSIX/Unix PIPE

• Memory Buffer is finite:
– If producer (A) tries to write when buffer full, it blocks (Put sleep until space)
– If consumer (B) tries to read when buffer empty, it blocks (Put to sleep until data)

int pipe(int fileds[2]);
– Allocates two new file descriptors in the process
– Writes to fileds[1] read from fileds[0]
– Implemented as a fixed-size queue

UNIX Pipe

write(wfd, wbuf, wlen);

n = read(rfd, rbuf, rmax);

Process A Process B

16

#include <unistd.h>
int main(int argc, char *argv[])
{

char *msg = "Message in a pipe.\n";
char buf[BUFSIZE];
int pipe_fd[2];
if (pipe(pipe_fd) == -1) {

fprintf (stderr, "Pipe failed.\n"); return EXIT_FAILURE;
}
ssize_t writelen = write(pipe_fd[1], msg, strlen(msg)+1);
printf("Sent: %s [%ld, %ld]\n", msg, strlen(msg)+1, writelen);

ssize_t readlen = read(pipe_fd[0], buf, BUFSIZE);
printf("Rcvd: %s [%ld]\n", buf, readlen);

close(pipe_fd[0]);
close(pipe_fd[1]);

}

Single-Process Pipe Example

17

Pipes Between Processes

User Space
Kernel Space

Address
Space

(Memory)

Thread’s
Regs

File Descriptors
3
4 In

Out

Parent Process

Address
Space

(Memory)

Thread’s
Regs

File Descriptors
3
4

Child Process

… …

Pipe

pipe(…)
fork()

18

// continuing from earlier
pid_t pid = fork();
if (pid < 0) {

fprintf (stderr, "Fork failed.\n");
return EXIT_FAILURE;

}
if (pid != 0) {

ssize_t writelen = write(pipe_fd[1], msg, msglen);
printf("Parent: %s [%ld, %ld]\n", msg, msglen, writelen);
close(pipe_fd[0]);

} else {
ssize_t readlen = read(pipe_fd[0], buf, BUFSIZE);
printf("Child Rcvd: %s [%ld]\n", buf, readlen);
close(pipe_fd[1]);

}

Inter-Process Communication (IPC): Parent Þ Child

19

Channel from Parent Þ Child

User Space
Kernel Space

Address
Space

(Memory)

Thread’s
Regs

File Descriptors
3
4 In

Out

Parent Process

Address
Space

(Memory)

Thread’s
Regs

File Descriptors
3
4

Child Process

… …

Pipe

pipe(…)
fork()
close(3) close(4)

20

Instead: Channel from Child Þ Parent

User Space
Kernel Space

Address
Space

(Memory)

Thread’s
Regs

File Descriptors
3
4 In

Out

Parent Process

Address
Space

(Memory)

Thread’s
Regs

File Descriptors
3
4

Child Process

… …

Pipe

pipe(…)
fork()
close(4) close(3)

21

When do we get EOF on a pipe?
• After last “write” descriptor is closed, pipe is effectively closed:

– Reads return only “EOF”
• After last “read” descriptor is closed, writes generate SIGPIPE signals:

– If process ignores, then the write fails with an “EPIPE” error

22

EOF on a Pipe

User Space
Kernel Space

Address
Space

(Memory)

Thread’s
Regs

File Descriptors

4 In

Out

Process 1

Address
Space

(Memory)

Thread’s
Regs

File Descriptors
3

Process 2

… …

Pipe

pipe(…)
fork()
close(3)
close(4)

close(4)

EOF

23

Once we have communication, we need a protocol
• A protocol is an agreement on how to communicate
• Includes

– Syntax: how a communication is specified & structured
» Format, order messages are sent and received

– Semantics: what a communication means
» Actions taken when transmitting, receiving, or when a timer expires

• Described formally by a state machine
– Often represented as a message transaction diagram

• In fact, across network may need a way to translate between different
representations for numbers, strings, etc.

