
Acknowledgments: Ion Stoica, Berkeley CS 162

Xin Jin
Spring 2023

Operating Systems
(Honor Track)

Scheduling 4:
Scheduling in Modern Computer Systems

2

Scheduling in Modern Computer Systems

• FCFS
– SOSP’17 ZygOS

• RR
– NSDI’19 Shinjuku

• SJF, SRTF, MLFQ
– NSDI’19 Tiresias
– SIGCOMM’22 Muri

• EDF
– ASPLOS’23 ElasticFlow

• Fairness
– NSDI’11 DRF
– NSDI’16 FairRide

ZygOS: Achieving Low Tail Latency for Microsecond-
scale Networked Tasks

George Prekas, Marios Kogias, Edouard Bugnion

3

Problem: Serve μs-scale RPCs

• Applica6ons: KV-stores, In-memory DB
• Datacenter environment:
• Complex fan-out – fan-in pa1erns

• Tail-at-scale problem
• Tail Latency Service-Level Objec6ves
• Goal: Improve throughput at an aggressive tail latency SLO
• How? Focus within the leaf nodes
• Reduce system overheads
• Achieve be1er scheduling

4

Load
Balancer

RootRootRoot Root

LeafLeafLeafLeaf

Elementary Queuing Theory
• Processor
• FCFS
• Processor Sharing

• Multi/Single Queue
• Inter-arrival Distribution (λ)
• Poisson

• Service Time Distribution (μ)
• Fixed
• Exponential
• Bimodal

FCFS

FCFS

S
λ

μ

5

• No OS overheads
• Independent of service time
• Upper performance bound

6

System Linux Dataplanes
Networking Kernel (epoll) Kernel (epoll) Userspace
Connection
Delegation Partitioned Floating Partitioned

Complexity Medium High Low
Work

Conservation ✖ ✔ ✖

Queuing Multi-Queue Single Queue Multi-Queue

Can we build a system with low overheads that achieves work conservation?

Baseline

Upcoming

• Key Observa6ons:
• Single queue systems perform theore&cally be1er
• Dataplanes, despite being mulH-queue systems, perform prac&cally be1er

• Key Contribu6ons
• ZygOS combines the best of the two worlds:

• Reduced system overheads similar to dataplanes
• Convergence to a single-queue model

7

Analysis

• Metric to optimize: Load @ Tail-Latency SLO
• Run timescale-independent simulations
• Run synthetic benchmarks on real system

• Questions:
• Which model achieves better throughput?
• Which system converges to its model at low service times?

8

0.5 1.0

Load

0

5

10

15

0.5 1.0

Load

0

5

10

15

0.5 1.0

Load

0

5

10

15

L
a
te

n
cy

Latency vs Load – Queuing model

SLO: 10 x AVG[service_time]

Fixed ExponenQal Bimodal

9

99th percentile latencySingle queue models provide better throughput at SLO because of
transient load imbalance

16xM/G/1/FCFS M/G/16/FCFS

Greater mismatch
at high dispersion

0.0 0.5 1.0 1.5

Throughput (MRPS)

0

25

50

75

100

125

150

0.0 0.5 1.0 1.5

Throughput (MRPS)

0

25

50

75

100

125

150

0.0 0.5 1.0 1.5

Throughput (MRPS)

0

25

50

75

100

125

150

L
a
te

n
cy

 (
u
s)

Latency vs Load – Service Time 10μs

SLO: 10 x AVG[service_time]
10

99th percentile latency
IX, Belay et al. OSDI 2014

Fixed Exponential Bimodal
SLO Linux (partitioned connections) IX Linux (floating connections)

0.0 0.2 0.4 0.6

Throughput (MRPS)

0

100

200

300

0.0 0.2 0.4 0.6

Throughput (MRPS)

0

100

200

300

L
a

te
n
cy

 (
u
s)

0.0 0.2 0.4 0.6

Throughput (MRPS)

