Operating Systems
(Honor Track)

Scheduling 3: Scheduling & Deadlock

Xin Jin
Spring 2023

Acknowledgments: lon Stoica, Berkeley CS 162

Recap: Real-Time Scheduling

e Goal: Predictability of Performance!
— We need to predict with confidence worst case response times for systems!
— In RTS, performance guarantees are:
» Task- and/or class centric and often ensured a priori

— In conventional systems, performance is:
» System/throughput oriented with post-processing (... wait and see ...)

— Real-time is about enforcing predictability; does not equal fast computing!!!
e Hard real-time: for time-critical safety-oriented systems

— Meet all deadlines (if at all possible)

— Ideally: determine in advance if this is possible (admission control)

— Earliest Deadline First (EDF)
Rate-Monitonic Scheduling (RMS), Deadline Monotonic Scheduling (DM)

e Soft real-time: for multimedia
— Attempt to meet deadlines with high probability
— Constant Bandwidth Server (CBS)

Recap: Earliest Deadline First (EDF)

e Tasks iis periodic with period P; and computation C, in each period: (P;, C;) for each
task i

e Preemptive priority-based dynamic scheduling:

— Each task is assigned a (current) priority based on how close the absolute deadline is (i.e.
DI*! = D} + P; for each task!)

— The scheduler always schedules the active task with the closest absolute deadline

AAICH) RN N B

Recap: Ensuring Progress

Starvation: thread fails to make progress for an indefinite period of time

Starvation # Deadlock
— Deadlock: cyclic requests for resources

Let’s explore what sorts of problems we might encounter and how to avoid them...

Whether various scheduling policies can lead to starvation
— LCFS
— FCFS
— Round robin
— Priority scheduling
— SRTF
— MLFQ

Recap: Priority Inversion

Blocked on Acquire
Priority 3

Priority 2 Job 2
Priority | Job | —>

« At this point, which job does the scheduler choose?
* Job 2 (Medium Priority)

* Priority Inversion

Recap: One Solution: Priority Donation/Inheritance

Priority 3

Priority 2

Priority |

* Job 3 temporarily grants Job | its “high priority” to run on its behalf

Recap: Case Study: Linux O(1) Scheduler

Kernel/Realtime Tasks User Tasks

0 100 139
e Priority-based scheduler: 140 priorities
— 40 for “user tasks” (set by “nice”), 100 for “Realtime/Kernel”
— Lower nice value = higher priority

— Higher nice value = lower priority
— All algorithms O(1)
» Timeslices/priorities/interactivity credits all compute when job finishes time slice
» 140-bit bit mask indicates presence or absence of job at given priority level
e Two separate priority queues: “active” and “expired”

— All tasks in the active queue use up their timeslices and get placed on the expired queue,
after which queues swapped

e Timeslice depends on priority — linearly mapped onto timeslice range
— Like a multi-level queue (one queue per priority) with different timeslice at each level
— Execution split into “Timeslice Granularity” chunks — round robin through priority

Recap: Proportional-Share Scheduling

e Instead using priorities, share the CPU proportionally
— Give each job a share of the CPU according to its priority
— Low-priority jobs get to run less often
— But all jobs can at least make progress (no starvation)

Recap: Lottery Scheduling: Simple Mechanism

10 ° tlcket Z N

e Pickanumberdinl .. N, asthe
random “dart”

e Jobs record their N; of allocated tickets
e Order them by N;

e Select the first j such that), N, up to j exceeds
d.

Recap: Linux Completely Fair Scheduler (CFS)

Basic Idea: track CPU time per thread and schedule threads
to match up average rate of execution

Scheduling Decision:
— "Repair’ illusion of complete fairness
— Choose thread with minimum CPU time

— Closely related to Fair Queueing

Use a heap-like scheduling queue for this...

— O(log N) to add/remove threads, where N is number
of threads

Sleeping threads don't advance their CPU time, so they get
a boost when they wake up again...

— Get interactivity automatically!

