
Acknowledgments: Ion Stoica, Berkeley CS 162

Xin Jin
Spring 2023

Operating Systems
(Honor Track)

Scheduling 3: Scheduling & Deadlock

2

Recap: Real-Time Scheduling
• Goal: Predictability of Performance!

– We need to predict with confidence worst case response times for systems!
– In RTS, performance guarantees are:

» Task- and/or class centric and often ensured a priori
– In conventional systems, performance is:

» System/throughput oriented with post-processing (… wait and see …)
– Real-time is about enforcing predictability; does not equal fast computing!!!

• Hard real-time: for time-critical safety-oriented systems
– Meet all deadlines (if at all possible)
– Ideally: determine in advance if this is possible (admission control)
– Earliest Deadline First (EDF)

Rate-Monitonic Scheduling (RMS), Deadline Monotonic Scheduling (DM)
• Soft real-time: for multimedia

– Attempt to meet deadlines with high probability
– Constant Bandwidth Server (CBS)

3

• Tasks i is periodic with period Pi and computation Ci in each period: (𝑃!, 𝐶!) for each
task 𝑖

• Preemptive priority-based dynamic scheduling:
– Each task is assigned a (current) priority based on how close the absolute deadline is (i.e.
𝐷!"#$ = 𝐷!" + 𝑃! for each task!)

– The scheduler always schedules the active task with the closest absolute deadline

Recap: Earliest Deadline First (EDF)

0 5 10 15

)1,4(1 =T

)2,5(2 =T

)2,7(3 =T

4

Recap: Ensuring Progress
• Starvation: thread fails to make progress for an indefinite period of time

• Starvation ≠ Deadlock
– Deadlock: cyclic requests for resources

• Let’s explore what sorts of problems we might encounter and how to avoid them…

• Whether various scheduling policies can lead to starvation
– LCFS
– FCFS
– Round robin
– Priority scheduling
– SRTF
– MLFQ

5

Recap: Priority Inversion

• At this point, which job does the scheduler choose?
• Job 2 (Medium Priority)
• Priority Inversion

Priority 3

Priority 2

Priority 1 Job 1

Job 3

Job 2

Blocked on Acquire

6

Recap: One Solution: Priority Donation/Inheritance

• Job 3 temporarily grants Job 1 its “high priority” to run on its behalf

Priority 3

Priority 2

Priority 1

Job 1

Job 3

Job 2

Blocked on Acquire

Release()

7

Recap: Case Study: Linux O(1) Scheduler

• Priority-based scheduler: 140 priorities
– 40 for “user tasks” (set by “nice”), 100 for “Realtime/Kernel”
– Lower nice value Þ higher priority
– Higher nice value Þ lower priority
– All algorithms O(1)

» Timeslices/priorities/interactivity credits all compute when job finishes time slice
» 140-bit bit mask indicates presence or absence of job at given priority level

• Two separate priority queues: “active” and “expired”
– All tasks in the active queue use up their timeslices and get placed on the expired queue,

after which queues swapped
• Timeslice depends on priority – linearly mapped onto timeslice range

– Like a multi-level queue (one queue per priority) with different timeslice at each level
– Execution split into “Timeslice Granularity” chunks – round robin through priority

Kernel/Realtime Tasks User Tasks

0 100 139

8

Recap: Proportional-Share Scheduling

• Instead using priorities, share the CPU proportionally
– Give each job a share of the CPU according to its priority
– Low-priority jobs get to run less often
– But all jobs can at least make progress (no starvation)

9

Recap: Lottery Scheduling: Simple Mechanism

• 𝑁𝑡𝑖𝑐𝑘𝑒𝑡 = ∑Ni
• Pick a number 𝑑 in 1 . . 𝑁𝑡𝑖𝑐𝑘𝑒𝑡 as the

random “dart”
• Jobs record their Ni of allocated tickets
• Order them by Ni
• Select the first j such that ∑Ni up to j exceeds

d.

