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Recap: Base and Bound (with Translation)

0000...
code
Addresses translated Static Data
On'the-ﬂy heap
Base Address
1000... K-\ code 1000...
Program 0010... Seatic Daa
address
heap
Bound
1100...
0100... 00
e Hardware relocation
e Can the program touch OS?
FFFF...

e Can it touch other programs?
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Recap: Implementation of Multi-Segment Model

Virtual

Offset | offset Error
Address BaseQ | Limit0 |V
Limit|
Base3 | Limit3 Physical
Base4 |Limit4 |V Address
Base5 | Limits | N
Base6 | Limité | N
Base7 | Limit7 |V Check Valid
e Segment map resides in processor Acctss
— Segment number mapped into base/limit pair Error

— Base added to offset to generate physical address
— Error check catches offset out of range
e As many chunks of physical memory as entries

— Segment addressed by portion of virtual address
— However, could be included in instruction instead:
» x86 Example: mov [es:bx],ax.

e Whatis “V/N” (valid / not valid)?
— Can mark segments as invalid; requires check as well



Recap: How to Implement Simple Paging?

Virtual Address: Offset | 1
PageTablePtr ﬁ:i: Z(I) - Offset I
page #2 Physical Address
ILageTableSize | page #3 Check Perm
v | page #4 N }
Access Error page #5 VRW Access

Error
e Page Table (One per process)

— Resides in physical memory
— Contains physical page and permission for each virtual page (e.g. Valid bits, Read, Write, etc.)

e Virtual address mapping
— Offset from Virtual address copied to Physical Address
» Example: 10 bit offset = 1024-byte pages
— Virtual page # is all remaining bits
» Example for 32-bits: 32-10 = 22 bits, i.e. 4 million entries
» Physical page # copied from table into physical address
— Check Page Table bounds and permissions



Recap: The two-level page table

Physical
|0 bits |0 bits | 2 bits Address:

Virtual
Address:

e Tree of Page Tables
— “Magic” 10b-10b-12b pattern! —> 4 bytes +—

e Tables fixed size (1024 entries)
— On context-switch: save single PageTablePtr register (i.e.
CR3)
e Valid bits on Page Table Entries
— Don’t need every 2"d-level table
— Even when exist, 2"9-level tables can reside on disk if not in
use

—> 4 bytes < L




Recap: Multi-level Translation: Segments + Pages

e \WWhat about a tree of tables?

— Lowest level page table = memory still allocated with bitmap

— Higher levels often segmented

e Could have any number of levels. Example (top segment):

Virtual
Address:

Base0

Limit

Basel

Base3

it

Limit3

Base4

Limit4

\

Base5

Limit5

Baseb

Limité

Base7

Limit7

N
\4

page #0 VR l

page #| V,R

page #3 Physical Address

page #4 N
page #5 V,R,W

Check Permissions

v

> Access Access

—_—
Error Error

e What must be saved/restored on context switch?

— Contents of top-level segment registers (for this example)
— Pointer to top-level table (page table)



Recap: Inverted Page Table
e With all previous examples (“Forward Page Tables”)

— Size of page table is at least as large as
processes

— Physical memory may be much less
» Much of process space may be out on

amount of virtual memory allocated to

disk or not in use

Offset

e Answer: use a hash table

Hash Offset
Table

— Called an “Inverted Page Table”

— Size is independent of virtual address 3

— Directly related to amount of physical

— Very attractive option for 64-bit addre
» PowerPC, UltraSPARC, |IA64

Total size of page table = number of pages used by
program in physical memory. Hash more complex

e Cons:

— Complexity of managing hash chains: Often in hardware!

— Poor cache locality of page table




Recap: Address Translation Comparison

__ |Adamags  Dsadvantags

Fast context switching (segment
map maintained by CPU)

Simple Segmentation Internal/External fragmentation

Large table size (~ virtual
memory)
Internal fragmentation

. . No external fragmentation
Paging (Single-Level) Fast and easy allocation

Paged Segmentation Table size ~ # of pages in virtual
memory

Fast and easy allocation

Multiple memory references per

Multi-Level Paging page access

Table size ~ # of pages in Hash function more complex

Inverted Page fable physical memory No cache locality of page table



Recap: Caching Applied to Address Translation

Virtual

Physical
Address

Address

Data Read or Write

(untranslated)
e Question is one of page locality: does it exist?

