
Acknowledgments: Ion Stoica, Berkeley CS 162

Xin Jin
Spring 2023

Operating Systems
(Honor Track)

Synchronization 1: Concurrency

2

Recap: One example of this pattern: POSIX/Unix PIPE

• Memory Buffer is finite:
– If producer (A) tries to write when buffer full, it blocks (Put sleep until space)
– If consumer (B) tries to read when buffer empty, it blocks (Put to sleep until data)

int pipe(int fileds[2]);
– Allocates two new file descriptors in the process
– Writes to fileds[1] read from fileds[0]
– Implemented as a fixed-size queue

UNIX Pipe

write(wfd, wbuf, wlen);

n = read(rfd, rbuf, rmax);

Process A Process B

3

Recap: The Socket Abstraction: Endpoint for Communication
• Key Idea: Communication across the world looks like File I/O

• Sockets: Endpoint for Communication
– Queues to temporarily hold results

• Connection: Two Sockets Connected Over the network Þ IPC over network!
– How to open()?
– What is the namespace?
– How are they connected in time?

write(wfd, wbuf, wlen);

n = read(rfd, rbuf, rmax);

SocketProcess

Socket Process

4

Recap: Sockets in concept
Client Server

read response

Close Client Socket

Create Client Socket

Connect it to server (host:port)

Create Server Socket

Bind it to an Address
(host:port)

Listen for Connection

Close Connection Socket

Close Server Socket

write request

write response

Accept syscall()
Connection SocketConnection Socket

read request

5

Recap: Sockets With Protection (each connection has own process)
Client Server

Create Client Socket

Connect it to server (host:port)

Create Server Socket

Bind it to an Address
(host:port)

Listen for Connection

Accept syscall()

Connection SocketConnection Socket

write request

read response

Close Client Socket

read request

write response

Close Connection Socket

Close Server Socket

Child

Close Connection SocketClose Listen Socket

Parent

Wait for child

6

Recap: Sockets With Protection and Concurrency
Client Server

Create Client Socket

Connect it to server (host:port)

Create Server Socket

Bind it to an Address
(host:port)

Listen for Connection

Accept syscall()

Connection SocketConnection Socket

write request

read response

Close Client Socket

read request

write response

Close Connection Socket Close Server Socket

Child

Close Connection SocketClose Listen Socket

Parent

7

Client Server

Create Client Socket

Connect it to server (host:port)

Create Server Socket

Bind it to an Address
(host:port)

Listen for Connection

Accept syscall()

Connection SocketConnection Socket

write request

read response

Close Client Socket

read request

write response

Close Connection Socket
Close Server Socket

Spawned Thread

Main Thread

Recap: Sockets with Concurrency, without Protection

pthread_create

8

Group Discussion

• Topic: Pipes vs. Sockets
– What is a pipe? What is a socket?
– What are similar between pipes and sockets?
– What are different between pipes and sockets?

• Discuss in groups of two to three students
– Each group chooses a leader to summarize the discussion
– In your group discussion, please do not dominate the discussion, and give

everyone a chance to speak

9

How to Read

You May Think You Already Know
How To READ, But…

10

You Spend a Lot of Time Reading

• Reading for undergrad/grad classes
• Reviewing conference submissions
• Giving colleagues feedback
• Keeping up with your field
• Staying broadly educated
• Transitioning into a new area
• Learning how to write better papers

It is worthwhile to learn to read effectively

11

Keshav’s Three-Pass Approach: Step 1
• A ten-minute scan to get the general idea

– Title, abstract, and introduction
– Section and subsection titles
– Conclusion and bibliography

• What to learn: the five C’s
– Category: What type of paper is it?
– Context: What body of work does it relate to?
– Correctness: Do the assumptions seem valid?
– Contributions: What are the main research contributions?
– Clarity: Is the paper well-written?