1

10

10

Recap: Linux Completely Fair Scheduler (CFS)
• Basic Idea: track CPU time per thread and schedule threads

to match up average rate of execution
• Scheduling Decision:

– “Repair” illusion of complete fairness
– Choose thread with minimum CPU time
– Closely related to Fair Queueing

• Use a heap-like scheduling queue for this…
– O(log N) to add/remove threads, where N is number

of threads
• Sleeping threads don’t advance their CPU time, so they get

a boost when they wake up again…
– Get interactivity automatically!

C
PU

 Tim
e

T1
T2

T3

1
𝑁

CFS: Average rate of
execution = "

#
:

11

Recap: Choosing the Right Scheduler

I Care About: Then Choose:

CPU Throughput FCFS

Avg. CompletionTime SRTF Approximation

I/O Throughput SRTF Approximation

Fairness (CPU Time) Linux CFS

Fairness
(Wait Time to Get CPU)

Round Robin

Meeting Deadlines EDF

Favoring Important Tasks Priority

12

Deadlock: A Deadly type of Starvation
• Starvation: thread waits indefinitely

– Example, low-priority thread waiting for resources
constantly in use by high-priority threads

• Deadlock: circular waiting for resources
– Thread A owns Res 1 and is waiting for Res 2

Thread B owns Res 2 and is waiting for Res 1

• Deadlock Þ Starvation but not vice versa
– Starvation can end (but doesn’t have to)
– Deadlock can’t end without external intervention

Res 2Res 1

Thread
B

Thread
A

Wait
For

Wait
For

Owned
By

Owned
By

13

Example: Single-Lane Bridge Crossing

CA 140 to Yosemite National Park

14

Bridge Crossing Example
• Each segment of road can be viewed as a resource

– Car must own the segment under them
– Must acquire segment that they are moving into

• For bridge: must acquire both halves
– Traffic only in one direction at a time

• Deadlock: Shown above when two cars in opposite directions meet in middle
– Each acquires one segment and needs next
– Deadlock resolved if one car backs up (preempt resources and rollback)

» Several cars may have to be backed up
• Starvation (not Deadlock):

– East-going traffic really fast Þ no one gets to go west

East
Half

West
Half

Wait
For

Wait
For

Owned
By

Owned
By

15

Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

Lock yLock x

Thread
B

Thread
A

Wait
For

Wait
For

Owned
By

Owned
By

Deadlock with Locks

• This lock pattern exhibits non-deterministic deadlock
– Sometimes it happens, sometimes it doesn’t!

• This is really hard to debug!

16

Deadlock with Locks: “Unlucky” Case

Thread A:
x.Acquire();

y.Acquire(); <stalled>
<unreachable>
…
y.Release();
x.Release();

Thread B:

y.Acquire();

x.Acquire(); <stalled>
<unreachable>
…
x.Release();
y.Release(); Lock yLock x

Thread
B

Thread
A

Wait
For

Wait
For

Owned
By

Owned
By

Neither thread will get to run Þ Deadlock

17

Deadlock with Locks: “Lucky” Case

Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:

y.Acquire();

x.Acquire();
…
x.Release();
y.Release();

Sometimes, schedule won’t trigger deadlock!

18

Other Types of Deadlock

• Threads often block waiting for resources
– Locks
– Terminals
– Printers
– CD drives
– Memory

• Threads often block waiting for other threads
– Pipes
– Sockets

• You can deadlock on any of these!

19

Deadlock with Space

Thread A:
AllocateOrWait(1 MB)
AllocateOrWait(1 MB)
Free(1 MB)
Free(1 MB)

If only 2 MB of space, we get same deadlock situation

Thread B
AllocateOrWait(1 MB)
AllocateOrWait(1 MB)
Free(1 MB)
Free(1 MB)

20

Dining Lawyers Problem
• Five chopsticks/Five lawyers (really cheap restaurant)

– Free for all: Lawyer will grab any one they can
– Need two chopsticks to eat

• What if all grab at same time?
– Deadlock!

• How to fix deadlock?
– Make one of them give up a chopstick (Hah!)
– Eventually everyone will get chance to eat

• How to prevent deadlock?
– Never let lawyer take last chopstick if no hungry lawyer has two chopsticks afterwards
– Can we formalize this requirement somehow?

