Operating Systems (Honor Track)

Scheduling 4: Scheduling in Modern Computer Systems

Xin Jin Spring 2023

Acknowledgments: Ion Stoica, Berkeley CS 162

Scheduling in Modern Computer Systems

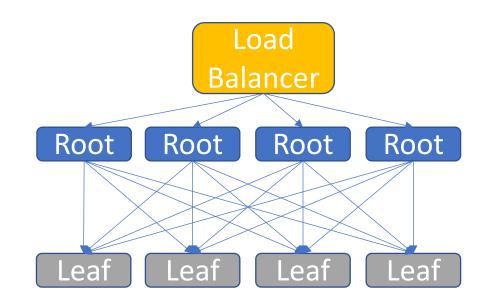
- FCFS
 - SOSP'17 ZygOS
- RR
 - NSDI'19 Shinjuku
- SJF, SRTF, MLFQ
 - NSDI'19 Tiresias
 - SIGCOMM'22 Muri
- EDF
 - ASPLOS'23 ElasticFlow
- Fairness
 - NSDI'11 DRF
 - NSDI'16 FairRide

ZygOS: Achieving Low Tail Latency for Microsecondscale Networked Tasks

George Prekas, Marios Kogias, Edouard Bugnion

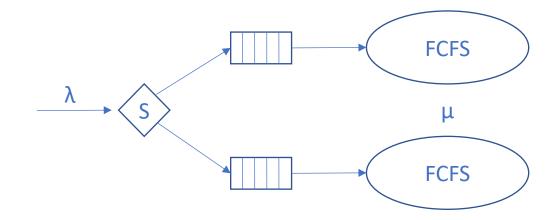
Problem: Serve µs-scale RPCs

- Applications: KV-stores, In-memory DB
- Datacenter environment:
 - Complex fan-out fan-in patterns
- Tail-at-scale problem
- Tail Latency Service-Level Objectives
- Goal: Improve throughput at an aggressive tail latency SLO
- How? Focus within the leaf nodes
 - Reduce system overheads
 - Achieve better scheduling



Elementary Queuing Theory

- Processor
 - FCFS
 - Processor Sharing
- Multi/Single Queue
- Inter-arrival Distribution (λ)
 - Poisson
- Service Time Distribution (μ)
 - Fixed
 - Exponential
 - Bimodal



- No OS overheads
- Independent of service time
- Upper performance bound

Baseline

System	Linux		Dataplanes
Networking	Kernel (epoll)	Kernel (epoll)	Userspace
Connection Delegation	Partitioned	Floating	Partitioned
Complexity	Medium	High	Low
Work Conservation	×	V	×
Queuing	Multi-Queue	Single Queue	Multi-Queue

Can we build a system with low overheads that achieves work conservation?

Upcoming

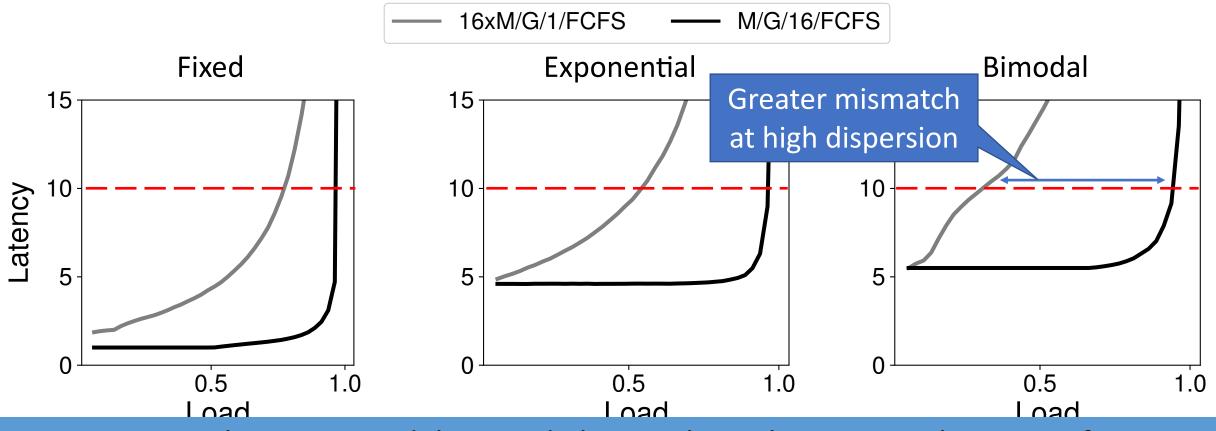
- Key Observations:
 - Single queue systems perform theoretically better
 - Dataplanes, despite being multi-queue systems, perform practically better
- Key Contributions
 - ZygOS combines the best of the two worlds:
 - Reduced system overheads similar to dataplanes
 - Convergence to a single-queue model

Analysis

- Metric to optimize: Load @ Tail-Latency SLO
- Run timescale-independent simulations
- Run synthetic benchmarks on real system

- Questions:
 - Which model achieves better throughput?
 - Which system converges to its model at low service times?

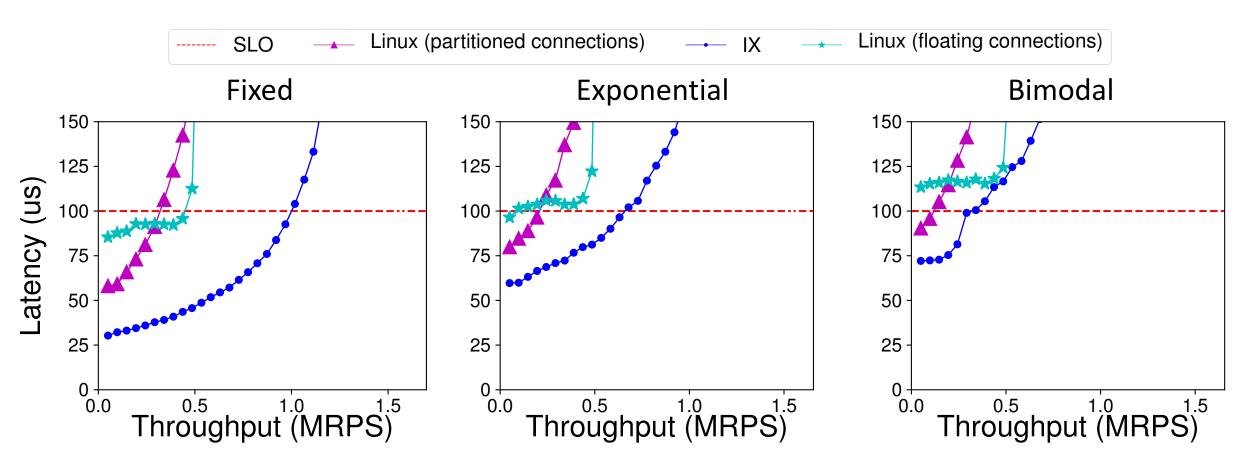
Latency vs Load – Queuing model



Single queue models provide better throughput at SLO because of transient load imbalance

JLO. TO A AVOIDEL VICE TITLE

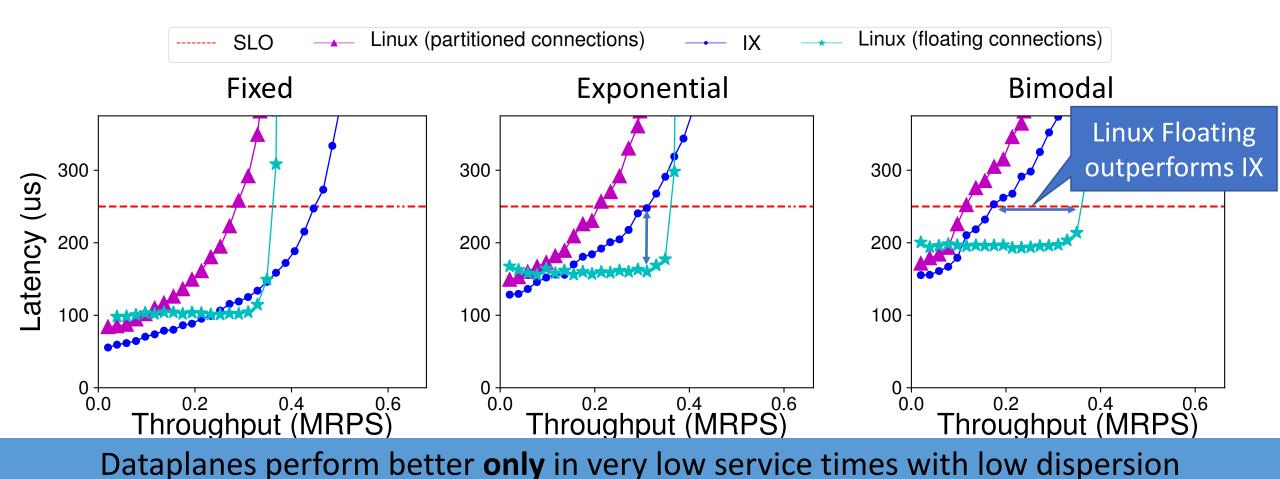
Latency vs Load – Service Time 10µs



99th percentile latency SLO: 10 x AVG[service_time]