— Instruction accesses spend a lot of time on the same page (since
accesses sequential)

— Stack accesses have definite locality of reference

— Data accesses have less page locality, but still some...
e Can we have a TLB hierarchy?

— Sure: multiple levels at different sizes/speeds



Recap: Reducing translation time for physically-indexed caches

e As described, TLB lookup is in
cache lookup

— Consequently, speed of TLB can impact

speed of access to cache

Virtual Address

10

serial with

V page no.

offset

TLB Lookup

"V

Accessf
Rights | A

e Machines with TLBs go one step further:
overlap TLB lookup with cache access

— Works because offset available early

— Offset in virtual address exactly covers the “cache index” and “byte select”

P page no.

offset

10

Physical Address

— Thus can select the cached byte(s) in parallel to perform address translation

virtual address:

physical address:

tag / page #

10



Recap: Overlapping TLB & Cache Access

e Here is how this might work with a 4K cache:

A

32

Hit/
Miss

v

assoc
lookup

20

page #

A\

T

FN

'

e What if cache size is increased to 8KB?
— Overlap not complete
— Need to do something else

e Another option: Virtual Caches would make this faster

— Tags in cache are virtual addresses

— Translation only happens on cache misses

Hit/

A

. Miss
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Putting Everything Together: Address Translation

Physical
Virtual Address: Memory:

Page TablePtr Physical ess:

Page Table
(It level)

Page Table
(2d level)




Virtual Address:

PageTable r

Putting Everything Together: TLB

i‘/V
Page Table
(It level)
Page Table
(27 level)
TLB:

Physical

vsica
Page #

€sS.

Physical
Memory:
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Virtual Address:

Putting Everything Together: Cache

REEE RRVEY

PI_index | P2 index | Offset
J

PageTablePEr I‘/

N\

Page Table
(It level)

TLB:

Page Table
(27 level)

Physical

ysiCa
Page #

€sS.

Physical
Memory:

14



Page Fault

The Virtual-to-Physical Translation fails

— PTE marked invalid, Privilege Level Violation, Access violation, or does not exist
— Causes a Fault / Trap
» Not an interrupt because synchronous to instruction execution

— May occur on instruction fetch or data access

Protection violations typically terminate the instruction

Other Page Faults engage operating system to fix the situation and retry the
instruction

— Allocate an additional stack page, or
— Make the page accessible - Copy on Write,
— Bring page in from secondary storage to memory — demand paging

Fundamental inversion of the hardware / software boundary

15



Demand Paging

e Modern programs require a lot of physical memory
— Memory per system growing faster than 25%-30%/year

e But they don’t use all their memory all of the time
— 90-10 rule: programs spend 90% of their time in 10% of their code
— Wasteful to require all of user’s code to be in memory

e Solution: use main memory as “cache” for disk

Processor
in
Control Tertiary
= Secondary Storage
& 9 Storage (Tape)
Datapath| |3 O (Disk)
=




Page Fault = Demand Paging

Process
\

virtual address

instrMon

—!

/ \

scheduler

exception

Operaling System

pagett

MMU

Page Fault Handle/n/"/

physical address

frame#t

PT

offset

rame#

/page fault |}~

,,,,/'update PT entry

offset

oad page from disk
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Group Discussion: Demand Paging as Caching, ...

What “block size”?

What “organization” i.e., direct-mapped, set-associative, fully-associative?
How do we locate a page?

What is page replacement policy? (i.e., LRU, Random...)

What happens on a miss?

What happens on a write? (write-through, write back)

18



Demand Paging as Caching, ...