CFS: Average rate of

. 1
execution = —;
N

ﬁ

Swi] NdD
=| =

10

Recap: Choosing the Right Scheduler

| Care About: Then Choose:

CPU Throughput FCFS
Avg. Completion Time SRTF Approximation
/O Throughput SRTF Approximation
Fairness (CPU Time) Linux CFS
Fairness Round Robin
(Wart Time to Get CPU)
Meeting Deadlines EDF

Favoring Important Tasks Priority

11

Deadlock: A Deadly type of Starvation

e Starvation: thread waits indefinitely

— Example, low-priority thread waiting for resources
constantly in use by high-priority threads

e Deadlock: circular waiting for resources

— Thread A owns Res 1 and is waiting for Res 2
Thread B owns Res 2 and is waiting for Res 1

e Deadlock = Starvation but not vice versa
— Starvation can end (but doesn’t have to)
— Deadlock can’t end without external intervention

12

Example: Single-Lane Bridge Crossing

A4S
SR ADID NI
AN <

.
=T

.

\

h.‘»'g\'l

R b

|

|
:
'H 1
0l
: J| ‘}l& ‘l\ “““i;

iy
XTAA

CA 140 to Yosemite National Park

13

Bridge Crossing Example

Each segment of road can be viewed as a resource
— Car must own the segment under them
— Must acquire segment that they are moving into
For bridge: must acquire both halves
— Traffic only in one direction at a time

Deadlock: Shown above when two cars in opposite directions meet in middle
— Each acquires one segment and needs next
— Deadlock resolved if one car backs up (preempt resources and rollback)
» Several cars may have to be backed up
Starvation (not Deadlock):
— East-going traffic really fast = no one gets to go west

14

Deadlock with Locks

Thread A: Thread B:

x.Acquire(); y.Acquire();
y.Acquire(); x.Acquire();
y.Release(); x.Release();
X.Release(); y.Release();

e This lock pattern exhibits non-deterministic deadlock
— Sometimes it happens, sometimes it doesn’t!

e This is really hard to debug!

Deadlock with Locks: “Unlucky” Case

Thread A: Thread B:
x.Acquire();

y.Acquire();
y.Acquire(); <stalled>
<unreachable> x.Acquire(); <stalled>
- <unreachable>
y.Release(); .
X.Release(); X.Release();

y.Release();

Nerther thread will get to run = Deadlock

16

Deadlock with Locks: “Lucky” Case

Thread A: Thread B:

x.Acquire();

y.Acquire();

. y.Acquire();

y.Release();

X.Release();
x.Acquire();
X.Release();
y.Release();

Sometimes, schedule won't trigger deadlock!

Other Types of Deadlock

e Threads often block waiting for resources
— Locks
— Terminals
— Printers
— CD drives
— Memory

e Threads often block waiting for other threads
— Pipes
— Sockets

e You can deadlock on any of these!

18

Deadlock with Space

Thread A: Thread B

AllocateOrWait(1 MB) AllocateOrWait(l MB)
AllocateOrWait(1 MB) AllocateOrWait(l MB)
Free(1l MB) Free(1l MB)
Free(1l MB) Free(1l MB)

If only 2 MB of space, we get same deadlock srtuation

19

Dining Lawyers Problem

Five chopsticks/Five lawyers (really cheap restaurant)
— Free for all: Lawyer will grab any one they can
— Need two chopsticks to eat

What if all grab at same time?
— Deadlock!

How to fix deadlock?
— Make one of them give up a chopstick (Hah!)
— Eventually everyone will get chance to eat

How to prevent deadlock?
— Never let lawyer take last chopstick if no hungry lawyer has two chopsticks afterwards
— Can we formalize this requirement somehow?

20

Four requirements for occurrence of Deadlock

Mutual exclusion
— Only one thread at a time can use a resource.
Hold and wait

— Thread holding at least one resource is waiting to acquire additional resources
held by other threads
No preemption
— Resources are released only voluntarily by the thread holding the resource, after
thread is finished with it
Circular wait

— There exists a set {T, ..., T,} of waiting threads
» T,is waiting for a resource that is held by T,
» T, is waiting for a resource that is held by T;

» ...