IX, Belay et al. OSDI 2014

Latency vs Load – Service Time 25µs



SLO: 10 x AVG[service_time]

percentile lateries

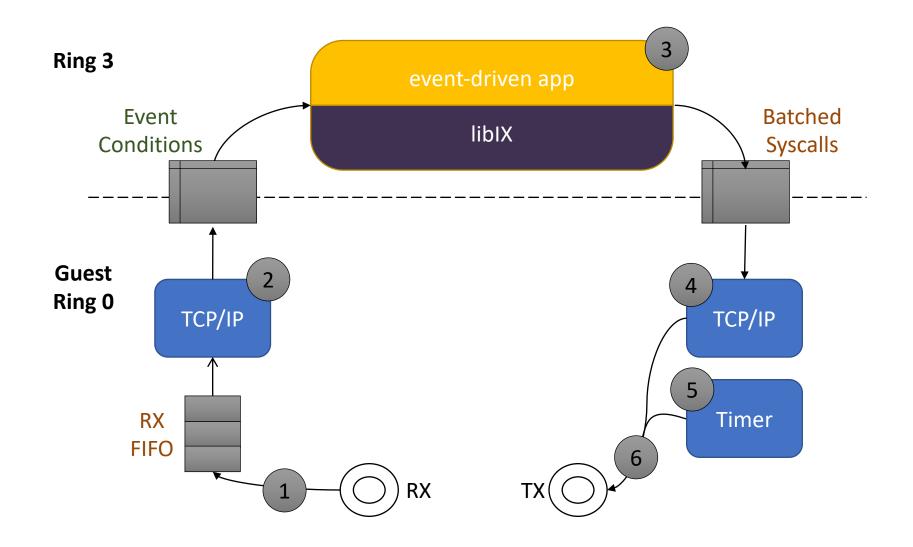
IX, Belay et al. OSDI 2014

ZygOS Approach

- Dataplane aspect:
 - Reduced system overheads
 - Share nothing network processing
- Single Queue system
 - Work conservation
 - Reduction of head of line blocking

Implement work-stealing to achieve work-conservation in a dataplane

Background on IX



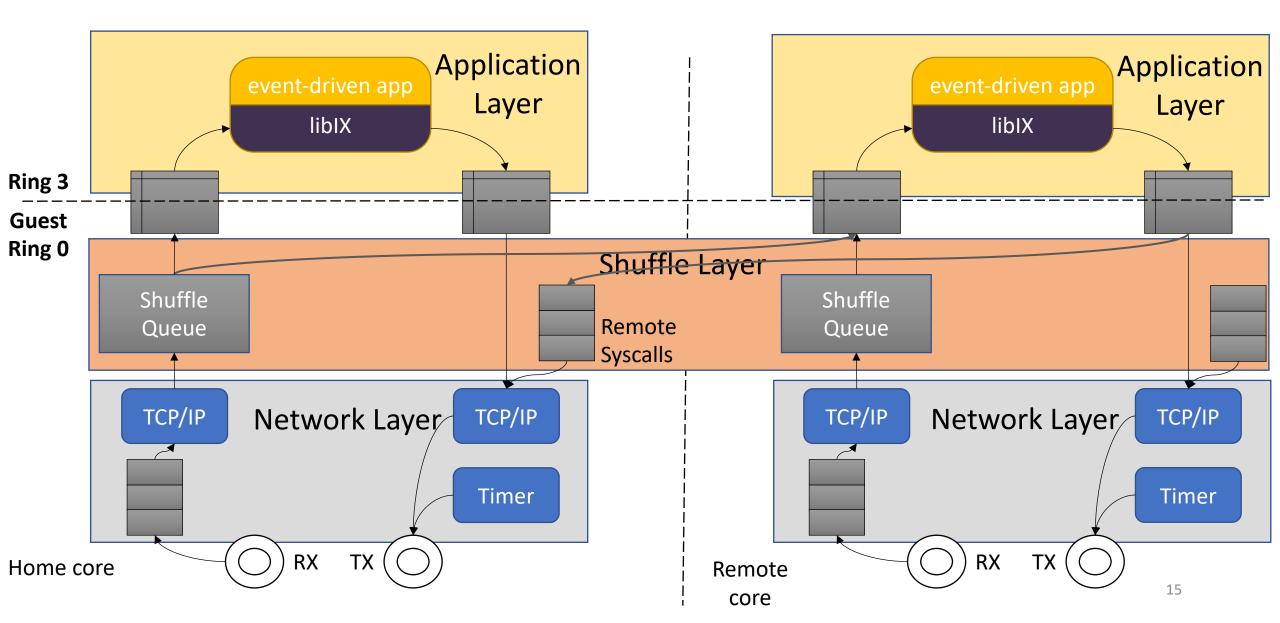
Expesign

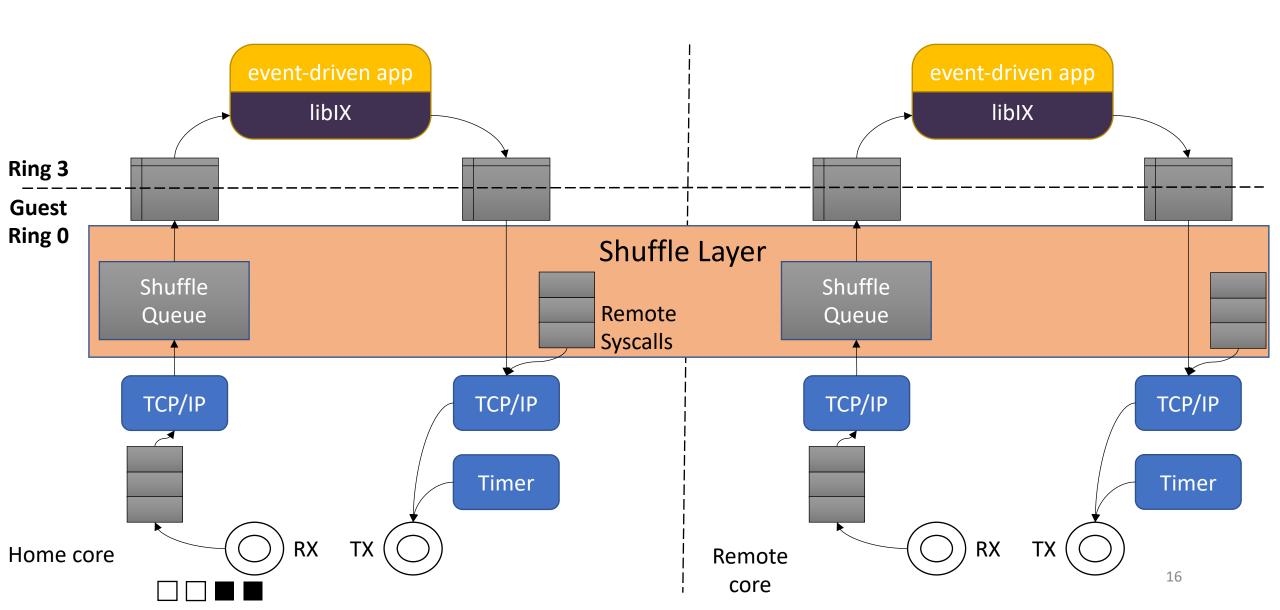
1. Application layer Event based application that is agnostic to work-stealing

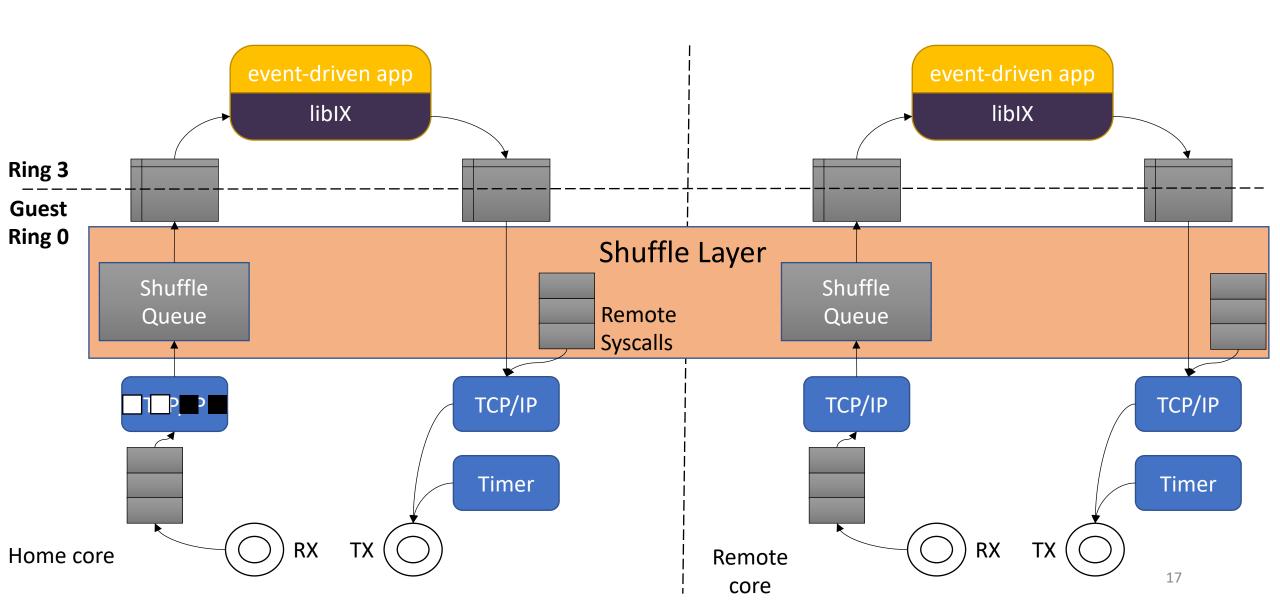
2. Shuffle layer Includes a per core list of ready connections that allows stealing

