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ZygOS: Achieving Low Tail Latency for Microsecond-
scale Networked Tasks 

George Prekas, Marios Kogias, Edouard Bugnion
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Problem: Serve μs-scale RPCs

• Applica6ons: KV-stores, In-memory DB
• Datacenter environment:
• Complex fan-out – fan-in pa1erns

• Tail-at-scale problem
• Tail Latency Service-Level Objec6ves
• Goal: Improve throughput at an aggressive tail latency SLO
• How? Focus within the leaf nodes
• Reduce system overheads
• Achieve be1er scheduling
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Elementary Queuing Theory
• Processor
• FCFS
• Processor Sharing

• Multi/Single Queue
• Inter-arrival Distribution (λ)
• Poisson

• Service Time Distribution (μ)
• Fixed
• Exponential
• Bimodal

FCFS

FCFS

S
λ

μ
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• No OS overheads
• Independent of service time
• Upper performance bound
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System Linux Dataplanes
Networking Kernel (epoll) Kernel (epoll) Userspace
Connection
Delegation Partitioned Floating Partitioned

Complexity Medium High Low
Work 

Conservation ✖ ✔ ✖

Queuing Multi-Queue Single Queue Multi-Queue

Can we build a system with low overheads that achieves work conservation?

Baseline



Upcoming

• Key Observa6ons:
• Single queue systems perform theore&cally be1er
• Dataplanes, despite being mulH-queue systems, perform prac&cally be1er

• Key Contribu6ons
• ZygOS combines the best of the two worlds:

• Reduced system overheads similar to dataplanes
• Convergence to a single-queue model
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Analysis

• Metric to optimize: Load @ Tail-Latency SLO
• Run timescale-independent simulations
• Run synthetic benchmarks on real system

• Questions:
• Which model achieves better throughput?
• Which system converges to its model at low service times?
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99th percentile latencySingle queue models provide better throughput at SLO because of 
transient load imbalance

16xM/G/1/FCFS M/G/16/FCFS

Greater mismatch 
at high dispersion
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99th percentile latency
IX, Belay et al. OSDI 2014

Fixed Exponential Bimodal
SLO Linux (partitioned connections) IX Linux (floating connections)
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99th percentile latency
IX, Belay et al. OSDI 2014

Exponential Bimodal
SLO Linux (partitioned connections) IX Linux (floating connections)

Dataplanes perform better only in very low service times with low dispersion

Linux Floating 
outperforms IX

Fixed



ZygOS Approach

• Dataplane aspect:
• Reduced system overheads
• Share nothing network processing

• Single Queue system
• Work conservation
• Reduction of head of line blocking

Implement work-stealing to achieve work-conservation in a dataplane
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Background on IX

event-driven app

libIX

RX TX

TCP/IP

2

RX
FIFO

Event
Conditions

3

Batched
Syscalls

TCP/IP

Timer

4

5

6

Ring 3

Guest
Ring 0

1
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IX Design

1. Application layer
Event based application
that is agnostic to work-stealing

2. Shuffle layer
Includes a per core list of ready connections that allows stealing

3. Network layer
Coherence- and sync-free network processing
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ZygOS Design
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ZygOS Architecture
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ExecuSon Model
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EvaluaSon Setup

• Environment:
• 10+1 Xeon Servers
• 16-hyperthread server machine
• Quanta/Cumulus 48x10GbE switch 

• Experiments:
• Synthetic micro-benchmarks
• Silo [SOSP 2013]
• Memcached

• Baselines:
• IX
• Linux (partitioned and floating connections)
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Latency vs Load – Service Time 10μs

SLO: 10 x AVG[service_time]
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99th percentile latency
IX, Belay et al. OSDI 2014

ExponenQal Bimodal
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Conclusion

ZygOS: A datacenter opera6ng system for low-latency
• Reduced System overheads

• Converges to a single queue model

• Work conservaQon through work stealing

• Reduce HOL through light-weight IPIs
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https://github.com/ix-project/zygos

We ♥ opensource

https://github.com/ix-project/zygos
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Tiresias

Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin, 
Yibo Zhu, Myeongjae Jeon, Junjie Qian, Hongqiang (Harry) Liu, Chuanxiong Guo

A GPU Cluster Manager for Distributed Deep Learning



• Deep learning (DL) is popular
• 10.5× increase of DL training jobs in Microsoft
• DL training jobs require GPU

• Distributed deep learning (DDL) training with multiple GPUs

• GPU cluster for DL training
• 5× increase of GPU cluster scale in Microsoft [1]

1[1]. Analysis of Large-Scale Multi-Tenant GPU Clusters for DNN Training Workloads. https://arxiv.org/abs/1901.05758

How to efficiently manage a GPU cluster for DL training jobs?