What “block size”? - 1 page (e.g., 4 KB)

What “organization” i.e., direct-mapped, set-associative, fully-associative?
— Fully associative since arbitrary mapping

How do we locate a page?
— First check TLB, then page-table traversal

What is page replacement policy? (i.e., LRU, Random...)
— This requires more explanation... (more later)

What happens on a miss?
— Go to lower level to fill miss (i.e., disk)

What happens on a write? (write-through, write back)
— Definitely write-back — need dirty bit!
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lllusion of Infinite Memory

2

o0 | 2

Page =
----------- Tabl :
- e Physical Disk
Virtual Memory 500GB
Memory 5 | 2 MB

4 GB

e Disk is larger than physical memory =
— In-use virtual memory can be bigger than physical memory
— Combined memory of running processes much larger than physical memory
» More programs fit into memory, allowing more concurrency
e Principle: Transparent Level of Indirection (page table)
— Supports flexible placement of physical data
» Data could be on disk or somewhere across network (NSDI’17 InfiniSwap, OSDI’20 AIFM)
— Variable location of data transparent to user program
» Performance issue, not correctness issue



Demand Paging Mechanisms

e PTE makes demand paging implementable
— Valid = Page in memory, PTE points at physical page
— Not Valid = Page not in memory; use info in PTE to find it on disk
when necessary
e Suppose user references page with invalid PTE?
— Memory Management Unit (MMU) traps to OS
» Resulting trap is a “Page Fault”
— What does OS do on a Page Fault?:
» Choose an old page to replace
If old page modified (“Dirty=1"), write contents back to disk
Change its PTE and any cached TLB to be invalid
» Load new page into memory from disk
Update page table entry
Continue thread from original faulting location
— TLB for new page will be loaded when thread continued!
— While pulling pages off disk for one process, OS runs another process
from ready queue
» Suspended process sits on wait queue

)

~

)

~

)

~

)

~
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Origins of Paging

\
Keep most of the address Disks provide most of the
space on disk storage
R R
Actively swap pages E;I Relatively small
to/from memory, for many

Keep memory full of

‘E’ processes

the frequently
accesses pages

/

Many clients on dumb
J - terminals running
=\ different programs

22



Very Different Situation Today

Powerful system
Huge memory
Huge disk
Single user

23



A Picture on one machine

Processes: 407 total, 2 running, 405 sleeping, 2135 threads 22:10:3¢
Load Avg: 1.26, 1.26, 0.98 CPU usage: 1.35% user, 1.59% sys, 97.5% idle

SharedLibs: 292M resident, 54M data, 43M linkedit.

MemRegions: 155071 total, 4489M resident, 124M private, 1 shared.

PhysMem:§ 13Gjused (3518M wired), unused.

VM: 1819 1ze, 1372M framework vspAze, 68020510(0) swapiffs, 71200340(0) swapouts.

Networks: p{ckets: 40629441/21G in, §21395374/7747M out.

Disks: 17026\80/555G read, 15757470J)638G written.

PID COMMAND %CPU TIME TH #WQ #PORTS MEM PURG CMPRS PGRP PPID STATE
90498 bash 0.0 00:00.41 ] 21 080K 0B 564K 90498 90497 sleeping
90497 login 0.0 00:00.10 J 1 31 1236K 0B 1220K 98497 908496 sleeping
90496 Terminal 0.5 01:43.28 1 378- 4 103M- 16M 13M 90496 1 sleeping
89197 siriknowledg\0.0 ©00:00.83 I 2 45 2664K 0B 1528K 89197 1 sleeping
89193 com.apple.DF §.0 1 68 2688K 0B 1700K 89193 1 sleeping
82655 LookupViewSe 0 1 169 13M 0B 8064K 82655 1 sleeping
82453 PAH_Extensio 1 23 15M 0B 7996K 82453 1 sleeping
75819 tzlinkd 2 452K 0B 444K 75819 1 sleeping
75787 MTLCompilerS 2 4 9032K 0B 9020K 75787 1 sleeping
75776 secd 2 36 3208K 0B 2328K 75776 1 sleeping
75098 DiskUnmountW 2 34 1420K 0B 728K 75098 1 sleeping
75893 MTLCompilerS 2 21 5924K 0B 5912K 75093 1 sleeping
74938 ssh-agent [’] 21 908K 0B 892K 74938 1 sleeping
74063 Google Chrom ]5 1 678 192M @B 51M 54320 54320 sleeping

e Memory stays about 80% used
e Alotofitisshared 1.9 GB



Many Uses of Virtual Memory and “Demand Paging” ...