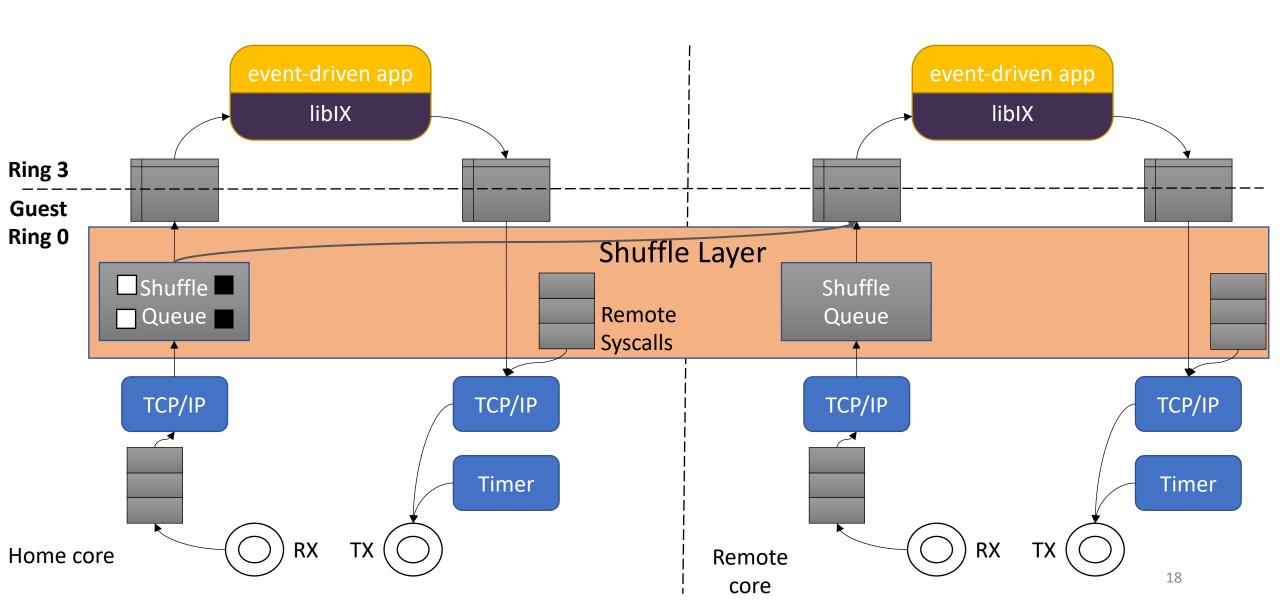
3. Network layer Coherence- and sync-free network processing