» T, is waiting for a resource that is held by T;

21

Detecting Deadlock:
Resource-Allocation Graph
e System Model
— Asetof Threads T, T,, ..., T,
— Resource types Ry, R,, .. ., R,
CPU cycles, memory space, 1/0 devices
— Each resource type R, has W, instances
— Each thread utilizes a resource as follows:
» Request () / Use() / Release /()
e Resource-Allocation Graph:

— V is partitioned into two types:
» T={T,, T,, ..., T,}, the set threads in the system.
» R={R., R,, ..., R}, the set of resource types in system

— request edge — directed edge T, — R,
— assignment edge — directed edge R, — T;

22

Group Discussion

e Topic: resource allocation graph
— How to detect deadlocks?
— Does a circle in a resource allocation graph mean a deadlock?

e Discuss in groups of two to three students

— Each group chooses a leader to summarize the discussion

— In your group discussion, please do not dominate the discussion, and give
everyone a chance to speak

23

Resource-Allocation Graph Examples

e Model:

— request edge — directed edge T;,— R;
— assignment edge — directed edge R, —> T,

R,

Rs

R

Simple Resource

Allocation Graph

Allocation Graph Allocation Graph
With Deadlock With Cycle, but
No Deadlock

24

Deadlock Detection Algorithm

e Let [X] represent an m-ary vector of non-negative integers
(quantities of resources of each type):

[FreeResources]: Current free resources each type
[Requesty]: Current requests from thread X
[Alloc]: Current resources held by thread X

e See if tasks can eventually terminate on their own
[Avail] = [FreeResources]

Add all nodes to UNFINISHED
do {

done = true
For each node in UNFINISHED {
if ([Request, 4] <= [Avail]) {
remove node from UNFINISHED a
[Avail] = [Avail] + [AllocC,,4e]
done = false
}
}
} until(done)

e Nodes left in UNFINISHED — deadlocked

25

Group Discussion

e Topic: deadlock detection algorithm

— How to apply the algorithm to the dining lawyer’s problem?

— Case 1: resources are represented as [5], and each lawyer can use any two
chopsticks

— Case 2: resources are represented as [1, 1, 1, 1, 1], and each lawyer can only
use nearby chopsticks

e Discuss in groups of two to three students

— Each group chooses a leader to summarize the discussion

— In your group discussion, please do not dominate the discussion, and give
everyone a chance to speak

26

How should a system deal with deadlock?

Four different approaches:
Deadlock prevention: write your code in a way that it isn’t prone to deadlock

Deadlock recovery: let deadlock happen, and then figure out how to recover
from it

Deadlock avoidance: dynamically delay resource requests so deadlock doesn’t
happen

Deadlock denial: ignore the possibility of deadlock

Modern operating systems:
— Make sure the system isn’t involved in any deadlock

— lgnore deadlock in applications
» “Ostrich Algorithm”

27

Techniques for Preventing Deadlock

e |nfinite resources

— Include enough resources so that no one ever runs out of resources.
Doesn’t have to be infinite, just large

— Give illusion of infinite resources (e.g. virtual memory)
— Examples:
» Bay bridge with 12,000 lanes. Never wait!
» Infinite disk space (not realistic yet?)
e No Sharing of resources (totally independent threads)
— Not very realistic

e Don’t allow waiting
— How the phone company avoids deadlock
» Call Mom in Toledo, works way through phone network, but if blocked get busy signal.
— Technique used in Ethernet/some multiprocessor nets
» Everyone speaks at once. On collision, back off and retry

— Inefficient, since have to keep retrying

» Consider: driving to San Francisco; when hit traffic jam, suddenly you’re transported back
home and told to retry!

28

(Virtually) Infinite Resources

Thread A Thread B
AllocateOrWait(1 MB) AllocateOrWait(l MB)
AllocateOrWait(1 MB) AllocateOrWait(l MB)
Free(1l MB) Free(1l MB)

Free(1l MB) Free(1l MB)

* With virtual memory we have “infinite” space so everything will just succeed, thus
above example won't deadlock

— Of course, 1t 1sn't actually infinite, but certainly larger than 2MB!