GPU Cluster for Deep Learning Training

Google Lens Siri
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GPU Cluster Manager

GPU Cluster

2

Scheduler

Free GPU

Occupied GPU

4-GPU machine

N N-GPU DL job

142

Placement Scheme

Job Queue

1

1

Design Objectives

Minimize
Cluster-Wide Average 
Job Completion Time (JCT)

Achieve
High Resource (GPU) 
Utilization



3[1]. Optimus: An Efficient Dynamic Resource Scheduler for Deep Learning Clusters, EuroSys’18
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Challenge Ⅰ: Unpredictable Training Time

§Unknown execution time of DL training jobs
§ Job execution time is useful when minimizing JCT

§ Predict job execution time 
§ Use the smooth loss curve of DL training jobs (Optimus [1]) 
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Challenge Ⅰ: Unpredictable Training Time

It’s hard to predict training time of DL jobs in many cases

§Unknown execution time of DL training jobs
§ Job execution time is useful when minimizing JCT

§ Predict job execution time 
§ Use the smooth loss curve of DL training jobs (Optimus [1]) 
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Challenge ⅠⅠ: Over-Aggressive Job Consolidation

§ Fragmented free GPUs in the cluster

§ Longer queuing delay

§Network overhead in DDL training

Machine 1 Machine 2 Machine 3 Machine 4

Free GPU

Occupied GPU

Job Queue

4 N N-GPU Job

Machine 2Machine 2

4

§ Consolidated placement for good training performance
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Prior Solutions

I. Unpredictable Training Time
(Scheduling)

II. Over-Aggressive Job Consolidation
(Job Placement)

YARN-CS

Optimus[1]

Gandiva[2]

FIFO

Time-sharing Trial-and-error

None

[1]. Optimus: An Efficient Dynamic Resource Scheduler for Deep Learning Clusters, EuroSys’18
[2]. Gandiva: Introspective Cluster Scheduling for Deep Learning, OSDI’18

None

None
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Tiresias A GPU cluster manager for 
Distributed Deep Learning 
Without Complete Knowledge

I. Age-Based Scheduler Minimize JCT without 
complete knowledge of jobs

2. Model Profile-Based Placement Place jobs without additional 
information from users



Challenge I

How To Schedule DL Training Jobs 
Without Complete Job Information?



Temporal and Spatial Co-scheduling

13

Characteristics of DL Training Jobs

§ Variations in both temporal and spatial aspects

Scheduler should consider both
temporal and spatial
aspects of DL training jobs

Job execution time
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…?

1. Spatial: number of GPUs
2. Temporal: executed time

15

Available Job Information

Time1 2 3 4 5 6 7 8 9 10 110

G1

G2

G3
Executed time

# of GPUs



…?

16[1]. Feedback queueing models for time-shared systems. JACM, 1968
[2]. Multi-armed bandit allocation indices. Wiley, Chichester, 1989

Age-Based Schedulers

• Least-Attained Service[1] (LAS) 
• Prioritize job that has the shortest executed time

• Gittins Index policy[2] 
• Need the distribution of job execution time
• Prioritize job that has the highest probability to complete in the near future

Time1 2 3 4 5 6 7 8 9 10 110

G1

G2

G3

Age (executed time)

# of GPUs # of GPUs
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Two-Dimensional Age-Based Scheduler (2DAS)

• Age calculated by two-dimensional attained service
• i.e., a job’s total executed GPU time (# of GPUs × executed time)

• No prior information
• 2D-LAS

•With partial information: distribution of job GPU time  
• 2D-Gittins Index

Fewer Job Switches: Discretized 2D-LAS (MLFQ)



Challenge II

How to Place DL Jobs
Without Hurting Training Performance?  