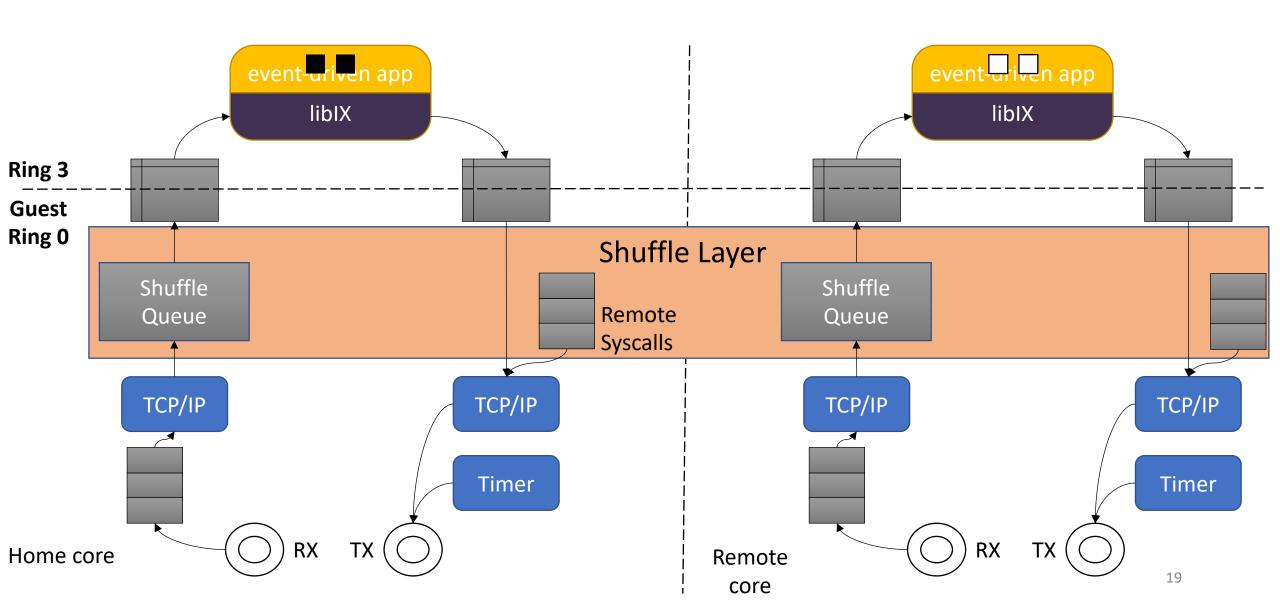
ZygOS Architecture

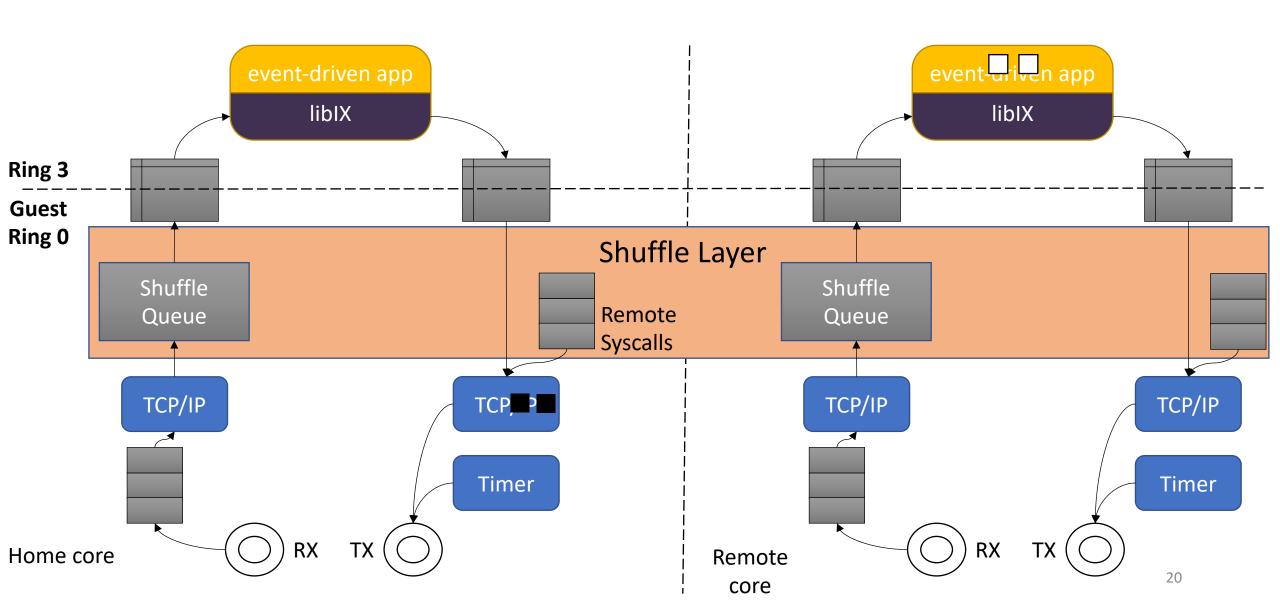


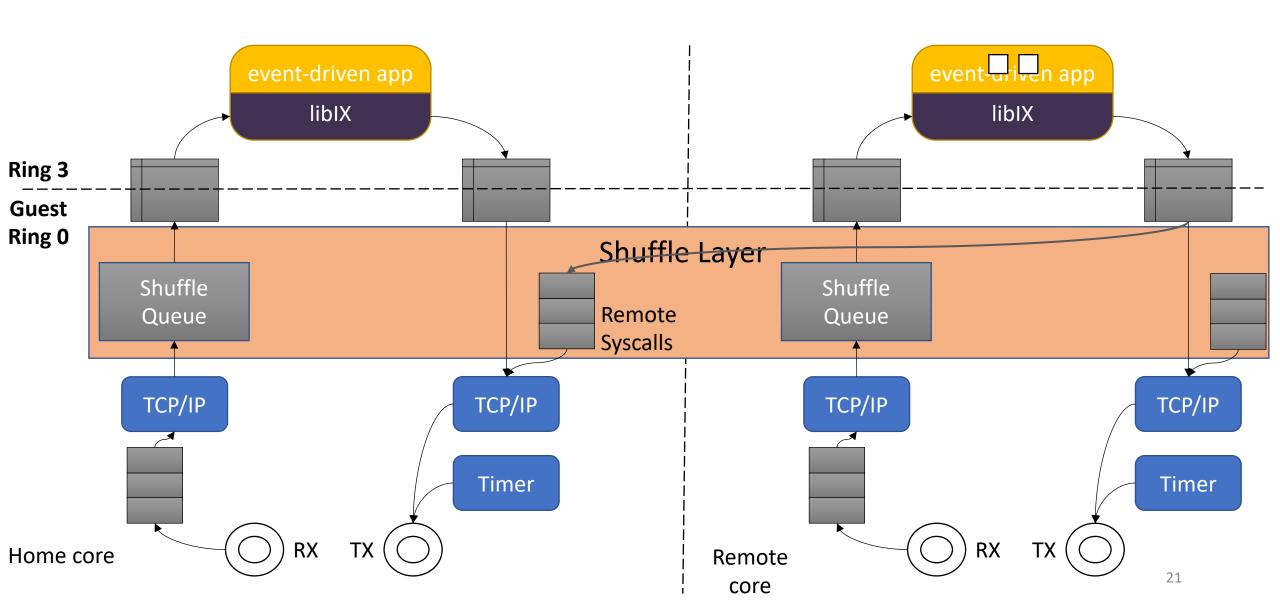


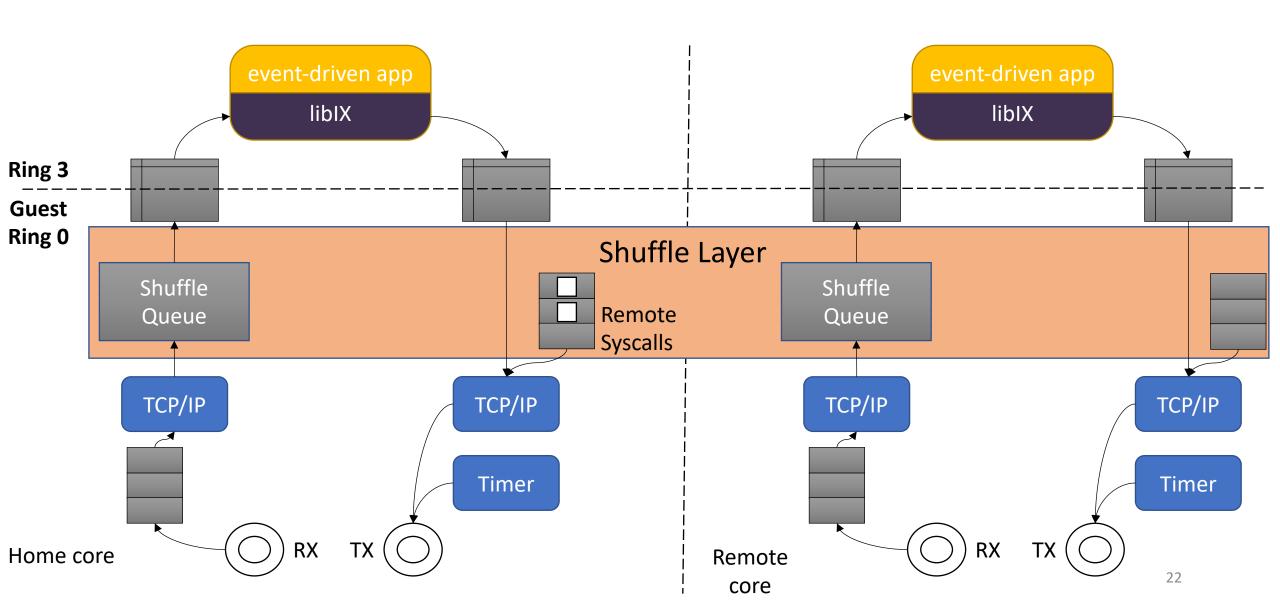


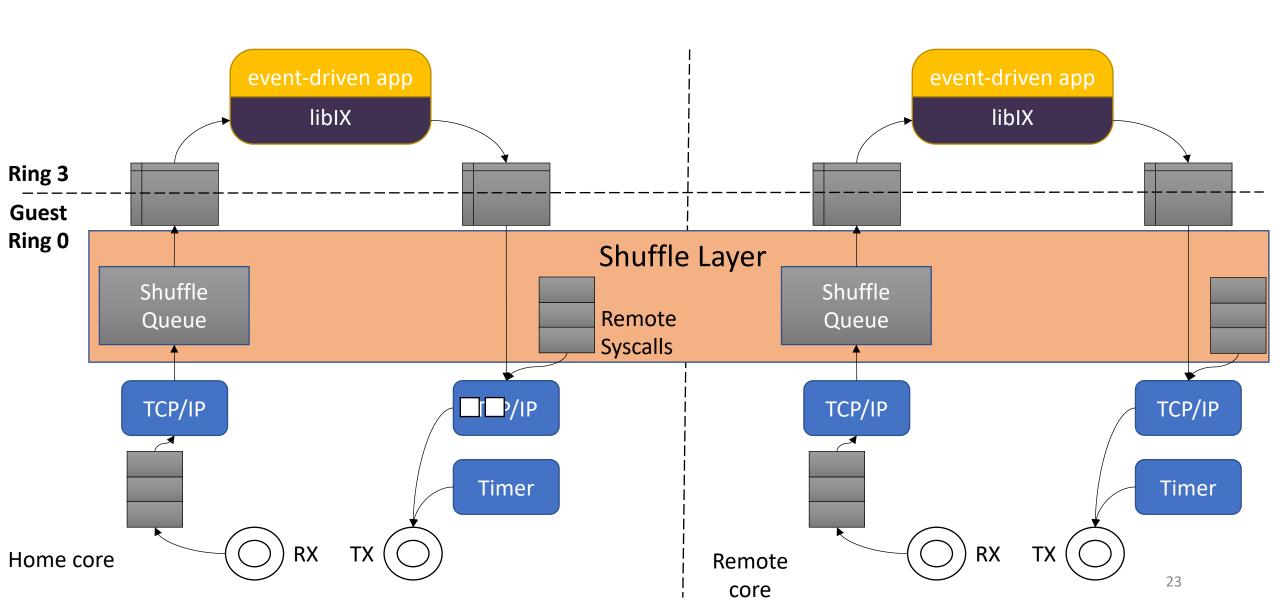








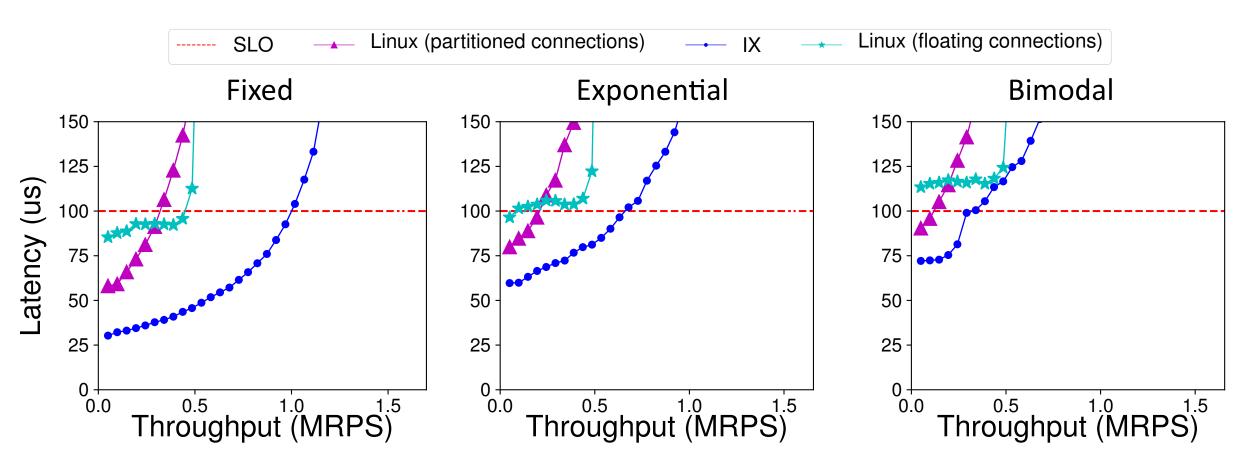




Evaluation Setup

- Environment:
 - 10+1 Xeon Servers
 - 16-hyperthread server machine
 - Quanta/Cumulus 48x10GbE switch
- Experiments:
 - Synthetic micro-benchmarks
 - Silo [SOSP 2013]
 - Memcached
- Baselines:
 - |X
 - Linux (partitioned and floating connections)

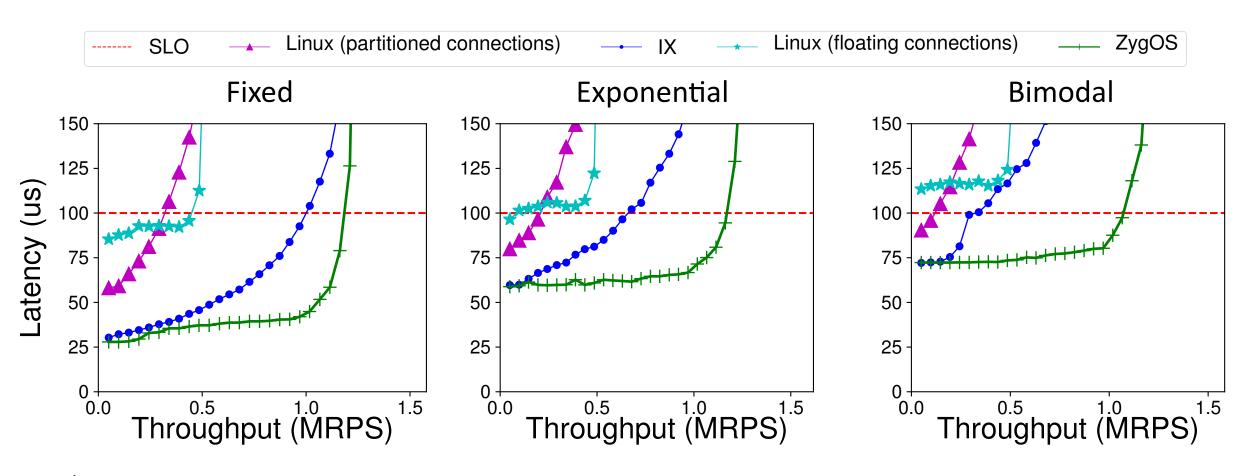
Latency vs Load – Service Time 10µs



99th percentile latency SLO: 10 x AVG[service_time]