21

Four requirements for occurrence of Deadlock
• Mutual exclusion

– Only one thread at a time can use a resource.
• Hold and wait

– Thread holding at least one resource is waiting to acquire additional resources
held by other threads

• No preemption
– Resources are released only voluntarily by the thread holding the resource, after

thread is finished with it
• Circular wait

– There exists a set {T1, …, Tn} of waiting threads
» T1 is waiting for a resource that is held by T2

» T2 is waiting for a resource that is held by T3

» …
» Tn is waiting for a resource that is held by T1

22

Symbols

Detecting Deadlock:
Resource-Allocation Graph

• System Model
– A set of Threads T1, T2, . . ., Tn

– Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices
– Each resource type Ri has Wi instances
– Each thread utilizes a resource as follows:

» Request() / Use() / Release()

• Resource-Allocation Graph:
– V is partitioned into two types:

» T = {T1, T2, …, Tn}, the set threads in the system.
» R = {R1, R2, …, Rm}, the set of resource types in system

– request edge – directed edge Ti® Rj

– assignment edge – directed edge Rj® Ti

R1
R2

T1 T2

23

Group Discussion

• Topic: resource allocation graph
– How to detect deadlocks?
– Does a circle in a resource allocation graph mean a deadlock?

• Discuss in groups of two to three students
– Each group chooses a leader to summarize the discussion
– In your group discussion, please do not dominate the discussion, and give

everyone a chance to speak

24

Resource-Allocation Graph Examples

T1 T2 T3

R1 R2

R3
R4

Simple Resource
Allocation Graph

T1 T2 T3

R1 R2

R3
R4

Allocation Graph
With Deadlock

T1

T2

T3

R2

R1

T4

Allocation Graph
With Cycle, but
No Deadlock

• Model:
– request edge – directed edge Ti® Rj
– assignment edge – directed edge Rj® Ti

25

T1

T2

T3

R2

R1

T4

Deadlock Detection Algorithm
• Let [X] represent an m-ary vector of non-negative integers

(quantities of resources of each type):
[FreeResources]: Current free resources each type
[RequestX]: Current requests from thread X
[AllocX]: Current resources held by thread X

• See if tasks can eventually terminate on their own
[Avail] = [FreeResources]
Add all nodes to UNFINISHED
do {

done = true
For each node in UNFINISHED {

if ([Requestnode] <= [Avail]) {
remove node from UNFINISHED
[Avail] = [Avail] + [Allocnode]
done = false

}
}

} until(done)

• Nodes left in UNFINISHEDÞ deadlocked

26

Group Discussion

• Topic: deadlock detection algorithm
– How to apply the algorithm to the dining lawyer’s problem?
– Case 1: resources are represented as [5], and each lawyer can use any two

chopsticks
– Case 2: resources are represented as [1, 1, 1, 1, 1], and each lawyer can only

use nearby chopsticks

• Discuss in groups of two to three students
– Each group chooses a leader to summarize the discussion
– In your group discussion, please do not dominate the discussion, and give

everyone a chance to speak

27

How should a system deal with deadlock?

• Four different approaches:
1. Deadlock prevention: write your code in a way that it isn’t prone to deadlock
2. Deadlock recovery: let deadlock happen, and then figure out how to recover

from it
3. Deadlock avoidance: dynamically delay resource requests so deadlock doesn’t

happen
4. Deadlock denial: ignore the possibility of deadlock

• Modern operating systems:
– Make sure the system isn’t involved in any deadlock
– Ignore deadlock in applications

» “Ostrich Algorithm”

28

Techniques for Preventing Deadlock
• Infinite resources

– Include enough resources so that no one ever runs out of resources.
Doesn’t have to be infinite, just large

– Give illusion of infinite resources (e.g. virtual memory)
– Examples:

» Bay bridge with 12,000 lanes. Never wait!
» Infinite disk space (not realistic yet?)

• No Sharing of resources (totally independent threads)
– Not very realistic

• Don’t allow waiting
– How the phone company avoids deadlock

» Call Mom in Toledo, works way through phone network, but if blocked get busy signal.
– Technique used in Ethernet/some multiprocessor nets

» Everyone speaks at once. On collision, back off and retry
– Inefficient, since have to keep retrying

» Consider: driving to San Francisco; when hit traffic jam, suddenly you’re transported back
home and told to retry!