Extend the stack
— Allocate a page and zero it
Extend the heap
Process Fork
— Create a copy of the page table
— Entries refer to parent pages — NO-WRITE
— Shared read-only pages remain shared
— Copy page on write
Exec
— Only bring in parts of the binary in active use
— Do this on demand

MMAP to explicitly share region (or to access a file as RAM)

25



Classic: Loading an Executable into Memory
disk (huge)

T
o -

EE——

memory

exe

~_

e .exe
— lives on disk in the file system

— contains contents of code & data segments, relocation entries
and symbols

— OS loads it into memory, initializes registers (and initial stack
pointer)

— program sets up stack and heap upon initialization

26



Create Virtual Address Space of the Process

}k(fﬂge)\ process VAS
~ kernel
E stack
| 2 e -
e _
i heap
data
w code

memory

user page
frames

user
pagetable

kernel

code &
data

e Utilized pages in the VAS are backed by a page block on disk

— Called the backing store or swap file

— Typically, in an optimized block store, but can think of it like a file
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Create Virtual Address Space of the Process

disk (huge, TB)

T
S

mi stack
o heap
data

. Lgede U

process VAS (GBs)

kernel

memory

e User Page table maps entire VAS

e All the utilized regions are backed on disk
— swapped into and out of memory as needed

e For every process

user page
frames

user
pagetable

kernel
code &

data
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Create Virtual Address Space of the Process

disk (huge, TB)

T
S

mi stack
o heap
data

. Lgede L

e User Page table maps entire VAS

VAS

[per process]

PT

kernel

"\

/
/

memory

user page
frames

user
pagetable

kernel

code &
data

— Resident pages mapped to the frame in memory they occupy

— The portion of page table that the HW needs to access must be

resident in memory
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Provide Backing Store for VAS

PT

. VAS
M [per process]
w kernel

. stac k &-1--- T s— ¥-a'c """"
. T i

E heap *- e S2tsasa,

exe ‘:::: _____ QNI;I --------

data , iiii ea-P

T -dataz

code [

memory

e User Page table maps entire VAS

user page
frames

user
pagetable

kernel

code &
data

e Resident pages mapped to the frame in memory they occupy

e For all other pages, OS must record where to find them on disk
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What Data Structure Maps Non-Resident Pages to Disk?
e FindBlock(PID, page#) - disk block

— Some OSs utilize spare space in PTE for paged blocks
— Like the PT, but purely software

e Where to store it?

— In memory — can be compact representation if swap storage is
contiguous on disk

— Could use hash table (like Inverted PT)
e Usually want backing store for resident pages too

e May map code segment directly to on-disk image
— Saves a copy of code to swap file

e May share code segment with multiple instances of
the program



disk (huge, TB)

stack

heap

\
\
\
\\ N 1
\ \
\ \ \
d )
ata \ :
\ N
\ L “
‘\\ 3 b
\
\ < o
\ \
\
N 3 A
\ \
\ \
\

Provide Backing Store for VAS

v VAS 2
kernel
\[®
\ stack
e - _
AN ea
. P
i data
°
code
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PT |

VAS |

kernel
‘ stack
i J

N
7
7

il

memory
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page
frames
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pagetable

kernel
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disk (huge, TB)

T
S

stack

stack

. heap

—

heap

N
\ N
\ N
) d:
\ ata
D
D) \
\ Y

N N
3 N N
> \ N
S \ \
Y
.. €ode .
AY
3 \
T ~

A

data N
1
A
N Y N
\
\ 1y
\ \
N 3 A
\ \
\ \

On Page Fault ...