IX, Belay et al. OSDI 2014

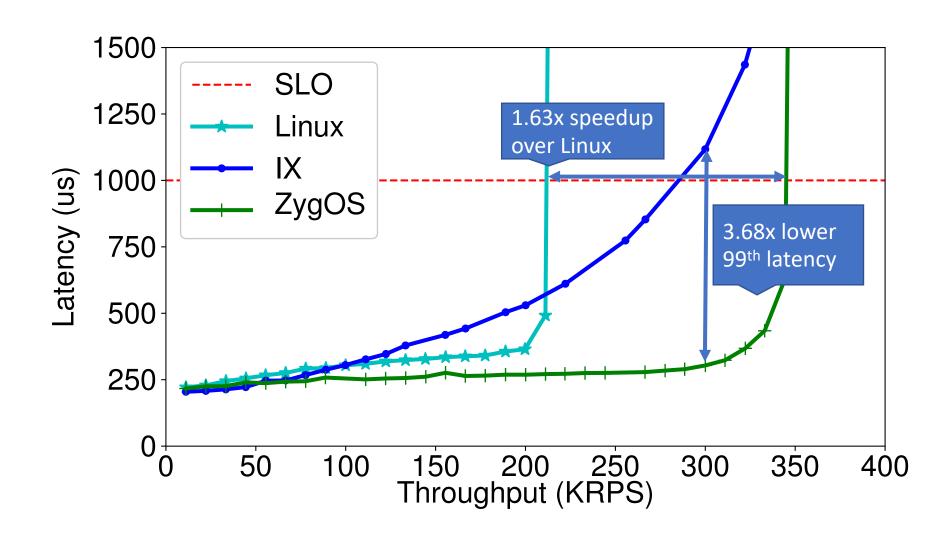
Latency vs Load – Service Time 10µs



99th percentile latency SLO: 10 x AVG[service_time]

IX, Belay et al. OSDI 2014

Silo with TPC-C workload



Conclusion

ZygOS: A datacenter operating system for low-latency

- Reduced System overheads
- Converges to a single queue model
- Work conservation through work stealing
- Reduce HOL through light-weight IPIs



https://github.com/ix-project/zygos

Scheduling in Modern Computer Systems

- FCFS
 - SOSP'17 ZygOS
- RR
 - NSDI'19 Shinjuku
- SJF, SRTF, MLFQ
 - NSDI'19 Tiresias
 - SIGCOMM'22 Muri
- EDF
 - ASPLOS'23 ElasticFlow
- Fairness
 - NSDI'11 DRF
 - NSDI'16 FairRide

Tiresias

A GPU Cluster Manager for Distributed Deep Learning

Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin,

Yibo Zhu, Myeongjae Jeon, Junjie Qian, Hongqiang (Harry) Liu, Chuanxiong Guo

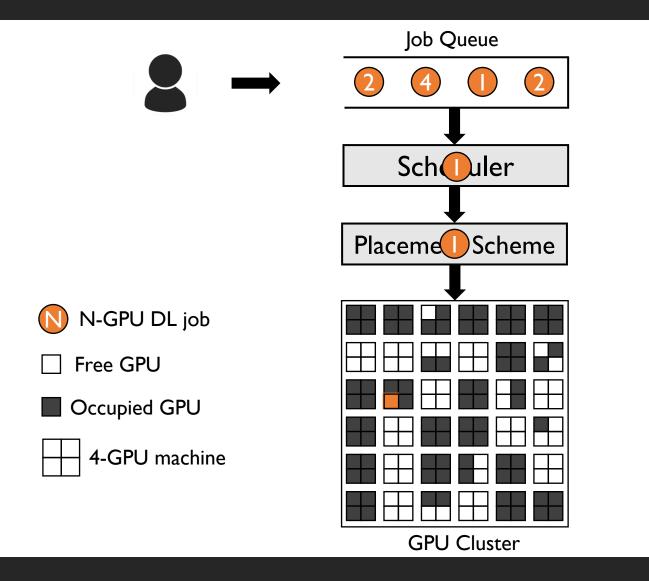
GPU Cluster for Deep Learning Training

- Deep learning (DL) is popular
 - 10.5× increase of DL training jobs in Microsoft
 - DL training jobs require GPU
 - Distributed deep learning (DDL) training with multiple GPUs

- GPU cluster for DL training
 - 5× increase of GPU cluster scale in Microsoft

How to efficiently manage a GPU cluster for DL training jobs?

GPU Cluster Manager



Design Objectives

Minimize

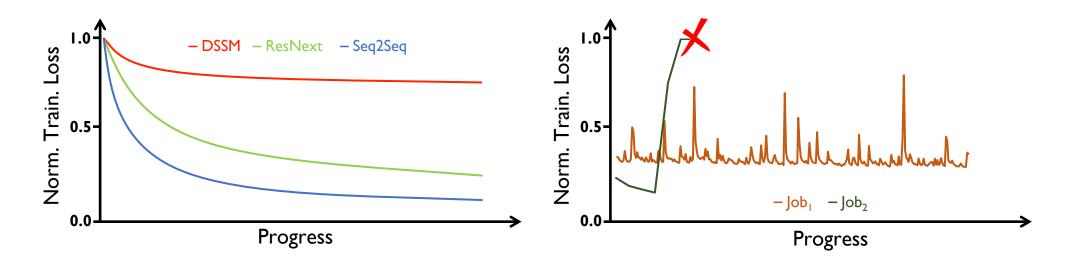
Cluster-Wide Average Job Completion Time (JCT)

Achieve

High Resource (GPU)
Utilization

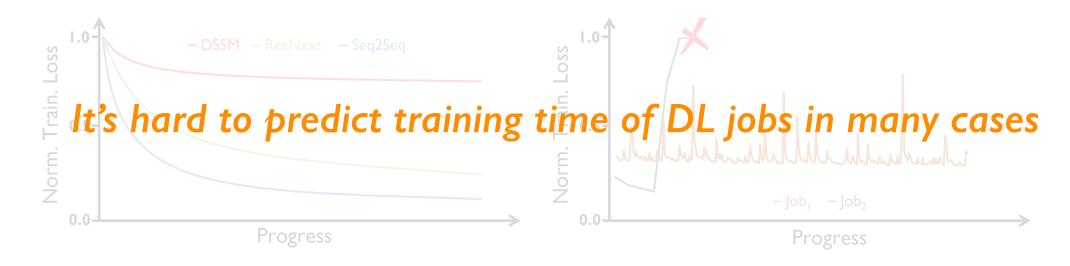
Challenge I: Unpredictable Training Time

- Unknown execution time of DL training jobs
 - Job execution time is useful when minimizing JCT
- Predict job execution time
 - Use the smooth loss curve of DL training jobs (Optimus [17])



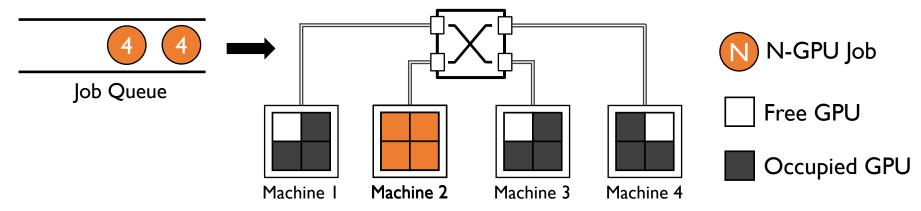
Challenge I: Unpredictable Training Time

- Unknown execution time of DL training jobs
 - Job execution time is useful when minimizing JCT
- Predict job execution time
 - Use the smooth loss curve of DL training jobs (Optimus [17])



Challenge II: Over-Aggressive Job Consolidation

- Network overhead in DDL training
- Consolidated placement for good training performance
 - Fragmented free GPUs in the cluster
 - Longer queuing delay



Prior Solutions

	I. Unpredictable Training Time (Scheduling)	II. Over-Aggressive Job Consolidation (Job Placement)
Optimus _[1]	None	None
YARN-CS	FIFO	None
Gandiva _[2]	Time-sharing	Trial-and-error

Tiresias

A GPU cluster manager for Distributed Deep Learning Without Complete Knowledge

I. Age-Based Scheduler

Minimize JCT without complete knowledge of jobs

2. Model Profile-Based Placement

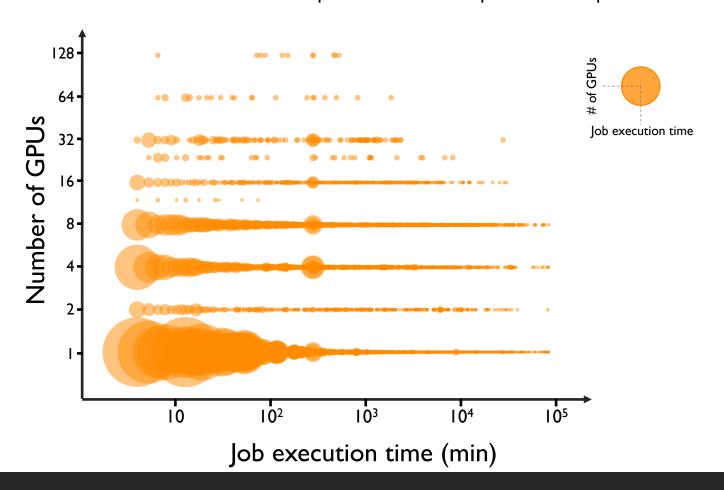
Place jobs without additional information from users

Challenge I

How To Schedule DL Training Jobs Without Complete Job Information?