• Tensor size in DL models
• Large tensors cause network imbalance and contention

33

Characteristics of DL Models
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Consolidated placement 
is needed when the 
model is highly skewed 
in its tensor size
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Model Profile-Based Placement

Consolidation?
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Tiresias
Central Master 
Network-Level Model Profiler

60-GPU
Testbed Experiment

Large-scale & 
Trace-driven Simulation

Evaluation

GPU Cluster

DL Job
(model, resource)

Placement Preemption

Discretized-2DAS

Central Master

Placement scheme
Model profiler



JCT Improvements in Testbed Experiment

• Testbed – Michigan ConFlux cluster
• 15 machines (4 GPUs each)
• 100 Gbps RDMA network

Avg. JCT improvement 
(w.r.t. YARN-CS): 5.5×

Comparable 
performance to SRTF

36
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• Discrete-time simulator 
• 10-week job trace from Microsoft
• 2,000-GPU cluster

37

JCT Improvements in Trace-Driven Simulation

Avg. JCT improvement 
(w.r.t. Gandiva): 2×
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Tiresias

• Optimize JCT with no or partial job information

• Relax placement constraint without hurting training performance

• Simple, practical, and with significant performance improvements 

A GPU cluster manager for 
Distributed Deep Learning 
Without Complete Knowledge

https://github.com/SymbioticLab/Tiresias
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D i t R F i (DRF)Dominant�Resource�Fairness�(DRF)
Fair�Allocation�of�Multiple�Resource�Types

Ali�Ghodsi,�Matei�Zaharia
B j i Hi d A d K i kiBenjamin�Hindman,�Andy�Konwinski,

Scott�Shenker,�Ion�Stoica

University�of�California,�Berkeley

alig@cs.berkeley.edu 1



What�is�fair�sharing?
CPU

100%

• n�users�want�to�share�a�resource�(e.g.�CPU)
– Solution:�

100%

50%

33%

33%

Allocate�each�1/n�of�the�shared�resource
0%

33%

• Generalized�by�maxͲmin�fairness
– Handles�if�a�user�wants�less�than�its�fair�share

100%

50%

20%

40%

– E.g.�user�1�wants�no�more�than�20%

G li d b i ht d i f i

50%

0%

40%

• Generalized�by�weighted�maxͲmin�fairness
– Give�weights�to�users�according�to�importance
User 1 gets weight 1 user 2 weight 2

100%

50%

33%

– User�1�gets�weight�1,�user�2�weight�2

alig@cs.berkeley.edu 2

50%

0%

66%



How to define fairness?

• Share guarantee
• Each user can get at least 1/n of the resource
• But will get less if her demand is less

• Stragegy-proof
• Users are not better off by asking for more than they need
• Users have no reason to lie

• Pareto efficiency
• It is not possible to increase the utility of a user without decreasing the utility

of at least another user
• It leads to maximizing system utilizaiton subject to satisfying other constraints

53



Why is maxͲmin fairness not enough?Why�is�max min�fairness�not�enough?

• Job scheduling in datacenters is not onlyJob�scheduling�in�datacenters�is�not�only�
about�CPUs

Jobs consume CPU memory disk and I/O– Jobs�consume�CPU,�memory,�disk,�and�I/O

D hi h ll ?• Does�this�pose�any�challenge?

alig@cs.berkeley.edu 5



Heterogeneous�Resource�Demands

Some�tasks�are�
CPUͲintensive

Most�task�need�~
<2�CPU,�2�GB�RAM>

Some�tasks�are�
memoryͲintensive

alig@cs.berkeley.edu 6

2000Ͳnode�Hadoop�Cluster�at�Facebook�(Oct�2010)



ProblemProblem

Single resource example

100%

50%Single�resource�example
– 1�resource:�CPU
– User�1�wants�<1�CPU>�per�task

50%

50%p
– User�2�wants�<3�CPU>�per�task

CPU
0%

50%

MultiͲresource�example
– 2�resources:�CPUs�&�mem

100%

– User�1�wants�<1�CPU,�4�GB>�per�task
– User�2�wants�<3�CPU,�1�GB>�per�task

50% ?�������?
p

–What’s�a�fair�allocation?

alig@cs.berkeley.edu 7
CPU

0%
mem



Problem�definition
f i l h l i l hHow�to�fairly share�multiple�resources�when�

users�have�heterogenous�demands on�them?

alig@cs.berkeley.edu 8



ModelModel

• Users have tasks according to a demand vectorUsers�have�tasks according�to�a�demand�vector
– e.g.�<2,�3,�1>�user’s�tasks�need�2�R1,�3�R2,�1�R3
Not needed in practice measure actual consumption– Not�needed�in�practice,�measure�actual�consumption