VAS | PT |

memory

kernel

«-.YAS 2
b kernel
e
' stack
e
“L o hea

. P

. data

°

code

user

page
frames

user

pagetable

AN

kernel

code
& data

active process & PT
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disk (huge, TB)

T
S

On Page Fault ... Find & Start Load

stack
.
stack | heap
—
heap m

3 N ~ A
\\ \

Y
\ N
\ N
N \ N
code ¢
Y Y
N
\ L
\ \

data N

N

N \
N

\ 3 \‘ S
N \
N 3 A
N N
\ \

kernel
N
' stack
e
N4 hea
. P
. data
°
code

RN

VAS | PT |
memory
kernel
q
stack |
user
» v page
r SPPEPPPPEP
heaP/ e e e e e frames
- g user
" code A pagetable
kernel
code
& data

active process & PT
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On page Fault ...

disk (huge, TB)

T
S

stack

heap

schedule other Process or Thread

VAS | PT |

memory

kernel

N N
3 \ S \
> \ N
S \ \
Y
.. €ode .
AY
3 \
S —y

}/

data N
N
N \
\ (RN
\ VS
N \
N 3 A
N N
\ \
\

Vi - - - - - — -

/| active process & PT
‘ /

user

page
frames

user
pagetable

kernel

code &
data
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disk (huge, TB)

T
S

On Page Fault ... Update PTE

stack

stack

>

.. heap

heap

> S
AY
\
\
\ S

3 N N J{
\\ \

Y
\ N
\ N
N \ N
code ¢
Y Y
N
\ L
\ \

data Y
N
N \
\ "
\ 1y
N \
N 3 A
N N
\ \
\

VAS |

PT |

kernel

}/

Vi - - - - - — -

/ active process & PT
‘ /

memory

user

page
frames

user

pagetable

kernel

code &
data
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Eventually reschedule faulting thread

disk (huge, TB)

T
S

stack

stack

\d

.. heap

heap

» S
AY
\
\
\ S

»> N N J\
\\ \

Y
\ N
\ N
N \ N
code ¢
Y Y
N
\ o
\ \

data N
K
\ N\
\ "
\ 1y
\ \
N 3 A
\ \
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\
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VAS |

PT |

kernel
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memory

active process & PT

user

page
frames
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pagetable

kernel
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Summary: Steps in Handling a Page Fault

page is on
backing store

operating
system

@

reference
trap

load M (e "‘, i
restart page table
instruction

free frame « —
® @

reset page bring in
table missing page

physical
memory




Some questions we need to answer!

e During a page fault, where does the OS get a free frame?
— Keeps a free list

— Unix runs a “reaper” if memory gets too full
» Schedule dirty pages to be written back on disk
» Zero (clean) pages which haven’t been accessed in a while

— As a last resort, evict a page first

e How can we organize these mechanisms?
— Work on the replacement policy

e How many page frames/process?
— Like thread scheduling, need to “schedule” memory resources:
» Utilization? fairness? priority?
— Allocation of disk paging bandwidth
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Working Set Model

e As a program executes it transitions through a sequence of

“working sets” consisting of varying sized subsets of the
address space

>

Address

Time
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Cache Behavior under WS model

| 4
% new working set fits ‘
[a'd
o
I ﬂ-

0

Cache Size

Amortized by fraction of time the Working Set is active
Transitions from one WS to the next

Capacity, Conflict, Compulsory misses

Applicable to memory caches and pages
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Demand Paging Cost Model

Since Demand Paging like caching, can compute average access time!
(“Effective Access Time”)

— EAT = Hit Rate x Hit Time + Miss Rate x Miss Time (Hit Rate + Miss Rate = 1)
— EAT = Hit Time + Miss Rate x Miss Penalty (Miss Penalty = Miss Time — Hit Time)
Example:
— Memory access time = 200 nanoseconds
— Average page-fault service time (Miss Penalty) = 8 milliseconds
— Suppose p = Probability of miss, 1-p = Probably of hit
— Then, we can compute EAT as follows:
EAT =200ns+px8 ms
= 200ns + p x 8,000,000ns

If one access out of 1,000 causes a page fault, then EAT = 8.2 us:
— This is a slowdown by a factor of 40x !

What if want slowdown by less than 10%?
— EAT<200nsx1.1 = p<2.5x10°
— This is about 1 page fault in 400,000!
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Group Discussion

Compulsory Misses:
— What are they in the context of demand paging?
— How might we remove these misses?