29

(Virtually) Infinite Resources

• With virtual memory we have “infinite” space so everything will just succeed, thus
above example won’t deadlock

– Of course, it isn’t actually infinite, but certainly larger than 2MB!

Thread A
AllocateOrWait(1 MB)
AllocateOrWait(1 MB)
Free(1 MB)
Free(1 MB)

Thread B
AllocateOrWait(1 MB)
AllocateOrWait(1 MB)
Free(1 MB)
Free(1 MB)

30

Techniques for Preventing Deadlock
• Make all threads request everything they’ll need at the beginning.

– Problem: Predicting future is hard, tend to over-estimate resources
– Example:

» If need 2 chopsticks, request both at same time
» Don’t leave home until we know no one is using any intersection between here and where you

want to go; only one car on the Bay Bridge at a time

• Force all threads to request resources in a particular order preventing any cyclic use of
resources

– Thus, preventing deadlock
– Example (x.Acquire(), y.Acquire(), z.Acquire(),…)

» Make tasks request disk, then memory, then…
» Keep from deadlock on freeways around SF by requiring everyone to go clockwise

31

Request Resources Atomically (1)

Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

Consider instead:
Thread A:
Acquire_both(x, y);
…
y.Release();
x.Release();

Thread B:
Acquire_both(y, x);
…
x.Release();
y.Release();

Rather than:

32

Request Resources Atomically (2)

Thread A
z.Acquire();
x.Acquire();
y.Acquire();
z.Release();
…
y.Release();
x.Release();

Thread B
z.Acquire();
y.Acquire();
x.Acquire();
z.Release();
…
x.Release();
y.Release();

Or consider this:

33

Acquire Resources in Consistent Order

Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

Consider instead:
Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:
x.Acquire();
y.Acquire();
…
x.Release();
y.Release();

Does it matter in which
order the locks are
released?

Rather than:

34

Techniques for Recovering from Deadlock
• Terminate thread, force it to give up resources

– In Bridge example, Godzilla picks up a car, hurls it into the river. Deadlock solved!
– Hold dining lawyer in contempt and take away in handcuffs
– But, not always possible – killing a thread holding a mutex leaves world inconsistent

• Preempt resources without killing off thread
– Take away resources from thread temporarily
– Doesn’t always fit with semantics of computation

• Roll back actions of deadlocked threads
– Hit the rewind button on TiVo, pretend last few minutes never happened
– For bridge example, make one car roll backwards (may require others behind him)
– Common technique in databases (transactions)
– Of course, if you restart in exactly the same way, may reenter deadlock once again

• Many operating systems use other options

35

Another view of virtual memory: Pre-empting Resources

• Before: With virtual memory we have “infinite” space so everything will just
succeed, thus above example won’t deadlock

– Of course, it isn’t actually infinite, but certainly larger than 2MB!

• Alternative view: we are “pre-empting” memory when paging out to disk, and giving
it back when paging back in

– This works because thread can’t use memory when paged out

Thread A:
AllocateOrWait(1 MB)
AllocateOrWait(1 MB)
Free(1 MB)
Free(1 MB)

Thread B:
AllocateOrWait(1 MB)
AllocateOrWait(1 MB)
Free(1 MB)
Free(1 MB)

36

Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

Techniques for Deadlock Avoidance

• Idea: When a thread requests a resource, OS checks if it would
result in deadlock

– If not, it grants the resource right away
– If so, it waits for other threads to release resources

• Example:

Wait?
But it’s already too late…

Blocks…

37

Deadlock Avoidance: Three States

• Safe state
– System can delay resource acquisition to prevent deadlock

• Unsafe state
– No deadlock yet…
– But threads can request resources in a pattern that unavoidably leads to deadlock

• Deadlocked state
– There exists a deadlock in the system
– Also considered “unsafe”

Deadlock avoidance: prevent system from
reaching an unsafe state

38

Deadlock Avoidance

• Idea: When a thread requests a resource, OS checks if it
would result in deadlock an unsafe state

– If not, it grants the resource right away
– If so, it waits for other threads to release resources

• Example:

Wait until
Thread A
releases
mutex X

Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

39

Banker’s Algorithm for Avoiding Deadlock
• Toward right idea:

– State maximum (max) resource needs in advance
– Allow particular thread to proceed if:

(available resources - #requested) ³ max
remaining that might be needed by any thread

• Banker’s algorithm:
– Allocate resources dynamically

» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run deadlock detection
algorithm, substituting:

([Maxnode]-[Allocnode] <= [Avail]) for ([Requestnode] <= [Avail])
Grant request if result is deadlock free

40

Banker’s Algorithm for Avoiding Deadlock
• Toward right idea:

– State maximum (max) resource needs in advance
– Allow particular thread to proceed if:

(available resources - #requested) ³ max
remaining that might be needed by any thread

• Banker’s algorithm:
– Allocate resources dynamically

» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run deadlock detection
algorithm, substituting:

([Maxnode]-[Allocnode] <= [Avail]) for ([Requestnode] <= [Avail])
Grant request if result is deadlock free

[Avail] = [FreeResources]
Add all nodes to UNFINISHED
do {

done = true
For each node in UNFINISHED {

if ([Requestnode] <= [Avail]) {
remove node from UNFINISHED
[Avail] = [Avail] + [Allocnode]
done = false

}
}

} until(done)

41

Banker’s Algorithm for Avoiding Deadlock
• Toward right idea:

– State maximum (max) resource needs in advance
– Allow particular thread to proceed if:

(available resources - #requested) ³ max
remaining that might be needed by any thread

• Banker’s algorithm:
– Allocate resources dynamically

» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run deadlock detection
algorithm, substituting:

([Maxnode]-[Allocnode] <= [Avail]) for ([Requestnode] <= [Avail])
Grant request if result is deadlock free

[Avail] = [FreeResources]
Add all nodes to UNFINISHED
do {

done = true
For each node in UNFINISHED {

if ([Maxnode]-[Allocnode] <= [Avail]) {
remove node from UNFINISHED
[Avail] = [Avail] + [Allocnode]
done = false

}
}

} until(done)

42

Banker’s Algorithm for Avoiding Deadlock
• Toward right idea:

– State maximum (max) resource needs in advance
– Allow particular thread to proceed if:

(available resources - #requested) ³ max
remaining that might be needed by any thread

• Banker’s algorithm:
– Allocate resources dynamically

» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run deadlock detection
algorithm, substituting:

([Maxnode]-[Allocnode] <= [Avail]) for ([Requestnode] <= [Avail])
Grant request if result is deadlock free

– Keeps system in a “SAFE” state: there exists a sequence {T1, T2, … Tn} with T1 requesting
all remaining resources, finishing, then T2 requesting all remaining resources, etc..

43

Group Discussion

• Topic: Banker’s algorithm
– How to apply Banker’s algorithm to the dining lawyer’s problem?
– Case 1: resources are represented as [5], and each lawyer can use any two

chopsticks
– Case 2: resources are represented as [1, 1, 1, 1, 1], and each lawyer can only

use nearby chopsticks

• Discuss in groups of two to three students
– Each group chooses a leader to summarize the discussion
– In your group discussion, please do not dominate the discussion, and give

everyone a chance to speak

44

Banker’s Algorithm Example
• Banker’s algorithm with dining lawyers

– “Safe” (won’t cause deadlock) if when try to
grab chopstick either:

» Not last chopstick
» Is last chopstick but someone will have

two afterwards

– What if k-handed lawyers? Don’t allow if:
» It’s the last one, no one would have k
» It’s 2nd to last, and no one would have k-1
» It’s 3rd to last, and no one would have k-2
» …

45

Summary
• Four conditions for deadlocks

– Mutual exclusion
– Hold and wait
– No preemption
– Circular wait

• Techniques for addressing Deadlock
– Deadlock prevention:

» write your code in a way that it isn’t prone to deadlock
– Deadlock recovery:

» let deadlock happen, and then figure out how to recover from it
– Deadlock avoidance:

» dynamically delay resource requests so deadlock doesn’t happen
» Banker’s Algorithm provides on algorithmic way to do this

– Deadlock denial:
» ignore the possibility of deadlock