R i i lti l f d d t• Resources�given�in�multiples�of�demand�vectors

• Assume�divisible�resources

10alig@cs.berkeley.edu



A Natural Policy

• Asset Fairness

A�Natural�Policy

Asset�Fairness
– Equalize�each�user’s�sum�of�resource shares

• Cluster�with�70�CPUs,�70�GB�RAM
– U1 needs�<2�CPU,�2�GB�RAM>�per�task1 , p

– U2 needs�<1�CPU,�2�GB�RAM>�per�task

alig@cs.berkeley.edu



A Natural Policy

• Asset Fairness

A�Natural�Policy

Asset�Fairness
– Equalize�each�user’s�sum�of�resource shares

User�1 User�2

• Cluster�with�70�CPUs,�70�GB�RAM
– U1 needs�<2�CPU,�2�GB�RAM>�per�task

100%

43%43%Problem
User�1�has�<�50%�of�both�CPUs�and�RAM1 , p

– U2 needs�<1�CPU,�2�GB�RAM>�per�task 50%

57%
28%

Better�off�in�a�separate�cluster�with�50%�of�
the�resources

• Asset�fairness�yields
– U1:�15�tasks:� 30�CPUs,�30�GB�(є=60)

CPU
0%

RAM

– U2:�20�tasks:��� 20�CPUs,�40�GB�(є=60)

alig@cs.berkeley.edu



Dominant Resource FairnessDominant�Resource�Fairness

• A�user’s�dominant�resource is�the�resource�she�use s do a t esou ce s t e esou ce s e
has�the�biggest�share�of
– Example:�
Total�resources:�� <10�CPU,�4�GB>
User�1’s�allocation: <2�CPU,� 1�GB>�

i i 1/4 2/10 (1/ )Dominant�resource�is�memory�as�1/4�>�2/10�(1/5)

• A user’s dominant share is the fraction of the• A�user s�dominant�share�is�the�fraction�of�the�
dominant�resource�she�is�allocated
– User 1’s dominant share is 25% (1/4)User�1 s�dominant�share�is�25%�(1/4)

18alig@cs.berkeley.edu



Dominant�Resource�Fairness�(2)
• Apply�maxͲmin�fairness�to�dominant�shares
• Equalize�the�dominant�share�of�the�usersq

– Example:�
Total�resources:�� <9�CPU,�18�GB>
User�1�demand: <1�CPU,�4�GB>�dom�res:�mem
User�2�demand: <3�CPU,�1�GB>�dom�res:�CPU

User�1

User�2

100%
3�CPUs 12�GB

66%
50%

66%

66%

19

0%
CPU

(9�total)
mem

(18�total)

6�CPUs 2�GB









Properties of PoliciesProperties�of�Policies

Property Asset CEEI DRFp y

Share guarantee ܃ ܃

StrategyͲproofness ܃ gy܃ p

Pareto�efficiency ܃ ܃ ܃

EnvyͲfreeness ܃ ܃ ܃

Single�resource�fairness ܃ ܃ ܃

Bottleneck res.�fairness ܃ ܃

Population monotonicity ܃ ܃

Resource�monotonicity

alig@cs.berkeley.edu 29
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Caches are crucial 

2 



3 

Cache sharing 
� Increasingly, caches are shared among multiple users 

± Especially with the advent of cloud 
 
 
Benefits: 
± Provide low latency 
± Reduce backend load 

 
* 

Cache 

ǥ ǥ ǥ 

Backend (storage/network) 



Problems with cache algorithms  

* 

Cache 

Backend (storage/network) 

� LRU, LFU, LRU-�ǥ 
� Cache data likely to be 

accessed in the future 
� Optimize global efficiency 
 
� Single user gets arbitrarily 

small cache 
 

� Prone to strategic behavior 
 

ǥ ǥ ǥ 

* * 

4 



� Users access equal-sized files at constant rates 
±        the rate user i accesses file j 

 

� A allocation policy decides which files to cache 
±        the % of file j put in cache 

 
� Users care their hit ratio 

±  user iǯ� hit ratio: 

 
 

A simple model 

8 
� Results hold with varied file sizes, access partial files,         is binary, etc.   

rij

HRi =
total _hits

total _accesses
=

pjrij
j

 

rij
j

 

pj

pj
!