• Decide whether to read further…

12

Keshav’s Three-Pass Approach: Step 2
• A more careful, one-hour reading

– Read with greater care, but ignore details like proofs
– Figures, diagrams, and illustrations
– Mark relevant references for later reading

• Grasp the content of the paper
– Be able to summarize the main idea
– Identify whether you can (or should) fully understand

• Decide whether to
– Abandon reading in greater depth
– Read background material before proceeding further
– Persevere and continue for a third pass

13

Keshav’s Three-Pass Approach: Step 3
• Several-hour virtual re-implementation of the work

– Making the same assumptions, recreate the work
– Identify the paper’s innovations and its failings
– Identify and challenge every assumption
– Think how you would present the ideas yourself
– Jot down ideas for future work

• When should you read this carefully?
– Reviewing for a conference or journal
– Giving colleagues feedback on a paper
– Understanding a paper closely related to your research
– Deeply understanding a classic paper in the field

14

Other Tips for Reading Papers

• Read at the right level for what you need
– “Work smarter, not harder”

• Read at the right time of day
– When you are fresh, not sleepy

• Read in the right place
– Where you are not distracted, and have enough time

• Read actively
– With a purpose (what is your goal?)
– With a pen or computer to take notes

• Read critically
– Think, question, challenge, critique, …

15

Agenda: Synchronization
• How does an OS provide concurrency through threads?

– Brief discussion of process/thread states and scheduling
– High-level discussion of how stacks contribute to concurrency

• Introduce needs for synchronization
• Discussion of Locks and Semaphores

16

• Kernel represents each process as a process control
block (PCB)

– Status (running, ready, blocked, …)
– Register state (when not ready)
– Process ID (PID), User, Executable, Priority, …
– Execution time, …
– Memory space, translation, …

• Kernel Scheduler maintains a data structure
containing the PCBs

– Give out CPU to different processes
– This is a Policy Decision

• Give out non-CPU resources
– Memory/IO
– Another policy decision

Process
Control
Block

Multiplexing Processes: The Process Control Block

17

Context Switch

Privilege Level: 0 - sysPrivilege Level: 3 - user Privilege Level: 3 - user

18

Lifecycle of a Process or Thread

• As a process executes, it changes state:
– new: The process/thread is being created
– ready: The process is waiting to run
– running: Instructions are being executed
– waiting: Process waiting for some event to occur
– terminated: The process has finished execution

19

Scheduling: All About Queues

• PCBs move from queue to queue
• Scheduling: which order to remove from queue

– Much more on this soon

20

Ready Queue And Various I/O Device Queues
• Process not running Þ PCB is in some scheduler queue

– Separate queue for each device/signal/condition
– Each queue can have a different scheduler policy

Other
State
PCB9

Link
Registers

Other
State
PCB6

Link
Registers

Other
State
PCB16

Link
Registers

Other
State
PCB8

Link
Registers

Other
State
PCB2

Link
Registers

Other
State
PCB3

Link
Registers

Head
Tail

Head
Tail

Head
Tail

Head
Tail

Head
Tail

Ready
Queue

USB
Unit 0

Disk
Unit 0

Disk
Unit 2

Ether
Netwk 0

21

Scheduler

• Scheduling: Mechanism for deciding which processes/threads
receive the CPU

• Lots of different scheduling policies provide …
– Fairness or
– Realtime guarantees or
– Latency optimization or …

if (readyProcesses(PCBs)) {
nextPCB = selectProcess(PCBs);
run(nextPCB);

} else {
run_idle_process();

}

22

Recall: Single and Multithreaded Processes

• Threads encapsulate concurrency
• Address spaces encapsulate protection

– Keeps buggy program from trashing the system
• Why have multiple threads per address space?

23

Shared vs. Per-Thread State

State

Global
Variables

Heap

Code

Per−Thread
State

Stack

Saved
Registers

Thread Control
Block (TCB)

Thread
Metadata

Stack
Information

Per−Thread
State

Stack

Saved
Registers

Thread Control
Block (TCB)

Thread
Metadata

Stack
Information

Shared

24

The Core of Concurrency: the Dispatch Loop

• Conceptually, the scheduling loop of the operating system looks as follows:

Loop {
RunThread();
ChooseNextThread();
SaveStateOfCPU(curTCB);
LoadStateOfCPU(newTCB);

}

• This is an infinite loop
– One could argue that this is all that the OS does

25

Running a thread

Consider first portion: RunThread()

• How do I run a thread?
– Load its state (registers, PC, stack pointer) into CPU
– Load environment (virtual memory space, etc)
– Jump to the PC

• How does the dispatcher get control back?
– Internal events: thread returns control voluntarily
– External events: thread gets preempted

26

Internal Events

• Blocking on I/O
– The act of requesting I/O implicitly yields the CPU

• Waiting on a “signal” from other thread
– Thread asks to wait and thus yields the CPU