Characteristics of DL Training Jobs

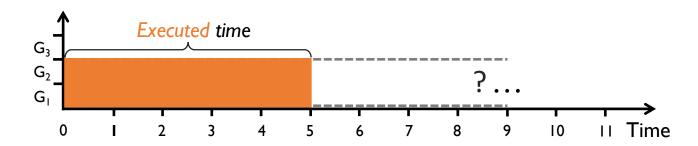
Variations in both temporal and spatial aspects



Scheduler should consider both temporal and spatial aspects of DL training jobs

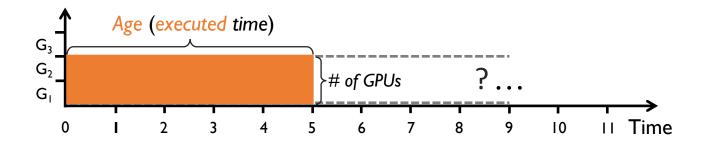
Available Job Information

- 1. Spatial: number of GPUs
- 2. Temporal: executed time



Age-Based Schedulers

- Least-Attained Service [1] (LAS)
 - Prioritize job that has the shortest executed time



Two-Dimensional Age-Based Scheduler (2DAS)

- Age calculated by two-dimensional attained service
 - i.e., a job's total executed GPU time (# of GPUs × executed time)
- No prior information
 - 2D-LAS

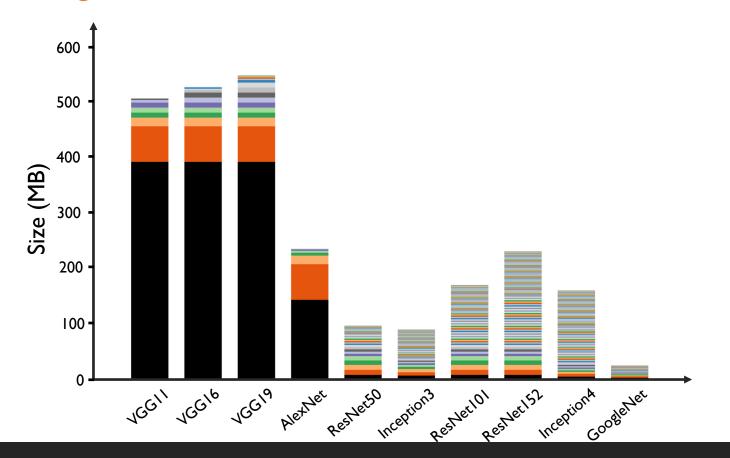
Fewer Job Switches: Discretized 2D-LAS (MLFQ)

Challenge II

How to Place DL Jobs Without Hurting Training Performance?

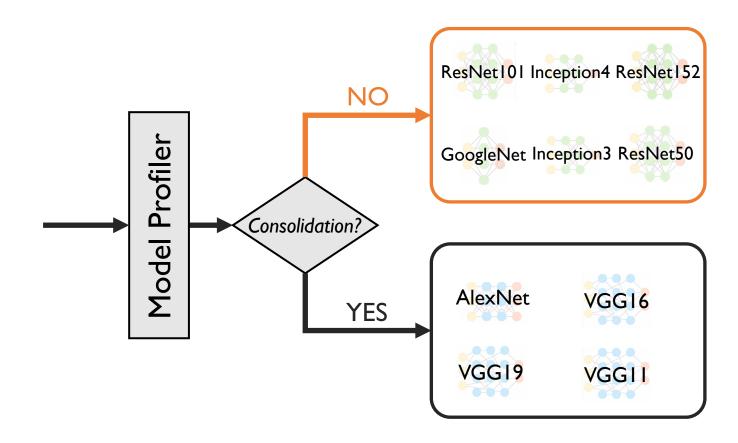
Characteristics of DL Models

- Tensor size in DL models
 - Large tensors cause network imbalance and contention



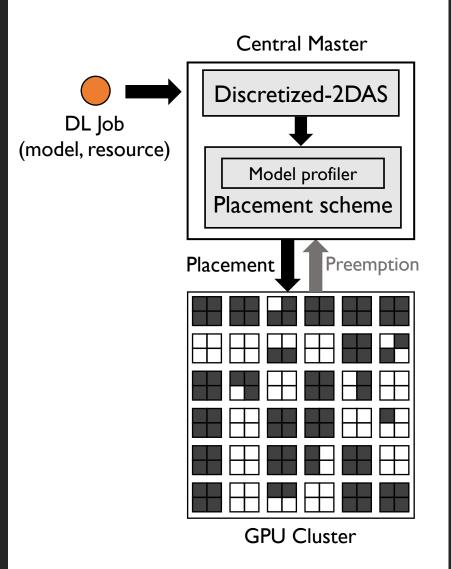
Consolidated placement is needed when the model is highly skewed in its tensor size

Model Profile-Based Placement



Tiresias

Central Master Network-Level Model Profiler

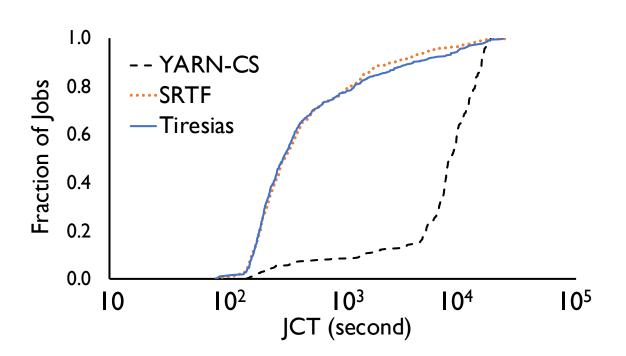


Evaluation

60-GPU
Testbed Experiment
Large-scale &
Trace-driven Simulation

JCT Improvements in Testbed Experiment

- Testbed Michigan ConFlux cluster
 - 15 machines (4 GPUs each)
 - 100 Gbps RDMA network

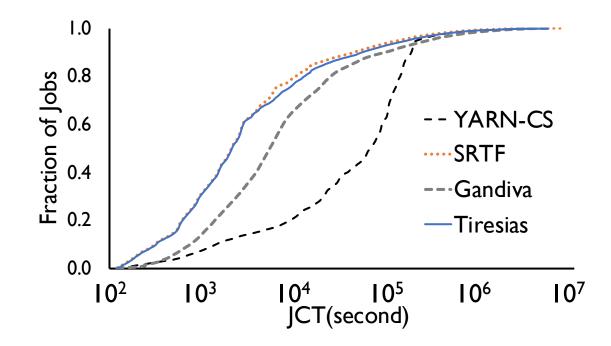


Avg. JCT improvement (w.r.t.YARN-CS): 5.5×

Comparable performance to SRTF

JCT Improvements in Trace-Driven Simulation

- Discrete-time simulator
 - 10-week job trace from Microsoft
 - 2,000-GPU cluster



Avg. JCT improvement (w.r.t. Gandiva): 2×

Tiresias

A GPU cluster manager for Distributed Deep Learning Without Complete Knowledge

- Optimize JCT with no or partial job information
- Relax placement constraint without hurting training performance
- Simple, practical, and with significant performance improvements

Scheduling in Modern Computer Systems

- FCFS
 - SOSP'17 ZygOS
- RR
 - NSDI'19 Shinjuku
- SJF, SRTF, MLFQ
 - NSDI'19 Tiresias
 - SIGCOMM'22 Muri
- EDF
 - ASPLOS'23 ElasticFlow
- Fairness
 - NSDI'11 DRF
 - NSDI'16 FairRide

Dominant Resource Fairness (DRF) Fair Allocation of Multiple Resource Types

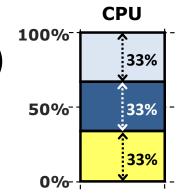
Ali Ghodsi, Matei Zaharia Benjamin Hindman, Andy Konwinski, Scott Shenker, Ion Stoica

University of California, Berkeley

What is fair sharing?

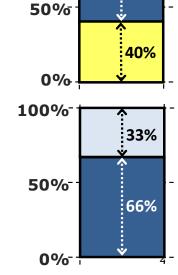
- n users want to share a resource (e.g. CPU)
 - Solution:

Allocate each 1/n of the shared resource



100%

- Generalized by max-min fairness
 - Handles if a user wants less than its fair share
 - E.g. user 1 wants no more than 20%
- Generalized by weighted max-min fairness
 - Give weights to users according to importance
 - User 1 gets weight 1, user 2 weight 2



:40%

How to define fairness?