𝒋
𝒑𝒋𝒓𝒊𝒋

!
𝒋
𝒓𝒊𝒋



� Isolation Guarantee 
± No user should be worse off than static allocation 

 

� Strategy-Proofness  
± No user can improve by cheating  
 

� Pareto Efficiency 
± ���ǯ� improve a user without hurting others 

Properties 

10 

(Share Guarantee)
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� Very easy to cheat, hard to detect 
± e.g., by making spurious accesses 

� Can happen in practice 

Strategy proofness 
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2x 

* 

Amazon Elasticache 

ǥ ǥ 

MySQL Instance 

Site1 Site2 

* 



� Maximize the the user with minimum allocation 
± Solution: allocate each 1/n (fair share) 
 
± Handles if  some users want less than fair share 

 
 
� Widely successful to other resources: 

± OS: round robin, prop sharing, lottery �����ǥ 
± Networking: fair queueing, wfq, wf2q, csfq, ���ǥ 
± Datacenter: DRF, Hadoop fair sched, ������ǥ 
 

What is max-min fairness? 

14 

33% 33% 33% 

20% 40% 40% 



An example 
5 req/sec A 

C 5 req/sec 

Alice 

Bob 

50% 

file sizes = 1GB, total cache = 2GB 

HR = 83.3%  

HR = 83.3% 
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0    0.5       1      1.5    2GB 

50% 

B A C 
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100% 



Properties 

    

Isolation 
Guarantee 

Strategy 
Proofness 

Pareto 
Efficiency 

 max-min fairness ݱ ݱ
  

? 
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100% 

An example 
5 req/sec A 

5 req/sec 

Alice 

Bob 

50% 

file sizes = 1GB, total cache = 2GB 

HR = 83.3% 

HR = 83.3% +10 req/sec 

66.7%  

 100% 
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100% 
C 

0    0.5       1      1.5    2GB 
B C 50% 100% 

B 



100% 

An example 
5 req/sec A 

5 req/sec 

Alice 

Bob 

50% 

file sizes = 1GB, total cache = 2GB 

HR = 83.3% 

HR = 83.3% +10 req/sec 

66.7%  

 100% 

17 

100% 
C 

0    0.5       1      1.5    2GB 
B C 50% 100% 

B 

By gaming the system, a user can 
increase performance by hurting others! 



Properties 

    

Isolation 
Guarantee 

Strategy 
Proofness 

Pareto 
Efficiency 

 ݵ  max-min fairness ݱ ݱ

priority allocation 

max-min rate 

 ݱ ݱ ݵ

 ݵ ݵ ݱ
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ǥ ǥ ǥ ǥ 

static allocation ݵ ݱ ݱ 



 

 
No allocation policy can satisfy all 
three properties! 

 
 
 
 

� Best we can do: two of three. 

Theorem 

19 



111 

FairRide 
� Starts with max-min fairness 

± Allocate 1/n to each user 
± ������ǲ����ǳ������������������������������������������� 
 

� Only difference:  
  blocking �������������ǯ��ǲ���ǳ��������������� 
 
� Probabilistic blocking: with some probability 

± Implemented with delaying 
 
 



5 req/sec 

Alice 

Bob 
HR = 83.3% +10 req/sec 

100% 

FairRide: Blocking 
A 

B 
100% 

C 
100% 

   66.7% 
24 

Allow 5 
Block 5 

B C 
0    0.5       1      1.5    2GB 



5 req/sec 

Alice 

Bob 
HR = 83.3% +10 req/sec 

100% 

FairRide: Blocking 
A 

B 
100% 

C 
100% 

   66.7% 
24 

Allow 5 
Block 5 

B C 
0    0.5       1      1.5    2GB 
Cheating always gives worst performance. 

Dis-incentive strategic behaviors. 



Probabilistic blocking 
� FairRide blocks a user with p(nj) = 1/(nj+1) probability 

± nj is number of other users caching file j 
± e.g., p(1)=50%, p(4)=20% 
 

� The best you can do in a general case 
± Less blocking does not prevent cheating 
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Isolation 
Guarantee 

Strategy 
Proofness 

Pareto 
Efficiency 

 ݵ  max-min fairness ݱ ݱ

priority allocation 

max-min rate 

 ݱ ݱ ݵ

 ݵ ݵ ݱ

static allocation ݵ ݱ ݱ 

Isolation 
Guarantee 

Strategy 
Proofness 

Pareto 
Efficiency 
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Properties 

FairRide ݱ ݱ Near-optimal 