0

100

200

300

Latency vs Load – Service Time 25μs

SLO: 10 x AVG[service_time]
11

99th percentile latency
IX, Belay et al. OSDI 2014

Exponential Bimodal
SLO Linux (partitioned connections) IX Linux (floating connections)

Dataplanes perform better only in very low service times with low dispersion

Linux Floating
outperforms IX

Fixed

ZygOS Approach

• Dataplane aspect:
• Reduced system overheads
• Share nothing network processing

• Single Queue system
• Work conservation
• Reduction of head of line blocking

Implement work-stealing to achieve work-conservation in a dataplane

12

Background on IX

event-driven app

libIX

RX TX

TCP/IP

2

RX
FIFO

Event
Conditions

3

Batched
Syscalls

TCP/IP

Timer

4

5

6

Ring 3

Guest
Ring 0

1

13

IX Design

1. Application layer
Event based application
that is agnostic to work-stealing

2. Shuffle layer
Includes a per core list of ready connections that allows stealing

3. Network layer
Coherence- and sync-free network processing

14

ZygOS Design

Application
Layer

ZygOS Architecture

event-driven app

libIX

RX TX

TCP/IP

Ring 3

Guest
Ring 0

TCP/IP

Timer

event-driven app

libIX

RX TX

TCP/IP TCP/IP

Timer

Home core Remote
core 15

Network Layer Network Layer

Application
Layer

Shuffle Layer
Shuffle
Queue

Shuffle
QueueRemote

Syscalls

ExecuSon Model

event-driven app

libIX

RX TX

TCP/IP

Ring 3

Guest
Ring 0

TCP/IP

Timer

event-driven app

libIX

RX TX

TCP/IP TCP/IP

Timer

Home core Remote
core 16

Shuffle Layer
Shuffle
Queue

Shuffle
QueueRemote

Syscalls

ExecuSon Model

event-driven app

libIX

RX TX

TCP/IP

Ring 3

Guest
Ring 0

TCP/IP

Timer

event-driven app

libIX

RX TX

TCP/IP TCP/IP

Timer

Home core Remote
core 17

Shuffle
Queue

Shuffle Layer
Shuffle
QueueRemote

Syscalls

ExecuSon Model

event-driven app

libIX

RX TX

TCP/IP

Ring 3

Guest
Ring 0

TCP/IP

Timer

event-driven app

libIX

RX TX

TCP/IP TCP/IP

Timer

Home core Remote
core 18

Shuffle Layer
Shuffle
QueueRemote

Syscalls

Shuffle
Queue

ExecuSon Model

event-driven app

libIX

RX TX

TCP/IP

Ring 3

Guest
Ring 0

TCP/IP

Timer

event-driven app

libIX

RX TX

TCP/IP TCP/IP

Timer

Home core Remote
core 19

Shuffle Layer
Shuffle
Queue

Shuffle
QueueRemote

Syscalls

ExecuSon Model

event-driven app

libIX

RX TX

TCP/IP

Ring 3

Guest
Ring 0

TCP/IP

Timer

event-driven app

libIX

RX TX

TCP/IP TCP/IP

Timer

Home core Remote
core 20

Shuffle Layer
Shuffle
Queue

Shuffle
QueueRemote

Syscalls

ExecuSon Model

event-driven app

libIX

RX TX

TCP/IP

Ring 3

Guest
Ring 0

TCP/IP

Timer

event-driven app

libIX

RX TX

TCP/IP TCP/IP

Timer

Home core Remote
core 21

Shuffle Layer
Shuffle
Queue

Shuffle
QueueRemote

Syscalls

ExecuSon Model

event-driven app

libIX

RX TX

TCP/IP

Ring 3

Guest
Ring 0

TCP/IP

Timer

event-driven app

libIX

RX TX

TCP/IP TCP/IP

Timer

Home core Remote
core 22

Shuffle Layer
Shuffle
Queue

Shuffle
QueueRemote

Syscalls

ExecuSon Model

event-driven app

libIX

RX TX

TCP/IP

Ring 3

Guest
Ring 0

TCP/IP

Timer

event-driven app

libIX

RX TX

TCP/IP TCP/IP

Timer

Home core Remote
core 23

Shuffle Layer
Shuffle
Queue

Shuffle
QueueRemote

Syscalls

EvaluaSon Setup

• Environment:
• 10+1 Xeon Servers
• 16-hyperthread server machine
• Quanta/Cumulus 48x10GbE switch