– Such translation typically part of a Remote Procedure Call (RPC) facility
– Don’t worry about this now, but it is clearly part of the protocol

24

Examples of Protocols in Human Interaction

1. Telephone
2. (Pick up / open up the phone)
3. Listen for a dial tone / see that you have service
4. Dial
5. Should hear ringing …
6. Callee: “Hello?”
7. Caller: “Hi, it’s John….”

Or: “Hi, it’s me” (what’s that about?)
8. Caller: “Hey, do you think … blah blah blah …” pause

9. Callee: “Yeah, blah blah blah …” pause
10. Caller: Bye
11. Callee: Bye
12. Hang up

25

Web Server

Client Web Server

Request

Reply

26

Client-Server Protocols: Cross-Network IPC

• Many clients accessing a common server
• File servers, www, FTP, databases

Server

Client 1

Client 2

Client n

27

Client-Server Communication

• Client is “sometimes on”
– Sends the server requests for

services when interested
– E.g., Web browser on laptop/phone
– Doesn’t communicate directly with

other clients
– Needs to know server’s address

• Server is “always on”
– Services requests from many clients
– E.g., Web server for www.pku.edu.cn
– Doesn’t initiate contact with clients
– Needs a fixed, well-known address

GET /index.html

“Site under construction”

28

What is a Network Connection?

• Bidirectional stream of bytes between two processes on possibly different
machines

– For now, we are discussing “TCP Connections”

• Abstractly, a connection between two endpoints A and B consists of:
– A queue (bounded buffer) for data sent from A to B
– A queue (bounded buffer) for data sent from B to A

29

The Socket Abstraction: Endpoint for Communication
• Key Idea: Communication across the world looks like File I/O

• Sockets: Endpoint for Communication
– Queues to temporarily hold results

• Connection: Two Sockets Connected Over the network Þ IPC over network!
– How to open()?
– What is the namespace?
– How are they connected in time?

write(wfd, wbuf, wlen);

n = read(rfd, rbuf, rmax);

SocketProcess

Socket Process

30

Sockets: More Details

• Socket: An abstraction for one endpoint of a network connection
– Another mechanism for inter-process communication
– Most operating systems (Linux, Mac OS X, Windows) provide this, even if they don’t

copy rest of UNIX I/O
– Standardized by POSIX

• First introduced in 4.2 BSD (Berkeley Software/Standard Distribution) Unix
• Same abstraction for any kind of network

– Local (within same machine)
– The Internet (TCP/IP, UDP/IP)
– Things “no one” uses anymore (OSI, Appletalk, IPX, …)

31

Sockets: More Details

• Looks just like a file with a file descriptor
– Corresponds to a network connection (two queues)
– write adds to output queue (queue of data destined for other side)
– read removes from input queue (queue of data destined for this side)
– Some operations do not work, e.g., lseek

• How can we use sockets to support real applications?
– A bidirectional byte stream isn’t useful on its own…
– May need messaging facility to partition stream into chunks
– May need RPC facility to translate one environment to another and provide the

abstraction of a function call over the network

32

Simple Example: Echo Server

Client Web Server

“hello, world”

“hello, world”

33

write(sockfd,sndbuf,strlen(sndbuf)+1); n = read(sockfd,reqbuf,…);

Client (issues requests) Server (services requests)

write(sockfd,reqbuf,…);

print

wait

fgets(sndbuf,bufsize,stdin);

print

Simple Example: Echo Server

wait

n = read(sockfd,rcvbuf, …);

Client
Socket

Server
Socket

34

Echo client-server example
void client(int sockfd) {
int n;
char sndbuf[MAXIN]; char rcvbuf[MAXOUT];
while (1) {
fgets(sndbuf,MAXIN,stdin); /* prompt */
write(sockfd, sndbuf, strlen(sndbuf)+1); /* send (including null terminator) */
memset(rcvbuf,0,MAXOUT); /* clear */
n=read(sockfd, rcvbuf, MAXOUT); /* receive */
write(STDOUT_FILENO, rcvbuf, n); /* echo */

}
}

void server(int consockfd) {
char reqbuf[MAXREQ];
int n;
while (1) {
memset(reqbuf,0, MAXREQ);
n = read(consockfd,reqbuf,MAXREQ); /* Recv */
if (n <= 0) return;
write(STDOUT_FILENO, reqbuf, n);
write(consockfd, reqbuf, n); /* echo*/

}
}

35

What Assumptions are we Making?