• Thread executes a yield()
– Thread volunteers to give up CPU

computePI() {

while(TRUE) {
ComputeNextDigit();

yield();

}

}

27

Stack for Yielding Thread

• How do we run a new thread?
run_new_thread() {

newThread = PickNewThread();
switch(curThread, newThread);
ThreadHouseKeeping(); /* Do any cleanup */

}

• How does dispatcher switch to a new thread?
– Save anything next thread may trash: PC, regs, stack pointer
– Maintain isolation for each thread

yield

ComputePI

Stack grow
thrun_new_thread

kernel_yield
Trap to OS

switch

28

What Do the Stacks Look Like?
• Consider the following

code blocks:
func A() {

B();

}

func B() {
while(TRUE) {

yield();

}

}

• Suppose we have 2
threads:

– Threads S and T

Thread S

St
ac
k
gr
ow
th

A

B(while)

yield

run_new_thread

switch

Thread T

A

B(while)

yield

run_new_thread

switch

Thread S's switch returns to
Thread T's (and vice versa)

29

Saving/Restoring state (often called “Context Switch”)
Switch(tCur,tNew) {

/* Unload old thread */
TCB[tCur].regs.r7 = CPU.r7;

…

TCB[tCur].regs.r0 = CPU.r0;

TCB[tCur].regs.sp = CPU.sp;

TCB[tCur].regs.retpc = CPU.retpc; /*return addr*/

/* Load and execute new thread */

CPU.r7 = TCB[tNew].regs.r7;

…

CPU.r0 = TCB[tNew].regs.r0;
CPU.sp = TCB[tNew].regs.sp;

CPU.retpc = TCB[tNew].regs.retpc;

return; /* Return to CPU.retpc */

}

30

Switch Details (continued)
• What if you make a mistake in implementing switch?

– Suppose you forget to save/restore register 32
– Get intermittent failures depending on when context switch occurred and whether new

thread uses register 32
– System will give wrong result without warning

• Can you devise an exhaustive test to test switch code?
– Very challenging! Too many combinations and interleavings

• Cautionary tale:
– For speed, Topaz kernel saved one instruction in switch()
– Carefully documented! Only works as long as kernel size < 1MB
– What happened?

» Time passed, People forgot
» Later, they added features to kernel (no one removes features!)
» Very weird behavior started happening

– Moral of story: Design for simplicity

31

Aren't we still switching contexts?

• Yes, but much cheaper than switching processes
– No need to change address space

• Some numbers from Linux:
– Frequency of context switch: 10-100ms
– Switching between processes: 3-4 μs
– Switching between threads: 100 ns

• Even cheaper: switch threads (using “yield”) in user-space!

32

Processes vs. Threads
Process 1

CPU
sched.

OS

CPU
(1 core)

1 thread at
a time

IO
state

Mem.

…

threads
Process N

IO
state

Mem.

…

threads

…

• Switch overhead:
– Same process: low

– Different process: high

• Protection
– Same process : low

– Different process : high

• Sharing overhead
– Same process : low

– Different process : high

• Parallelism: no

CPU
state

CPU
state

CPU
state

CPU
state

33

Processes vs. Threads
Process 1

CPU
sched.

OS

Core
1

4 threads
at a time

IO
state

Mem.

…

threads
Process N

IO
state

Mem.

…

threads

…
CPU
state

CPU
state

CPU
state

CPU
state

Core
2

Core
3

Core
4

• Switch overhead:
– Same process: low
– Different process: high

• Protection
– Same process : low
– Different process : high

• Sharing overhead
– Same process : low
– Different process,

simultaneous core: medium
– Different process,

offloaded core: high
• Parallelism: yes

34

Simultaneous MultiThreading/Hyperthreading
• Hardware scheduling technique

– Superscalar processors can execute multiple
instructions that are independent.

– Hyperthreading duplicates register state to make a
second “thread,” allowing more instructions to run.

• Can schedule each thread as if were separate CPU
– But, sub-linear speedup!

• Original technique called “Simultaneous Multithreading”
– http://www.cs.washington.edu/research/smt/index.html
– SPARC, Pentium 4/Xeon (“Hyperthreading”), Power 5

Colored blocks show
instructions executed

http://www.cs.washington.edu/research/smt/index.html

35

run_new_thread

kernel_read
Trap to OS

switch

What happens when thread blocks on I/O?