• Experiments:
• Synthetic micro-benchmarks
• Silo [SOSP 2013]
• Memcached

• Baselines:
• IX
• Linux (partitioned and floating connections)

24

0.0 0.5 1.0 1.5

Throughput (MRPS)

0

25

50

75

100

125

150

0.0 0.5 1.0 1.5

Throughput (MRPS)

0

25

50

75

100

125

150

0.0 0.5 1.0 1.5

Throughput (MRPS)

0

25

50

75

100

125

150

L
a
te

n
cy

 (
u
s)

Latency vs Load – Service Time 10μs

SLO: 10 x AVG[service_time]
25

99th percentile latency
IX, Belay et al. OSDI 2014

ExponenQal Bimodal
SLO Linux (partitioned connections) IX Linux (floating connections)

Fixed

Latency vs Load – Service Time 10μs

SLO: 10 x AVG[service_time]
26

99th percentile latency
IX, Belay et al. OSDI 2014

ExponenQal Bimodal

0.0 0.5 1.0 1.5

Throughput (MRPS)

0

25

50

75

100

125

150

0.0 0.5 1.0 1.5

Throughput (MRPS)

0

25

50

75

100

125

150

0.0 0.5 1.0 1.5

Throughput (MRPS)

0

25

50

75

100

125

150

L
a
te

n
cy

 (
u
s)

SLO Linux (partitioned connections) IX Linux (floating connections) ZygOS

Fixed

0 50 100 150 200 250 300 350 400
Throughput (KRPS)

0

250

500

750

1000

1250

1500
L
a
te

n
cy

 (
u
s)

SLO

Linux

IX
ZygOS

Silo with TPC-C workload

1.63x speedup
over Linux

3.68x lower
99th latency

27

Conclusion

ZygOS: A datacenter opera6ng system for low-latency
• Reduced System overheads

• Converges to a single queue model

• Work conservaQon through work stealing

• Reduce HOL through light-weight IPIs

28

https://github.com/ix-project/zygos

We ♥ opensource

https://github.com/ix-project/zygos

Scheduling in Modern Computer Systems

• FCFS
• SOSP’17 ZygOS

• RR
• NSDI’19 Shinjuku

• SJF, SRTF, MLFQ
• NSDI’19 Tiresias
• SIGCOMM’22 Muri

• EDF
• ASPLOS’23 ElasticFlow

• Fairness
• NSDI’11 DRF
• NSDI’16 FairRide

Tiresias

Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin,
Yibo Zhu, Myeongjae Jeon, Junjie Qian, Hongqiang (Harry) Liu, Chuanxiong Guo

A GPU Cluster Manager for Distributed Deep Learning

• Deep learning (DL) is popular
• 10.5× increase of DL training jobs in Microsoft
• DL training jobs require GPU

• Distributed deep learning (DDL) training with multiple GPUs

• GPU cluster for DL training
• 5× increase of GPU cluster scale in Microsoft [1]

1[1]. Analysis of Large-Scale Multi-Tenant GPU Clusters for DNN Training Workloads. https://arxiv.org/abs/1901.05758

How to efficiently manage a GPU cluster for DL training jobs?