• Reliable
– Write to a file => Read it back. Nothing is lost.
– Write to a (TCP) socket => Read from the other side, same.
– Like pipes

• In order (sequential stream)
– Write X then write Y => read gets X then read gets Y

• When ready?
– File read gets whatever is there at the time.
– Assumes writing already took place
– Blocks if nothing has arrived yet
– Like pipes!

36

Socket Creation

• File systems provide a collection of permanent objects in a structured name space:
– Processes open/read/write/close them
– Files exist independently of processes
– Easy to name what file to open()

• Pipes: one-way communication between processes on same (physical) machine
– Single queue
– Created transiently by a call to pipe()
– Passed from parent to children (descriptors inherited from parent process)

• Sockets: two-way communication between processes on same or different machine
– Two queues (one in each direction)
– Processes can be on separate machines: no common ancestor
– How do we name the objects we are opening?
– How do these completely independent programs know that the other wants to “talk” to them?

37

Namespaces for Communication over IP

• Hostname
– www.pku.edu.cn

• IP address
– 128.32.244.172 (IPv4, 32-bit Integer)
– 2607:f140:0:81:e:f (IPv6, 128-bit Integer)

• Port Number
– 0-1023 are “well known” or “system” ports

» Superuser privileges to bind to one
– 1024 – 49151 are “registered” ports (registry)

» Assigned by IANA for specific services
– 49152–65535 (215+214 to 216−1) are “dynamic” or “private”

» Automatically allocated as “ephemeral ports”

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt

38

Connection Setup over TCP/IP

• Special kind of socket: server socket
– Has file descriptor
– Can’t read or write

• Two operations:
1. listen(): Start allowing clients to connect
2. accept(): Create a new socket for a particular client

socket

Request Connection

ServerClient

Server
Socket

connection

new
socket

Connection
socket

connection

39

Connection Setup over TCP/IP

• 5-Tuple identifies each connection:
1. Source IP Address
2. Destination IP Address
3. Source Port Number
4. Destination Port Number
5. Protocol (always TCP here)

socket

Request Connection

ServerClient

Server
Socket

new
socket

Connection
socket

connection

• Often, Client Port “randomly” assigned
– Done by OS during client socket setup

• Server Port often “well known”
– 80 (web), 443 (secure web), 25 (sendmail),

etc.
– Well-known ports from 0—1023

40

Sockets in concept
Client Server

read response

Close Client Socket

Create Client Socket

Connect it to server (host:port)

Create Server Socket

Bind it to an Address
(host:port)

Listen for Connection

Close Connection Socket

Close Server Socket

write request

write response

Accept syscall()
Connection SocketConnection Socket

read request

41

char *host_name, *port_name;

// Create a socket
struct addrinfo *server = lookup_host(host_name, port_name);
int sock_fd = socket(server->ai_family, server->ai_socktype,

server->ai_protocol);

// Connect to specified host and port
connect(sock_fd, server->ai_addr, server->ai_addrlen);

// Carry out Client-Server protocol
run_client(sock_fd);

/* Clean up on termination */
close(sock_fd);

Client Protocol
Address family, e.g.,
- AF_INET (IPv4)
- AF_INET6 (IPv6)

Socket type, e.g.,
- SOCK_STEAM
- SOCK_DGRAM

Protocol type, e.g.,
- IPPROTO_TC
- 0 (any protocol)

42

// Create socket to listen for client connections
char *port_name;
struct addrinfo *server = setup_address(port_name);
int server_socket = socket(server->ai_family,

server->ai_socktype, server->ai_protocol);
// Bind socket to specific port
bind(server_socket, server->ai_addr, server->ai_addrlen);
// Start listening for new client connections
listen(server_socket, MAX_QUEUE);

while (1) {
// Accept a new client connection, obtaining a new socket
int conn_socket = accept(server_socket, NULL, NULL);
serve_client(conn_socket);
close(conn_socket);

}
close(server_socket);

Server Protocol (v1)

43

How Could the Server Protect Itself?