29

Techniques for Preventing Deadlock

e Make all threads request everything they’ll need at the beginning.
— Problem: Predicting future is hard, tend to over-estimate resources
— Example:

» If need 2 chopsticks, request both at same time

» Don’t leave home until we know no one is using any intersection between here and where you
want to go; only one car on the Bay Bridge at a time

e Force all threads to request resources in a particular order preventing any cyclic use of
resources

— Thus, preventing deadlock
— Example (x.Acquire(), y.Acquire(), z.Acquire(),...)
» Make tasks request disk, then memory, then...
» Keep from deadlock on freeways around SF by requiring everyone to go clockwise

30

Request Resources Atomically (1)

Rather than:
Thread A:
x.Acquire();
y.Acquire();

y.Release();
X.Release();

Consider instead:
Thread A:
Acquire_both(x, y);

y.Release();
X.Release();

Thread B:
y.Acquire();
x.Acquire();

X.Release();
y.Release();

Thread B:
Acquire_both(y, x);

X.Release();
y.Release();

31

Request Resources Atomically (2)

Or consider this:

Thread A

z.Acquire();
x.Acquire();
y.Acquire();
z.Release();

y.Release();
X.Release();

Thread B

y 4

y
X
Z

X 3

.Acquire();
.Acquire();
.Acquire();
.Release();

.Release();
.Release();

32

Acquire Resources in Consistent Order

Rather than:
Thread A:
x.Acquire();
y.Acquire();

y.Release();
X.Release();

Consider instead:

Thread A:
x.Acquire();
y.Acquire();

y.Release();
X.Release();

Thread B:
y.Acquire();
x.Acquire();

X.Release();
y.Release();

Thread B:
x.Acquire();
y.Acquire();

X.Release();
y.Release();

Does it matter in which
order the locks are
released?

33

Techniques for Recovering from Deadlock

Terminate thread, force it to give up resources
— In Bridge example, Godzilla picks up a car, hurls it into the river. Deadlock solved!
— Hold dining lawyer in contempt and take away in handcuffs
— But, not always possible — killing a thread holding a mutex leaves world inconsistent
Preempt resources without killing off thread
— Take away resources from thread temporarily
— Doesn’t always fit with semantics of computation
Roll back actions of deadlocked threads
— Hit the rewind button on TiVo, pretend last few minutes never happened
— For bridge example, make one car roll backwards (may require others behind him)
— Common technique in databases (transactions)
— Of course, if you restart in exactly the same way, may reenter deadlock once again
Many operating systems use other options

34

Another view of virtual memory: Pre-empting Resources

Thread A: Thread B:
AllocateOrWait(1 MB) AllocateOrWait(1l MB)
AllocateOrWait(1 MB) AllocateOrWait(1l MB)
Free(1l MB) Free(1l MB)

Free(1l MB) Free(1l MB)

* Before: With virtual memory we have “infinite” space so everything will just
succeed, thus above example won't deadlock

— Of course, 1t 1sn't actually infinite, but certainly larger than 2MB!

* Alternative view: we are “pre-empting” memory when paging out to disk, and giving
it back when paging back in

— This works because thread can't use memory when paged out

35

Techniques for Deadlock Avoidance

e |dea: When a thread requests a resource, OS checks if it would
result in deadlock

— If not, it grants the resource right away
— If so, it waits for other threads to release resources

THIS DOES NOT WORKI!!!

e Example:
Thread A: Thread B:
~ X.Acquire(); ~y.Acquire();
Blocks... y.Acquire(); X.Acquire(); Wait?
But it's already too late...
y.Release(); X.Release();

X.Release(); y.Release();

36

Deadlock Avoidance: Three States

e Safe state
— System can delay resource acquisition to prevent deadlock

Deadlock avoidance: prevent system from
reaching an unsdfe state

e Unsafe state
— No deadlock yet...
— But threads can request resources in a pattern that unavoidably leads to deadlock

e Deadlocked state
— There exists a deadlock in the system
— Also considered “unsafe”

37

Deadlock Avoidance

e |dea: When a thread requests a resource, OS checks if it
would result in deadteek an unsafe state