GPU Cluster for Deep Learning Training

Google Lens Siri

2

GPU Cluster Manager

GPU Cluster

2

Scheduler

Free GPU

Occupied GPU

4-GPU machine

N N-GPU DL job

142

Placement Scheme

Job Queue

1

1

Design Objectives

Minimize
Cluster-Wide Average
Job Completion Time (JCT)

Achieve
High Resource (GPU)
Utilization

3[1]. Optimus: An Efficient Dynamic Resource Scheduler for Deep Learning Clusters, EuroSys’18

⎯ DSSM ⎯ ResNext ⎯ Seq2Seq

Progress

N
or

m
. T

ra
in

. L
os

s 1.0

0.5

0.0
Progress

N
or

m
. T

ra
in

. L
os

s 1.0

0.5

0.0
⎯ Job1 ⎯ Job2

Challenge Ⅰ: Unpredictable Training Time

§Unknown execution time of DL training jobs
§ Job execution time is useful when minimizing JCT

§ Predict job execution time
§ Use the smooth loss curve of DL training jobs (Optimus [1])

4[1]. Optimus: An Efficient Dynamic Resource Scheduler for Deep Learning Clusters, EuroSys’18

⎯ DSSM ⎯ ResNext ⎯ Seq2Seq

Progress

N
or

m
. T

ra
in

. L
os

s 1.0

0.5

0.0
Progress

N
or

m
. T

ra
in

. L
os

s 1.0

0.5

0.0
⎯ Job1 ⎯ Job2

Challenge Ⅰ: Unpredictable Training Time

It’s hard to predict training time of DL jobs in many cases

§Unknown execution time of DL training jobs
§ Job execution time is useful when minimizing JCT

§ Predict job execution time
§ Use the smooth loss curve of DL training jobs (Optimus [1])

8

Challenge ⅠⅠ: Over-Aggressive Job Consolidation

§ Fragmented free GPUs in the cluster

§ Longer queuing delay

§Network overhead in DDL training

Machine 1 Machine 2 Machine 3 Machine 4

Free GPU

Occupied GPU

Job Queue

4 N N-GPU Job

Machine 2Machine 2

4

§ Consolidated placement for good training performance

9

Prior Solutions

I. Unpredictable Training Time
(Scheduling)

II. Over-Aggressive Job Consolidation
(Job Placement)

YARN-CS

Optimus[1]

Gandiva[2]

FIFO

Time-sharing Trial-and-error

None

[1]. Optimus: An Efficient Dynamic Resource Scheduler for Deep Learning Clusters, EuroSys’18
[2]. Gandiva: Introspective Cluster Scheduling for Deep Learning, OSDI’18

None

None

10

Tiresias A GPU cluster manager for
Distributed Deep Learning
Without Complete Knowledge

I. Age-Based Scheduler Minimize JCT without
complete knowledge of jobs

2. Model Profile-Based Placement Place jobs without additional
information from users

Challenge I

How To Schedule DL Training Jobs
Without Complete Job Information?

Temporal and Spatial Co-scheduling

13

Characteristics of DL Training Jobs

§ Variations in both temporal and spatial aspects

Scheduler should consider both
temporal and spatial
aspects of DL training jobs

Job execution time

#
 o

f G
PU

s

10210 104 105103

Job execution time (min)

1

2

4

8

16

32

64

128

N
um

be
r

of
 G

PU
s

…?

1. Spatial: number of GPUs
2. Temporal: executed time

15

Available Job Information

Time1 2 3 4 5 6 7 8 9 10 110

G1

G2

G3
Executed time

of GPUs

…?

16[1]. Feedback queueing models for time-shared systems. JACM, 1968
[2]. Multi-armed bandit allocation indices. Wiley, Chichester, 1989

Age-Based Schedulers

• Least-Attained Service[1] (LAS)
• Prioritize job that has the shortest executed time

• Gittins Index policy[2]
• Need the distribution of job execution time
• Prioritize job that has the highest probability to complete in the near future

Time1 2 3 4 5 6 7 8 9 10 110

G1

G2

G3

Age (executed time)

of GPUs # of GPUs

17

Two-Dimensional Age-Based Scheduler (2DAS)

• Age calculated by two-dimensional attained service
• i.e., a job’s total executed GPU time (# of GPUs × executed time)

• No prior information
• 2D-LAS

•With partial information: distribution of job GPU time
• 2D-Gittins Index

Fewer Job Switches: Discretized 2D-LAS (MLFQ)

Challenge II

How to Place DL Jobs
Without Hurting Training Performance?