• Handle each connection in a separate process

44

Sockets With Protection (each connection has own process)
Client Server

Create Client Socket

Connect it to server (host:port)

Create Server Socket

Bind it to an Address
(host:port)

Listen for Connection

Accept syscall()

Connection SocketConnection Socket

write request

read response

Close Client Socket

read request

write response

Close Connection Socket

Close Server Socket

Child

Close Connection SocketClose Listen Socket

Parent

Wait for child

45

// Socket setup code elided…
while (1) {

// Accept a new client connection, obtaining a new socket
int conn_socket = accept(server_socket, NULL, NULL);
pid_t pid = fork();
if (pid == 0) {

close(server_socket);
serve_client(conn_socket);
close(conn_socket);
exit(0);

} else {
close(conn_socket);
wait(NULL);

}
}
close(server_socket);

Server Protocol (v2)

46

Concurrent Server

• So far, in the server:
– Listen will queue requests
– Buffering present elsewhere
– But server waits for each connection to terminate before servicing the next

• A concurrent server can handle and service a new connection before the
previous client disconnects

47

Sockets With Protection and Concurrency
Client Server

Create Client Socket

Connect it to server (host:port)

Create Server Socket

Bind it to an Address
(host:port)

Listen for Connection

Accept syscall()

Connection SocketConnection Socket

write request

read response

Close Client Socket

read request

write response

Close Connection Socket Close Server Socket

Child

Close Connection SocketClose Listen Socket

Parent

48

// Socket setup code elided…
while (1) {

// Accept a new client connection, obtaining a new socket
int conn_socket = accept(server_socket, NULL, NULL);
pid_t pid = fork();
if (pid == 0) {

close(server_socket);
serve_client(conn_socket);
close(conn_socket);
exit(0);

} else {
close(conn_socket);
//wait(NULL);

}
}
close(server_socket);

Server Protocol (v3)

49

Concurrent Server without Protection

• Spawn a new thread to handle each connection
• Main thread initiates new client connections without waiting for previously

spawned threads
• Why give up the protection of separate processes?

– More efficient to create new threads
– More efficient to switch between threads

50

Client Server

Create Client Socket

Connect it to server (host:port)

Create Server Socket

Bind it to an Address
(host:port)

Listen for Connection

Accept syscall()

Connection SocketConnection Socket

write request

read response

Close Client Socket

read request

write response

Close Connection Socket
Close Server Socket

Spawned Thread

Main Thread

Sockets with Concurrency, without Protection

pthread_create

51

Thread Pools
• Problem with previous version: Unbounded Threads

– When web-site becomes too popular – throughput sinks
• Instead, allocate a bounded “pool” of worker threads, representing the

maximum level of multiprogramming

master() {
allocThreads(worker,queue);
while(TRUE) {

con=AcceptCon();
Enqueue(queue,con);
wakeUp(queue);

}
}

worker(queue) {
while(TRUE) {

con=Dequeue(queue);
if (con==null)

sleepOn(queue);
else

ServiceWebPage(con);
}

}

Master
Thread

Thread Pool

queue

52

Summary

• Interprocess Communication (IPC)
– Communication facility between protected environments (i.e. processes)

• Pipes are an abstraction of a single queue
– One end write-only, another end read-only
– Used for communication between multiple processes on one machine
– File descriptors obtained via inheritance

• Sockets are an abstraction of two queues, one in each direction
– Can read or write to either end
– Used for communication between multiple processes on different machines
– File descriptors obtained via socket/bind/connect/listen/accept
– Inheritance of file descriptors on fork() facilitates handling each connection in a separate process

• Both support read/write system calls, just like File I/O