Capacity Misses:
— What are they in the context of demand paging?
— How might we remove these misses?

Conflict Misses:
— What are they in the context of demand paging?
— How might we remove these misses?

Policy Misses:
— What are they in the context of demand paging?
— How might we remove these misses?
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What Factors Lead to Misses in Page Cache?

Compulsory Misses:
— Pages that have never been paged into memory before
— How might we remove these misses?
» Prefetching: loading them into memory before needed
» Need to predict future somehow!
Capacity Misses:
— Not enough memory. Must somehow increase available memory size.
— Can we do this?

» One option: Increase amount of DRAM (not quick fix!)

» Another option: If multiple processes in memory: adjust percentage of memory allocated to
each one!

Conflict Misses:

— Technically, conflict misses don’t exist in virtual memory, since it is a “fully-associative”
cache

Policy Misses:

— Caused when pages were in memory, but kicked out prematurely because of the
replacement policy

— How to fix? Better replacement policy
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Page Replacement Policies

Why do we care about Replacement Policy?
— Replacement is an issue with any cache
— Particularly important with pages
» The cost of being wrong is high: must go to disk
» Must keep important pages in memory, not toss them out
FIFO (First In, First Out)
— Throw out oldest page. Be fair — let every page live in memory for same amount of time.
— Bad — throws out heavily used pages instead of infrequently used
RANDOM:
— Pick random page for every replacement
— Typical solution for TLB’s. Simple hardware
— Pretty unpredictable — makes it hard to make real-time guarantees
MIN (Minimum):
— Replace page that won’t be used for the longest time
— Great (provably optimal), but can’t really know future...
— But past is a good predictor of the future ...
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Replacement Policies (Con’t)

LRU (Least Recently Used):
— Replace page that hasn’t been used for the longest time

— Programs have locality, so if something not used for a while,
unlikely to be used in the near future.

— Seems like LRU should be a good approximation to MIN.
How to implement LRU? Use a list:

Head =—> Page 6 —>{ Page 7 || Page | [ Page 2

Tail (LRU)

— On each use, remove page from list and place at head
— LRU page is at tail
Problems with this scheme for paging?
— Need to know immediately when page used so that can change position in list...
— Many instructions for each hardware access
In practice, people approximate LRU (more later)
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Group Discussion

e Topic: replacement policies

— Can you compare FIFO, RANDOM, MIN and LRU?
— What are the pros and cons of each approach?

e Discuss in groups of two to three students

— Each group chooses a leader to summarize the discussion

— In your group discussion, please do not dominate the discussion, and give
everyone a chance to speak
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Example: FIFO (strawman)

e Suppose we have 3 page frames, 4 virtual pages, and following
reference stream:

—ABCABDADBCB
e Consider FIFO Page replacement:

Ref:]A |[B |C |[A |B |D |A |D |[B |[C |B

e FIFO: 7 faults

e When referencing D, replacing A is bad choice, since need A again right
away



Example: MIN / LRU

e Suppose we have the same reference stream:
—ABCABDADBCB

e Consider MIN Page replacement:

e MIN: 5 faults
— Where will D be brought in? Look for page not referenced farthest in future

e \What will LRU do?

— Same decisions as MIN here, but won’t always be true!
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Is LRU guaranteed to perform well?

e Consider the following: ABCDABCDABCD
e LRU Performs as follows (same as FIFO here):

— Every reference is a page fault!
e Fairly contrived example of working set of N+1 on N frames
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When will LRU perform badly?
e Consider the following: ABCDABCDABCD
e LRU Performs as follows (same as FIFO here):

— Every reference is a page fault!
e MIN Does much better:
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Summary

e Demand Paging: Treating the DRAM as a cache on disk
— Page table tracks which pages are in memory

— Any attempt to access a page that is not in memory generates a page fault, which
causes OS to bring missing page into memory

e Replacement policies
— FIFO: Place pages on queue, replace page at end
— MIN: Replace page that will be used farthest in future
— LRU: Replace page used farthest in past
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