• Tensor size in DL models
• Large tensors cause network imbalance and contention

33

Characteristics of DL Models

VGG11

VGG16

VGG19

Alex
Net

ResN
et5

0

Inc
ep

tio
n3

ResN
et1

01

ResN
et1

52

Inc
ep

tio
n4

Google
Net

Si
ze

 (
M

B)

0

100

200

300

400

500

600

Consolidated placement
is needed when the
model is highly skewed
in its tensor size

34

Model Profile-Based Placement

Consolidation?

NO

YES

ResNet50

VGG11

Inception3

VGG16

ResNet101

AlexNet

Inception4

VGG19

GoogleNet

ResNet152

M
od

el
 P

ro
fil

er

35

Tiresias
Central Master
Network-Level Model Profiler

60-GPU
Testbed Experiment

Large-scale &
Trace-driven Simulation

Evaluation

GPU Cluster

DL Job
(model, resource)

Placement Preemption

Discretized-2DAS

Central Master

Placement scheme
Model profiler

JCT Improvements in Testbed Experiment

• Testbed – Michigan ConFlux cluster
• 15 machines (4 GPUs each)
• 100 Gbps RDMA network

Avg. JCT improvement
(w.r.t. YARN-CS): 5.5×

Comparable
performance to SRTF

36

0.0

0.2

0.4

0.6

0.8

1.0

10 100 1000 10000 100000

Fr
ac

tio
n

of
 Jo

bs

JCT (second)

YARN-CS
SRTF
Tiresias

0.0

0.2

0.4

0.6

0.8

1.0

10 100 1000 10000 100000

Fr
ac

tio
n

of
 Jo

bs

JCT (second)

YARN-CS
SRTF
Tiresias

0.0

0.2

0.4

0.6

0.8

1.0

10 100 1000 10000 100000

Fr
ac

tio
n

of
 Jo

bs

JCT (second)

YARN-CS
SRTF
Tiresias

10 102 103 104 105

• Discrete-time simulator
• 10-week job trace from Microsoft
• 2,000-GPU cluster

37

JCT Improvements in Trace-Driven Simulation

Avg. JCT improvement
(w.r.t. Gandiva): 2×

0.0

0.2

0.4

0.6

0.8

1.0

100 1000 10000 100000 1000000 10000000

Fr
ac

tio
n

of
 Jo

bs

JCT(second)

YARN-CS
SRTF

Gandiva

Tiresias

0.0

0.2

0.4

0.6

0.8

1.0

100 1000 10000 100000 1000000 10000000

Fr
ac

tio
n

of
 Jo

bs

JCT(second)

YARN-CS
SRTF

Gandiva

Tiresias

102 103 104 105 106 107

38

Tiresias

• Optimize JCT with no or partial job information

• Relax placement constraint without hurting training performance

• Simple, practical, and with significant performance improvements

A GPU cluster manager for
Distributed Deep Learning
Without Complete Knowledge

https://github.com/SymbioticLab/Tiresias

Scheduling in Modern Computer Systems

• FCFS
• SOSP’17 ZygOS

• RR
• NSDI’19 Shinjuku

• SJF, SRTF, MLFQ
• NSDI’19 Tiresias
• SIGCOMM’22 Muri

• EDF
• ASPLOS’23 ElasPcFlow

• Fairness
• NSDI’11 DRF
• NSDI’16 FairRide

D i t R F i (DRF)Dominant�Resource�Fairness�(DRF)
Fair�Allocation�of�Multiple�Resource�Types