Share guarantee

- Each user can get at least 1/n of the resource
- But will get less if her demand is less

Stragegy-proof

- Users are not better off by asking for more than they need
- Users have no reason to lie

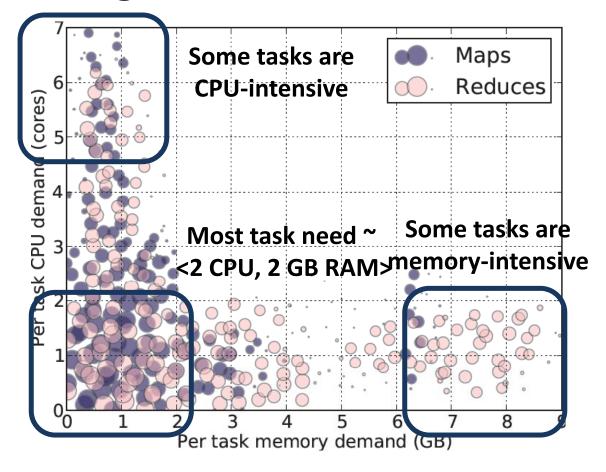
Pareto efficiency

- It is not possible to increase the utility of a user without decreasing the utility of at least another user
- It leads to maximizing system utilizaiton subject to satisfying other constraints

Why is max-min fairness not enough?

- Job scheduling in datacenters is not only about CPUs
 - Jobs consume CPU, memory, disk, and I/O
- Does this pose any challenge?

Heterogeneous Resource Demands

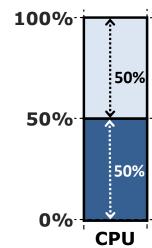


2000-node Hadoop Cluster at Facebook (Oct 2010)

Problem

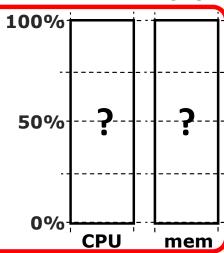
Single resource example

- 1 resource: CPU
- User 1 wants <1 CPU> per task
- User 2 wants <3 CPU> per task



Multi-resource example

- 2 resources: CPUs & mem
- User 1 wants <1 CPU, 4 GB> per task
- User 2 wants <3 CPU, 1 GB> per task
- What's a fair allocation?



Problem definition

How to fairly share multiple resources when users have heterogenous demands on them?

Model

- Users have tasks according to a demand vector
 - e.g. <2, 3, 1> user's tasks need 2 R_1 , 3 R_2 , 1 R_3
 - Not needed in practice, measure actual consumption
- Resources given in multiples of demand vectors
- Assume divisible resources

A Natural Policy

- Asset Fairness
 - Equalize each user's sum of resource shares
- Cluster with 70 CPUs, 70 GB RAM
 - $-U_1$ needs <2 CPU, 2 GB RAM> per task
 - U_2 needs <1 CPU, 2 GB RAM> per task

A Natural Policy

- Asset Fairness
 - Equalize each user's sum of resource shares

Problem

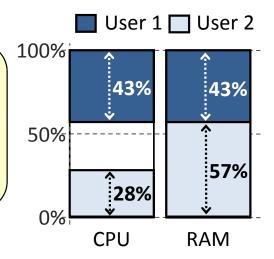
User 1 has < 50% of both CPUs and RAM
Better off in a separate cluster with 50% of

the resources

Asset fairness yields

- U_1 : 15 tasks: (30 CPUs, 30 GB)(∑=60)

- U_2 : 20 tasks: 20 CPUs, 40 GB (∑=60)



Dominant Resource Fairness

- A user's *dominant resource* is the resource she has the biggest share of
 - Example:

Total resources: <10 CPU, 4 GB>

User 1's allocation: <2 CPU, 1 GB>

Dominant resource is memory as 1/4 > 2/10 (1/5)

- A user's *dominant share* is the fraction of the dominant resource she is allocated
 - User 1's dominant share is 25% (1/4)

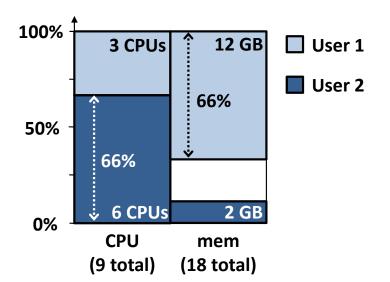
Dominant Resource Fairness (2)

- Apply max-min fairness to dominant shares
- Equalize the dominant share of the users
 - Example:

Total resources: <9 CPU, 18 GB>

User 1 demand: <1 CPU, 4 GB> dom res: mem

User 2 demand: <3 CPU, 1 GB> dom res: CPU



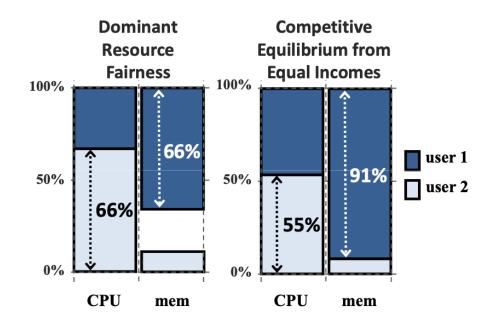
How would an economist solve it?

Let the market determine the prices

- Competitive Equilibrium from Equal Incomes (CEEI)
 - Give each user 1/n of every resource
 - Let users trade in a perfectly competitive market
- Not strategy-proof!

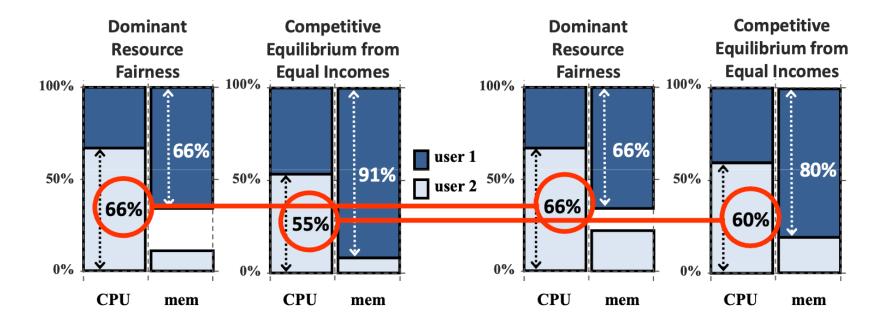
DRF vs CEEI

- User 1: <1 CPU, 4 GB> User 2: <3 CPU, 1 GB>
 - DRF more fair, CEEI better utilization



DRF vs CEEI

- User 1: <1 CPU, 4 GB> User 2: <3 CPU, 1 GB>
 - DRF more fair, CEEI better utilization



- User 1: <1 CPU, 4 GB> User 2: <3 CPU, 2 GB>
 - User 2 increased her share of both CPU and memory

Properties of Policies

Property	Asset	CEEI	DRF
Share guarantee		V	✓
Strategy-proofness	✓		✓
Pareto efficiency	✓	V	✓
Envy-freeness	✓	V	✓
Single resource fairness	V	V	✓
Bottleneck res. fairness		✓	✓
Population monotonicity	✓		✓
Resource monotonicity			

Scheduling in Modern Computer Systems

- FCFS
 - SOSP'17 ZygOS
- RR
 - NSDI'19 Shinjuku
- SJF, SRTF, MLFQ
 - NSDI'19 Tiresias
 - SIGCOMM'22 Muri
- EDF
 - ASPLOS'23 ElasticFlow
- Fairness
 - NSDI'11 DRF
 - NSDI'16 FairRide

FairRide: Near-Optimal Fair Cache Sharing

Qifan Pu, Haoyuan Li, Matei Zaharia, Ali Ghodsi, Ion Stoica

Caches are crucial

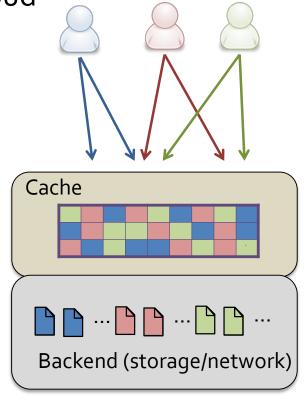
Cache sharing

Increasingly, caches are shared among multiple users

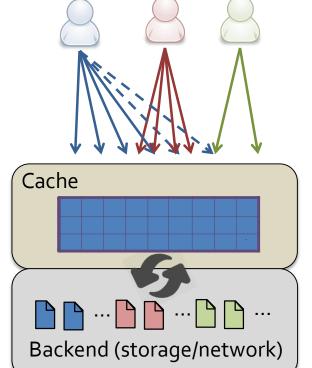
Especially with the advent of cloud

Benefits:

- Provide low latency
- Reduce backend load



Problems with cache algorithms



- LRU, LFU, LRU-K...
 - Cache data likely to be accessed in the future
- Optimize global efficiency
- Single user gets arbitrarily small cache
- Prone to strategic behavior

A simple model

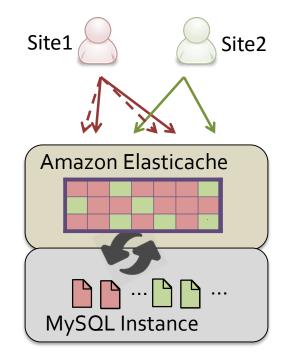
- Users access equal-sized files at constant rates
 - $-\mathcal{V}_{ii}$ the rate user *i* accesses file *j*
- A allocation policy decides which files to cache
 - $-p_i$ the % of file j put in cache
- Users care their hit ratio $HR_i = \frac{total_hits}{total_accesses} = \frac{\sum_{j} p_j r_{ij}}{\sum_{i} r_{ij}}$
 - lacktriangle Results hold with varied file sizes, access partial files, $\, {\cal P}_i \,$ is binary, etc.