• What happens when a thread requests a block of data from
the file system?

– User code invokes a system call
– Read operation is initiated
– Run new thread/switch

• Thread communication similar
– Wait for Signal/Join
– Networking

CopyFile

read

Stack grow
th

36

External Events

• What happens if thread never does any I/O, never waits,
and never yields control?

– Could the ComputePI program grab all resources and never
release the processor?

» What if it didn’t print to console?
– Must find way that dispatcher can regain control!

• Answer: utilize external events
– Interrupts: signals from hardware or software that stop the

running code and jump to kernel
– Timer: like an alarm clock that goes off every some

milliseconds

• If we make sure that external events occur frequently
enough, can ensure dispatcher runs

37

Use of Timer Interrupt to Return Control
• Solution to our dispatcher problem

– Use the timer interrupt to force scheduling decisions

• Timer Interrupt routine:

TimerInterrupt() {
DoPeriodicHouseKeeping();
run_new_thread();

}

Some Routine

run_new_thread

TimerInterrupt
Interrupt

switch

Stack grow
th

38

How do we initialize TCB and Stack?

• Initialize Register fields of TCB
– Stack pointer made to point at stack
– PC return address Þ OS (asm) routine ThreadRoot()
– Two arg registers (a0 and a1) initialized to fcnPtr and fcnArgPtr,

respectively

ThreadRoot stub

Initial Stack

Stack grow
th

39

How does Thread get started?

• Eventually, run_new_thread() will select this TCB and
return into beginning of ThreadRoot()

– This really starts the new thread

St
ac

k
gr

ow
th

A

B(while)

yield

run_new_thread

switch

ThreadRoot

Other Thread

ThreadRoot stub

New Thread

40

How does a thread get started?

• How do we make a new thread?
– Setup TCB/kernel thread to point at new user stack and ThreadRoot code
– Put pointers to start function and args in registers
– This depends heavily on the calling convention (i.e. RISC-V vs x86)

• Eventually, run_new_thread() will select this TCB and return into beginning of ThreadRoot()
– This really starts the new thread

St
ac

k
gr

ow
th

A

B(while)

yield

run_new_thread

switch

Other Thread

ThreadRoot stub
New Thread

SetupNewThread(tNew) {
…
TCB[tNew].regs.sp = newStackPtr;
TCB[tNew].regs.retpc = &ThreadRoot;
TCB[tNew].regs.r0 = fcnPtr
TCB[tNew].regs.r1 = fcnArgPtr

}

ThreadRoot

41

What does ThreadRoot() look like?
• ThreadRoot() is the root for the thread routine:

ThreadRoot(fcnPTR,fcnArgPtr) {
DoStartupHousekeeping();
UserModeSwitch(); /* enter user mode */
Call fcnPtr(fcnArgPtr);
ThreadFinish();

}
• Startup Housekeeping

– Includes things like recording start time of thread
– Other statistics

• Stack will grow and shrink with
execution of thread

• Final return from thread returns into ThreadRoot() which calls ThreadFinish()
– ThreadFinish() wake up sleeping threads

ThreadRoot

Running Stack

Stack grow
th

Thread Code
*fcnPtr()

42

Context Switching in Modern OS

Shinjuku: Preemptive Scheduling for
Microsecond-Scale

Tail Latency

Kostis Kaffes, Timothy Chong, Jack Tigar Humphries,
Adam Belay, David Mazières, Christos Kozyrakis

NSDI’19

43

Achieving low tail latency at microsecond scale is hard

Problem: High OS overheads
Solution: OS Bypass, polling (no interrupts), run-to-completion (no scheduling)

Distributed Queues + First Come First Serve scheduling
d-FCFS (DPDK, IX, Arrakis)

Receive Side Scaling

3

RR

RR

RR

R

Worker Cores

R

Acknowledgments: Kostis Kaffes

44Acknowledgments: Kostis Kaffes

Achieving low tail latency at microsecond scale is hard

44

RSS
RR

RR

RR

R

Idle

Problem: Queue imbalance because d-FCFS is not work conserving

Worker Cores

45Acknowledgments: Kostis Kaffes

Achieving low tail latency at microsecond scale is hard

Problem: Queue imbalance because d-FCFS is not work conserving
Solution: Centralized queue - c-FCFS

55

R

Approximation:
d-FCFS + stealing

e.g., ZygOS

Worker Cores

46Acknowledgments: Kostis Kaffes

Problem: Short requests get stuck behind long ones

8

R

R

R

R

R

R

All cores are
hogged by

long requests

47Acknowledgments: Kostis Kaffes

What if we could use the same preemptive
scheduling as Linux?