Ali�Ghodsi,�Matei�Zaharia
B j i Hi d A d K i kiBenjamin�Hindman,�Andy�Konwinski,

Scott�Shenker,�Ion�Stoica

University�of�California,�Berkeley

alig@cs.berkeley.edu 1

What�is�fair�sharing?
CPU

100%

• n�users�want�to�share�a�resource�(e.g.�CPU)
– Solution:�

100%

50%

33%

33%

Allocate�each�1/n�of�the�shared�resource
0%

33%

• Generalized�by�maxͲmin�fairness
– Handles�if�a�user�wants�less�than�its�fair�share

100%

50%

20%

40%

– E.g.�user�1�wants�no�more�than�20%

G li d b i ht d i f i

50%

0%

40%

• Generalized�by�weighted�maxͲmin�fairness
– Give�weights�to�users�according�to�importance
User 1 gets weight 1 user 2 weight 2

100%

50%

33%

– User�1�gets�weight�1,�user�2�weight�2

alig@cs.berkeley.edu 2

50%

0%

66%

How to define fairness?

• Share guarantee
• Each user can get at least 1/n of the resource
• But will get less if her demand is less

• Stragegy-proof
• Users are not better off by asking for more than they need
• Users have no reason to lie

• Pareto efficiency
• It is not possible to increase the utility of a user without decreasing the utility

of at least another user
• It leads to maximizing system utilizaiton subject to satisfying other constraints

53

Why is maxͲmin fairness not enough?Why�is�max min�fairness�not�enough?

• Job scheduling in datacenters is not onlyJob�scheduling�in�datacenters�is�not�only�
about�CPUs

Jobs consume CPU memory disk and I/O– Jobs�consume�CPU,�memory,�disk,�and�I/O

D hi h ll ?• Does�this�pose�any�challenge?

alig@cs.berkeley.edu 5

Heterogeneous�Resource�Demands

Some�tasks�are�
CPUͲintensive

Most�task�need�~
<2�CPU,�2�GB�RAM>

Some�tasks�are�
memoryͲintensive

alig@cs.berkeley.edu 6

2000Ͳnode�Hadoop�Cluster�at�Facebook�(Oct�2010)

ProblemProblem

Single resource example

100%

50%Single�resource�example
– 1�resource:�CPU
– User�1�wants�<1�CPU>�per�task

50%

50%p
– User�2�wants�<3�CPU>�per�task

CPU
0%

50%

MultiͲresource�example
– 2�resources:�CPUs�&�mem

100%

– User�1�wants�<1�CPU,�4�GB>�per�task
– User�2�wants�<3�CPU,�1�GB>�per�task

50% ?�������?
p

–What’s�a�fair�allocation?

alig@cs.berkeley.edu 7
CPU

0%
mem

Problem�definition
f i l h l i l hHow�to�fairly share�multiple�resources�when�

users�have�heterogenous�demands on�them?

alig@cs.berkeley.edu 8

ModelModel

• Users have tasks according to a demand vectorUsers�have�tasks according�to�a�demand�vector
– e.g.�<2,�3,�1>�user’s�tasks�need�2�R1,�3�R2,�1�R3
Not needed in practice measure actual consumption– Not�needed�in�practice,�measure�actual�consumption

R i i lti l f d d t• Resources�given�in�multiples�of�demand�vectors

• Assume�divisible�resources

10alig@cs.berkeley.edu

A Natural Policy

• Asset Fairness

A�Natural�Policy

Asset�Fairness
– Equalize�each�user’s�sum�of�resource shares

• Cluster�with�70�CPUs,�70�GB�RAM
– U1 needs�<2�CPU,�2�GB�RAM>�per�task1 , p

– U2 needs�<1�CPU,�2�GB�RAM>�per�task

alig@cs.berkeley.edu

A Natural Policy

• Asset Fairness

A�Natural�Policy

Asset�Fairness
– Equalize�each�user’s�sum�of�resource shares

User�1 User�2

• Cluster�with�70�CPUs,�70�GB�RAM
– U1 needs�<2�CPU,�2�GB�RAM>�per�task

100%

43%43%Problem
User�1�has�<�50%�of�both�CPUs�and�RAM1 , p

– U2 needs�<1�CPU,�2�GB�RAM>�per�task 50%

57%
28%

Better�off�in�a�separate�cluster�with�50%�of�
the�resources

• Asset�fairness�yields
– U1:�15�tasks:� 30�CPUs,�30�GB�(є=60)