— If not, it grants the resource right away
— If so, it waits for other threads to release resources

e Example:
Thread A: Thread B:
x.Acqu%r'eZ 5; y.Acqu%r'eZ S; Wait unil
y.Acquire(); x.Acquire(); A
releases
y.Release(); X.Release(); mutexX

X.Release(); y.Release();

38

Banker’s Algorithm for Avoiding Deadlock

e Toward right idea:
— State maximum (max) resource needs in advance

— Allow particular thread to proceed if:

(available resources - #requested) > max
remaining that might be needed by any thread

e Banker’s algorithm:

— Allocate resources dynamically

» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run deadlock detection
algorithm, substituting:
([Maxnode]_[A”OCnode:I <= [AV&I[D for ([RequeStnode:l <= [Ava”])
Grant request if result is deadlock free

39

Banker’s Algorithm for Avoiding Deadlock

[Avail] = [FreeResources]
Add all nodes to UNFINISHED
do {
done = true
For each node in UNFINISHED {
if ([Request,] <= [Avail]) {
remove node from UNFINISHED
[Avail] = [Avail] + [Alloc,.q4e]
done = false

}
} until(done)

» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run deadlock detection
algorithm, substituting:
([Maxnode]_[A“OCnode:| <= [AV&I[D fOI” ([RequeStnode] <= [Avall])
Grant request if result is deadlock free

Banker’s Algorithm for Avoiding Deadlock

[Avail] = [FreeResources]
Add all nodes to UNFINISHED
do {
done = true
For each node in UNFINISHED {
1-F ([Maxnode]'[Allocnode] <= [Avail]) {
remove node from UNFINISHED
[Avail] = [Avail] + [Alloc,.q4e]
done = false

}
} until(done)

» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run deadlock detection
algorithm, substituting:
([Maxnode]_[A“OCnode:| <= [AV&I[D fOI” ([RequeStnode] <= [Avall])
Grant request if result is deadlock free

Banker’s Algorithm for Avoiding Deadlock

e Toward right idea:
— State maximum (max) resource needs in advance

— Allow particular thread to proceed if:

(available resources - #requested) > max
remaining that might be needed by any thread

e Banker’s algorithm:

— Allocate resources dynamically

» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run deadlock detection
algorithm, substituting:
([Maxnode]_[A”OCnode:I <= [Ava”]) for ([RequeStnode:l <= [AV&I[I)
Grant request if result is deadlock free
— Keeps system in a “SAFE” state: there exists a sequence {T, T,, ... T} with T, requesting
all remaining resources, finishing, then T, requesting all remaining resources, etc..

42

Group Discussion

e Topic: Banker’s algorithm
— How to apply Banker’s algorithm to the dining lawyer’s problem?

— Case 1: resources are represented as [5], and each lawyer can use any two
chopsticks

— Case 2: resources are represented as [1, 1, 1, 1, 1], and each lawyer can only
use nearby chopsticks

e Discuss in groups of two to three students

— Each group chooses a leader to summarize the discussion

— In your group discussion, please do not dominate the discussion, and give
everyone a chance to speak

43

Banker’s Algorithm Example

e Banker’s algorithm with dining lawyers

— “Safe” (won’t cause deadlock) if when try to
grab chopstick either:

» Not last chopstick

» Is last chopstick but someone will have
two afterwards

— What if k-handed lawyers? Don’t allow if:
» It’s the last one, no one would have k
» It's 2" to last, and no one would have k-1
» It’s 3" to last, and no one would have k-2

» ...

44

Summary

e Four conditions for deadlocks
— Mutual exclusion
— Hold and wait
— No preemption
— Circular wait
e Techniques for addressing Deadlock
— Deadlock prevention:
» write your code in a way that it isn’t prone to deadlock
— Deadlock recovery:
» let deadlock happen, and then figure out how to recover from it
— Deadlock avoidance:
» dynamically delay resource requests so deadlock doesn’t happen
» Banker’s Algorithm provides on algorithmic way to do this
— Deadlock denial:
» ignore the possibility of deadlock

45