Better

Better

9

PS–1ms: latency increases even
for low load (same as c-FCFS)

Bimodal – 99.5% 0.5us – 0.5% 500us
e.g. KVS with some RANGE queries

48Acknowledgments: Kostis Kaffes

Solution: What if we could use preemptive
scheduling but at usec scale?

Better

Better

10

Bimodal – 99.5% 0.5us – 0.5% 500us
e.g. KVS with some RANGE queries

PS-5us: near optimal performance
with fast preemption

49Acknowledgments: Kostis Kaffes

Solution: Shinjuku

Key Features:
• Dedicated core for scheduling and queue management
• Leverage hardware support for virtualization for fast preemption
• Very fast context switching in user space
• Match scheduling policy to task distribution and target latency

Α single address-space operating system that achieves
microsecond-scale tail latency for all types of workloads
regardless of variability in task duration

12

Preemption as often as 5us

50

Agenda: Synchronization
• How does an OS provide concurrency through threads?

– Brief discussion of process/thread states and scheduling
– High-level discussion of how stacks contribute to concurrency

• Introduce needs for synchronization
• Discussion of Locks and Semaphores

51

Correctness with Concurrent Threads?

• Non-determinism:
– Scheduler can run threads in any order
– Scheduler can switch threads at any time
– This can make testing very difficult

• Independent Threads
– No state shared with other threads
– Deterministic, reproducible conditions

• Cooperating Threads
– Shared state between multiple threads

• Goal: Correctness by Design

52

Concurrency is Hard!

• Even for practicing engineers trying to write mission-critical, bulletproof code!
– Threaded programs must work for all interleavings of thread instruction sequences
– Cooperating threads inherently non-deterministic and non-reproducible
– Really hard to debug unless carefully designed!

• Therac-25: Radiation Therapy Machine with Unintended Overdoses
– Concurrency errors caused the death of a number

of patients by misconfiguring the radiation production
– Improper synchronization between input from operators

and positioning software
• Mars Pathfinder Priority Inversion (JPL Account)
• Toyota Uncontrolled Acceleration (CMU Talk)

– 256.6K Lines of C Code, ~9-11K global variables
– Inconsistent mutual exclusion on reads/writes

https://www.cs.unc.edu/~anderson/teach/comp790/papers/mars_pathfinder_long_version.html
https://betterembsw.blogspot.com/2014/09/a-case-study-of-toyota-unintended.html

53

ATM Bank Server

• ATM server problem:
– Service a set of requests
– Do so without corrupting database
– Don’t hand out too much money

54

ATM bank server example
• Suppose we wanted to implement a server process to handle requests from

an ATM network:
BankServer() {

while (TRUE) {
ReceiveRequest(&op, &acctId, &amount);
ProcessRequest(op, acctId, amount);

}
}
ProcessRequest(op, acctId, amount) {

if (op == deposit) Deposit(acctId, amount);
else if …

}
Deposit(acctId, amount) {

acct = GetAccount(acctId); /* may use disk I/O */
acct->balance += amount;
StoreAccount(acct); /* Involves disk I/O */

}
• How could we speed this up?

– More than one request being processed at once
– Event driven (overlap computation and I/O)
– Multiple threads (multi-processing, or overlap computation and I/O)

55

Event Driven Version of ATM server
• Suppose we only had one CPU

– Still like to overlap I/O with computation
– Without threads, we would have to rewrite in event-driven style

• Example
BankServer() {

while(TRUE) {
event = WaitForNextEvent();
if (event == ATMRequest)

StartOnRequest();
else if (event == AcctAvail)

ContinueRequest();
else if (event == AcctStored)

FinishRequest();
}

}
– What if we missed a blocking I/O step?
– What if we have to split code into hundreds of pieces which could be blocking?
– This technique is used for graphical programming

56

Can Threads Make This Easier?
• Threads yield overlapped I/O and computation without “deconstructing” code

into non-blocking fragments
– One thread per request

• Requests proceeds to completion, blocking as required:
Deposit(acctId, amount) {
acct = GetAccount(actId); /* May use disk I/O */
acct->balance += amount;
StoreAccount(acct); /* Involves disk I/O */

}

• Unfortunately, shared state can get corrupted:
Thread 1 Thread 2

load r1, acct->balance
load r1, acct->balance
add r1, amount2
store r1, acct->balance

add r1, amount1
store r1, acct->balance

57

Atomic Operations
• To understand a concurrent program, we need to know what the underlying

indivisible operations are!