CPU
0%

RAM

– U2:�20�tasks:��� 20�CPUs,�40�GB�(є=60)

alig@cs.berkeley.edu

Dominant Resource FairnessDominant�Resource�Fairness

• A�user’s�dominant�resource is�the�resource�she�use s do a t esou ce s t e esou ce s e
has�the�biggest�share�of
– Example:�
Total�resources:�� <10�CPU,�4�GB>
User�1’s�allocation: <2�CPU,� 1�GB>�

i i 1/4 2/10 (1/)Dominant�resource�is�memory�as�1/4�>�2/10�(1/5)

• A user’s dominant share is the fraction of the• A�user s�dominant�share�is�the�fraction�of�the�
dominant�resource�she�is�allocated
– User 1’s dominant share is 25% (1/4)User�1 s�dominant�share�is�25%�(1/4)

18alig@cs.berkeley.edu

Dominant�Resource�Fairness�(2)
• Apply�maxͲmin�fairness�to�dominant�shares
• Equalize�the�dominant�share�of�the�usersq

– Example:�
Total�resources:�� <9�CPU,�18�GB>
User�1�demand: <1�CPU,�4�GB>�dom�res:�mem
User�2�demand: <3�CPU,�1�GB>�dom�res:�CPU

User�1

User�2

100%
3�CPUs 12�GB

66%
50%

66%

66%

19

0%
CPU

(9�total)
mem

(18�total)

6�CPUs 2�GB

Properties of PoliciesProperties�of�Policies

Property Asset CEEI DRFp y

Share guarantee ܃ ܃

StrategyͲproofness ܃ gy܃ p

Pareto�efficiency ܃ ܃ ܃

EnvyͲfreeness ܃ ܃ ܃

Single�resource�fairness ܃ ܃ ܃

Bottleneck res.�fairness ܃ ܃

Population monotonicity ܃ ܃

Resource�monotonicity

alig@cs.berkeley.edu 29

Scheduling in Modern Computer Systems

• FCFS
• SOSP’17 ZygOS

• RR
• NSDI’19 Shinjuku

• SJF, SRTF, MLFQ
• NSDI’19 Tiresias
• SIGCOMM’22 Muri

• EDF
• ASPLOS’23 ElasticFlow

• Fairness
• NSDI’11 DRF
• NSDI’16 FairRide

Qifan Pu,
Haoyuan Li,

Matei Zaharia,
Ali Ghodsi,
Ion Stoica

FairRide: Near-Optimal
Fair Cache Sharing

UC BERKELEY

1

Caches are crucial

2

3

Cache sharing
� Increasingly, caches are shared among multiple users

± Especially with the advent of cloud

Benefits:
± Provide low latency
± Reduce backend load

*

Cache

ǥ ǥ ǥ

Backend (storage/network)

Problems with cache algorithms

*

Cache

Backend (storage/network)

� LRU, LFU, LRU-�ǥ
� Cache data likely to be

accessed in the future
� Optimize global efficiency

� Single user gets arbitrarily

small cache

� Prone to strategic behavior

ǥ ǥ ǥ

* *

4

� Users access equal-sized files at constant rates
± the rate user i accesses file j

� A allocation policy decides which files to cache
± the % of file j put in cache

� Users care their hit ratio

± user iǯ� hit ratio:

A simple model

8
� Results hold with varied file sizes, access partial files, is binary, etc.

rij

HRi =
total _hits

total _accesses
=

pjrij
j

rij
j

pj

pj
!