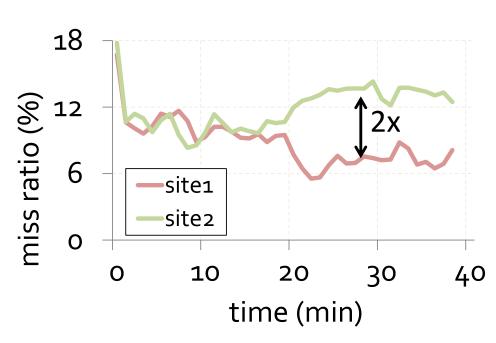
- Isolation Guarantee (Share Guarantee)
 - No user should be worse off than static allocation

- Strategy-Proofness
 - No user can improve by cheating
- Pareto Efficiency
 - Can't improve a user without hurting others

Strategy proofness

- Very easy to cheat, hard to detect
 - e.g., by making spurious accesses
- Can happen in practice



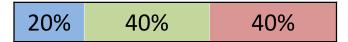


What is max-min fairness?

- Maximize the the user with minimum allocation
 - Solution: allocate each 1/n (fair share)

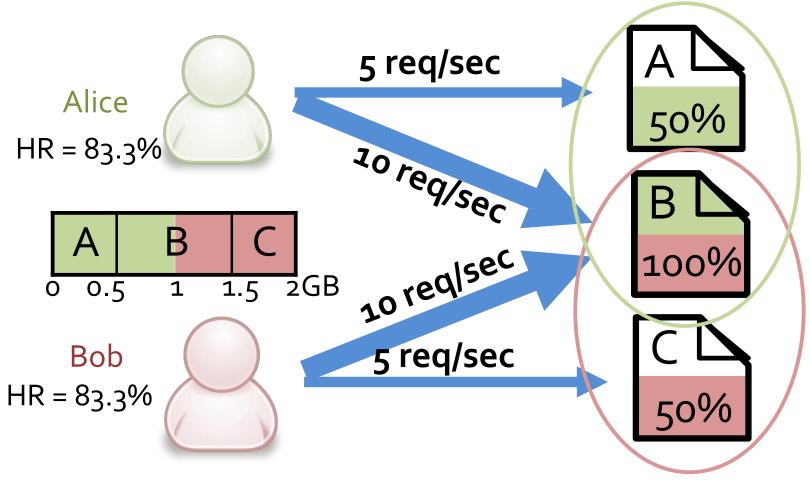
33% 33% 33%

- Handles if some users want less than fair share



- Widely successful to other resources:
 - OS: round robin, prop sharing, lottery sched...
 - Networking: fair queueing, wfq, wf2q, csfq, drr...
 - Datacenter: DRF, Hadoop fair sched, Quincy...

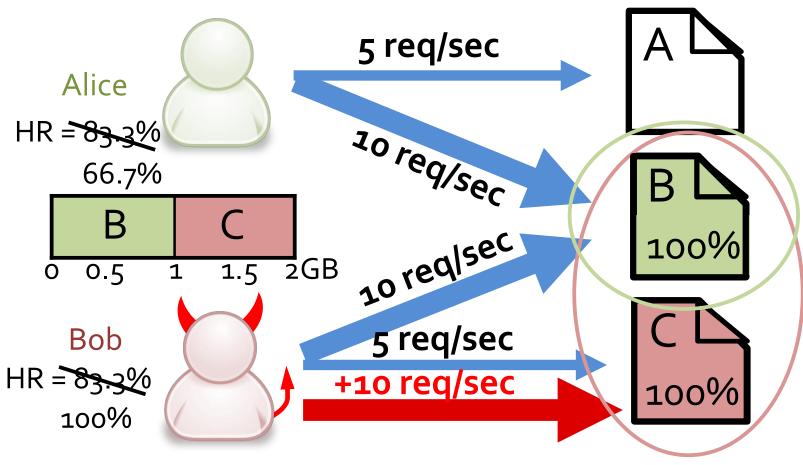
An example



file sizes = 1GB, total cache = 2GB

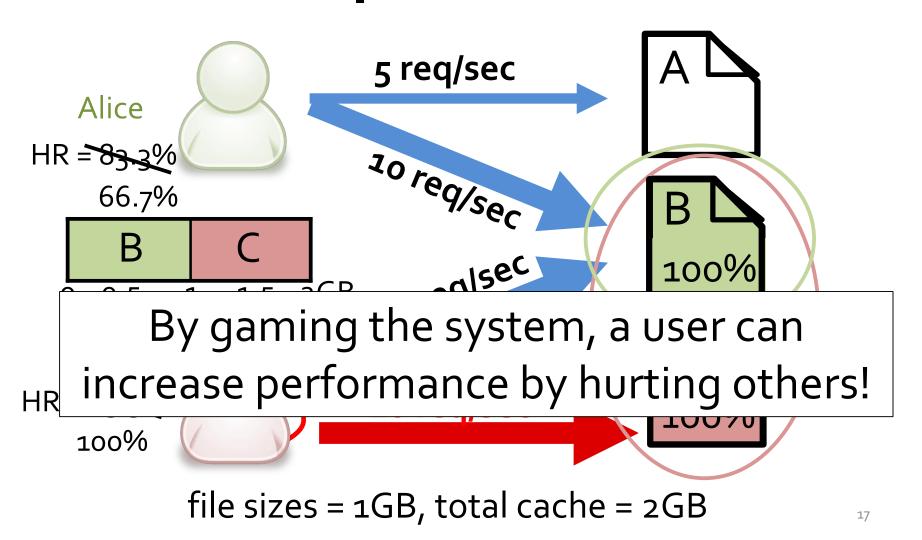
	Isolation Guarantee	Strategy Proofness	Pareto Efficiency
max-min fairness	✓	?	
			16

An example



file sizes = 1GB, total cache = 2GB

An example



	Isolation Guarantee	Strategy Proofness	Pareto Efficiency
max-min fairness	✓	×	✓
static allocation	✓	✓	X
priority allocation	X	✓	
max-min rate	X	✓	X
•••	•••	•••	

Theorem

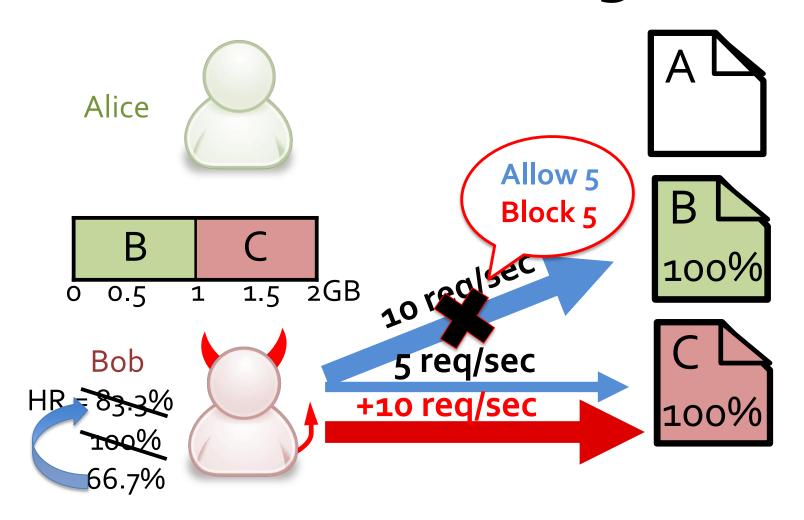
No allocation policy can satisfy all three properties!

• Best we can do: two of three.

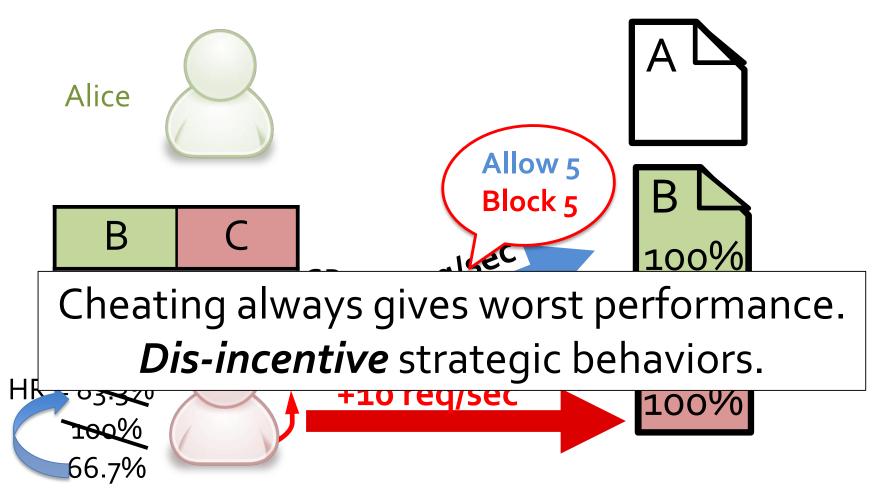
FairRide

- Starts with max-min fairness
 - Allocate 1/n to each user
 - Split "cost" of shared files equally among shared users
- Only difference:
 - **blocking** users who don't "pay" from accessing
- Probabilistic blocking: with some probability
 - Implemented with delaying

FairRide: Blocking



FairRide: Blocking



Probabilistic blocking

- FairRide blocks a user with p(nj) = 1/(nj+1) probability
 - nj is number of other users caching file j
 - -e.g., p(1)=50%, p(4)=20%
- The best you can do in a general case
 - Less blocking does not prevent cheating

	Isolation Guarantee	Strategy Proofness	Pareto Efficiency
max-min fairness	✓	X	
static allocation	✓		X
priority allocation	X	✓	✓
max-min rate	X	✓	X
FairRide			Near-optimal