• Atomic Operation: an operation that always runs to completion or not at all
– It is indivisible: it cannot be stopped in the middle and state cannot be modified by

someone else in the middle
– Fundamental building block – if no atomic operations, then have no way for threads to

work together

• On most machines, memory references and assignments (i.e. loads and stores) are
atomic

• Many instructions are not atomic
– Double-precision floating point store often not atomic
– VAX and IBM 360 had an instruction to copy a whole array

58

Thread C

• Identify critical sections (atomic instruction sequences) and add locking:
Deposit(acctId, amount) {

acquire(&mylock) // Wait if someone else in critical section!
acct = GetAccount(actId);
acct->balance += amount;
StoreAccount(acct);
release(&mylock) // Release someone into critical section

}

• Must use SAME lock (mylock) with all of the methods (Withdraw, etc…)
– Shared with all threads!

Thread AThread B

Thread A

Fix banking problem with Locks!

Thread A Thread C

Thread B

Thread B

Critical Section

acquire(&mylock)

release(&mylock)
Critical Section

Threads serialized by lock
through critical section.
Only one thread at a time

59

Producer-Consumer with a Bounded Buffer
• Problem Definition

– Producer(s) put things into a shared buffer
– Consumer(s) take them out
– Need synchronization to coordinate producer/consumer

• Don’t want producer and consumer to have to work in lockstep, so put a
fixed-size buffer between them

– Need to synchronize access to this buffer
– Producer needs to wait if buffer is full
– Consumer needs to wait if buffer is empty

• Example: Coke machine
– Producer can put limited number of Cokes in machine
– Consumer can’t take Cokes out if machine is empty

• Others: Web servers, Routers, ….

Consumer
Consumer

Producer ConsumerBuffer
Producer

60

• Insert: write & bump write ptr (enqueue)
• Remove: read & bump read ptr (dequeue)
• How to tell if Full (on insert) Empty (on remove)?
• And what do you do if it is?
• What needs to be atomic?

typedef struct buf {
int write_index;
int read_index;
<type> *entries[BUFSIZE];

} buf_t;

w
r

di di+1di+2

Circular Buffer Data Structure (sequential case)

61

mutex buf_lock = <initially unlocked>

Producer(item) {
acquire(&buf_lock);
while (buffer full) {}; // Wait for a free slot
enqueue(item);
release(&buf_lock);

}

Consumer() {
acquire(&buf_lock);
while (buffer empty) {}; // Wait for arrival
item = dequeue();
release(&buf_lock);
return item;

}

Will we ever come out of
the wait loop?

Circular Buffer – first cut

62

mutex buf_lock = <initially unlocked>

Producer(item) {
acquire(&buf_lock);
while (buffer full) {release(&buf_lock); acquire(&buf_lock);}
enqueue(item);
release(&buf_lock);

}

Consumer() {
acquire(&buf_lock);
while (buffer empty) {release(&buf_lock); acquire(&buf_lock);}
item = dequeue();
release(&buf_lock);
return item;

}

What happens when one
is waiting for the other?

Circular Buffer – 2nd cut

63

Conclusion
• Concurrency accomplished by multiplexing CPU time:

– Unloading current thread (PC, registers)
– Loading new thread (PC, registers)
– Such context switching may be voluntary (yield(), I/O) or involuntary (interrupts)

• TCB + Stacks hold complete state of thread for restarting
• Atomic Operation: an operation that always runs to completion or not at all
• Synchronization: using atomic operations to ensure cooperation between threads
• Mutual Exclusion: ensuring that only one thread does a particular thing at a time

– One thread excludes the other while doing its task

• Critical Section: piece of code that only one thread can execute at once. Only one thread
at a time will get into this section of code

• Locks: synchronization mechanism for enforcing mutual exclusion on critical sections to
construct atomic operations