𝒋
𝒑𝒋𝒓𝒊𝒋

!
𝒋
𝒓𝒊𝒋

� Isolation Guarantee
± No user should be worse off than static allocation

� Strategy-Proofness
± No user can improve by cheating

� Pareto Efficiency
± ���ǯ� improve a user without hurting others

Properties

10

(Share Guarantee)

0

6

12

18

0 10 20 30 40m
is

s
ra

tio
 (%

)

time (min)

site1
site2

� Very easy to cheat, hard to detect
± e.g., by making spurious accesses

� Can happen in practice

Strategy proofness

11

2x

*

Amazon Elasticache

ǥ ǥ

MySQL Instance

Site1 Site2

*

� Maximize the the user with minimum allocation
± Solution: allocate each 1/n (fair share)

± Handles if some users want less than fair share

� Widely successful to other resources:

± OS: round robin, prop sharing, lottery �����ǥ
± Networking: fair queueing, wfq, wf2q, csfq, ���ǥ
± Datacenter: DRF, Hadoop fair sched, ������ǥ

What is max-min fairness?

14

33% 33% 33%

20% 40% 40%

An example
5 req/sec A

C 5 req/sec

Alice

Bob

50%

file sizes = 1GB, total cache = 2GB

HR = 83.3%

HR = 83.3%

15

0 0.5 1 1.5 2GB

50%

B A C
B
100%

Properties

Isolation
Guarantee

Strategy
Proofness

Pareto
Efficiency

 max-min fairness ݱ ݱ

?

16

100%

An example
5 req/sec A

5 req/sec

Alice

Bob

50%

file sizes = 1GB, total cache = 2GB

HR = 83.3%

HR = 83.3% +10 req/sec

66.7%

 100%

17

100%
C

0 0.5 1 1.5 2GB
B C 50% 100%

B

100%

An example
5 req/sec A

5 req/sec

Alice

Bob

50%

file sizes = 1GB, total cache = 2GB

HR = 83.3%

HR = 83.3% +10 req/sec

66.7%

 100%

17

100%
C

0 0.5 1 1.5 2GB
B C 50% 100%

B

By gaming the system, a user can
increase performance by hurting others!

Properties

Isolation
Guarantee

Strategy
Proofness

Pareto
Efficiency

 ݵ max-min fairness ݱ ݱ

priority allocation

max-min rate

 ݱ ݱ ݵ

 ݵ ݵ ݱ

18

ǥ ǥ ǥ ǥ

static allocation ݵ ݱ ݱ

No allocation policy can satisfy all
three properties!

� Best we can do: two of three.

Theorem

19

111

FairRide
� Starts with max-min fairness

± Allocate 1/n to each user
± ������ǲ����ǳ���

� Only difference:
 blocking �������������ǯ��ǲ���ǳ���������������

� Probabilistic blocking: with some probability

± Implemented with delaying

5 req/sec

Alice

Bob
HR = 83.3% +10 req/sec

100%

FairRide: Blocking
A

B
100%

C
100%

 66.7%
24

Allow 5
Block 5

B C
0 0.5 1 1.5 2GB

5 req/sec

Alice

Bob
HR = 83.3% +10 req/sec

100%

FairRide: Blocking
A

B
100%

C
100%

 66.7%
24

Allow 5
Block 5

B C
0 0.5 1 1.5 2GB
Cheating always gives worst performance.

Dis-incentive strategic behaviors.

Probabilistic blocking
� FairRide blocks a user with p(nj) = 1/(nj+1) probability

± nj is number of other users caching file j
± e.g., p(1)=50%, p(4)=20%

� The best you can do in a general case
± Less blocking does not prevent cheating

25

Isolation
Guarantee

Strategy
Proofness

Pareto
Efficiency

 ݵ max-min fairness ݱ ݱ

priority allocation

max-min rate

 ݱ ݱ ݵ

 ݵ ݵ ݱ

static allocation ݵ ݱ ݱ

Isolation
Guarantee

Strategy
Proofness

Pareto
Efficiency

122

Properties

FairRide ݱ ݱ Near-optimal

