Operating Systems
(Honor Track)

Memory 3: Demand Paging

Xin Jin
Spring 2023

Acknowledgments: lon Stoica, Berkeley CS 162

Recap: Base and Bound (with Translation)

0000...
code
Addresses translated Static Data
On'the-ﬂy heap
Base Address
1000... K-\ code 1000...
Program 0010... Seatic Daa
address
heap
Bound
1100...
0100... 00
e Hardware relocation
e Can the program touch OS?
FFFF...

e Can it touch other programs?

Original Program

code

Static Data

heap

stack

0000...

0100...

Recap: Implementation of Multi-Segment Model

Virtual

Offset | offset Error
Address BaseQ | Limit0 |V
Limit|
Base3 | Limit3 Physical
Base4 |Limit4 |V Address
Base5 | Limits | N
Base6 | Limité | N
Base7 | Limit7 |V Check Valid
e Segment map resides in processor Acctss
— Segment number mapped into base/limit pair Error

— Base added to offset to generate physical address
— Error check catches offset out of range
e As many chunks of physical memory as entries

— Segment addressed by portion of virtual address
— However, could be included in instruction instead:
» x86 Example: mov [es:bx],ax.

e Whatis “V/N” (valid / not valid)?
— Can mark segments as invalid; requires check as well

Recap: How to Implement Simple Paging?

Virtual Address: Offset | 1
PageTablePtr ﬁ:i: Z(I) - Offset I
page #2 Physical Address
ILageTableSize | page #3 Check Perm
v | page #4 N }
Access Error page #5 VRW Access

Error
e Page Table (One per process)

— Resides in physical memory
— Contains physical page and permission for each virtual page (e.g. Valid bits, Read, Write, etc.)

e Virtual address mapping
— Offset from Virtual address copied to Physical Address
» Example: 10 bit offset = 1024-byte pages
— Virtual page # is all remaining bits
» Example for 32-bits: 32-10 = 22 bits, i.e. 4 million entries
» Physical page # copied from table into physical address
— Check Page Table bounds and permissions

Recap: The two-level page table

Physical
|0 bits |0 bits | 2 bits Address:

Virtual
Address:

e Tree of Page Tables
— “Magic” 10b-10b-12b pattern! —> 4 bytes +—

e Tables fixed size (1024 entries)
— On context-switch: save single PageTablePtr register (i.e.
CR3)
e Valid bits on Page Table Entries
— Don’t need every 2"d-level table
— Even when exist, 2"9-level tables can reside on disk if not in
use

—> 4 bytes < L

Recap: Multi-level Translation: Segments + Pages

e \WWhat about a tree of tables?

— Lowest level page table = memory still allocated with bitmap

— Higher levels often segmented

e Could have any number of levels. Example (top segment):

Virtual
Address:

Base0

Limit

Basel

Base3

it

Limit3

Base4

Limit4

\

Base5

Limit5

Baseb

Limité

Base7

Limit7

N
\4

page #0 VR l

page #| V,R

page #3 Physical Address

page #4 N
page #5 V,R,W

Check Permissions

v

> Access Access

—_—
Error Error

e What must be saved/restored on context switch?

— Contents of top-level segment registers (for this example)
— Pointer to top-level table (page table)

Recap: Inverted Page Table
e With all previous examples (“Forward Page Tables”)

— Size of page table is at least as large as
processes

— Physical memory may be much less
» Much of process space may be out on

amount of virtual memory allocated to

disk or not in use

Offset

e Answer: use a hash table

Hash Offset
Table

— Called an “Inverted Page Table”

— Size is independent of virtual address 3

— Directly related to amount of physical

— Very attractive option for 64-bit addre
» PowerPC, UltraSPARC, |IA64

Total size of page table = number of pages used by
program in physical memory. Hash more complex

e Cons:

— Complexity of managing hash chains: Often in hardware!

— Poor cache locality of page table

Recap: Address Translation Comparison

__ |Adamags Dsadvantags

Fast context switching (segment
map maintained by CPU)

Simple Segmentation Internal/External fragmentation

Large table size (~ virtual
memory)
Internal fragmentation

. . No external fragmentation
Paging (Single-Level) Fast and easy allocation

Paged Segmentation Table size ~ # of pages in virtual
memory

Fast and easy allocation

Multiple memory references per

Multi-Level Paging page access

Table size ~ # of pages in Hash function more complex

Inverted Page fable physical memory No cache locality of page table

Recap: Caching Applied to Address Translation

Virtual

Physical
Address

Address

Data Read or Write

(untranslated)
e Question is one of page locality: does it exist?

— Instruction accesses spend a lot of time on the same page (since
accesses sequential)

— Stack accesses have definite locality of reference

— Data accesses have less page locality, but still some...
e Can we have a TLB hierarchy?

— Sure: multiple levels at different sizes/speeds

Recap: Reducing translation time for physically-indexed caches

e As described, TLB lookup is in
cache lookup

— Consequently, speed of TLB can impact

speed of access to cache

Virtual Address

10

serial with

V page no.

offset

TLB Lookup

"V

Accessf
Rights | A

e Machines with TLBs go one step further:
overlap TLB lookup with cache access

— Works because offset available early

— Offset in virtual address exactly covers the “cache index” and “byte select”

P page no.

offset

10

Physical Address

— Thus can select the cached byte(s) in parallel to perform address translation

virtual address:

physical address:

tag / page #

10

Recap: Overlapping TLB & Cache Access

e Here is how this might work with a 4K cache:

A

32

Hit/
Miss

v

assoc
lookup

20

page #

A\

T

FN

'

e What if cache size is increased to 8KB?
— Overlap not complete
— Need to do something else

e Another option: Virtual Caches would make this faster

— Tags in cache are virtual addresses

— Translation only happens on cache misses

Hit/

A

. Miss

11

Putting Everything Together: Address Translation

Physical
Virtual Address: Memory:

Page TablePtr Physical ess:

Page Table
(It level)

Page Table
(2d level)

Virtual Address:

PageTable r

Putting Everything Together: TLB

i‘/V
Page Table
(It level)
Page Table
(27 level)
TLB:

Physical

vsica
Page #

€sS.

Physical
Memory:

13

Virtual Address:

Putting Everything Together: Cache

REEE RRVEY

PI_index | P2 index | Offset
J

PageTablePEr I‘/

N\

Page Table
(It level)

TLB:

Page Table
(27 level)

Physical

ysiCa
Page #

€sS.

Physical
Memory:

14

Page Fault

The Virtual-to-Physical Translation fails

— PTE marked invalid, Privilege Level Violation, Access violation, or does not exist
— Causes a Fault / Trap
» Not an interrupt because synchronous to instruction execution

— May occur on instruction fetch or data access

Protection violations typically terminate the instruction

Other Page Faults engage operating system to fix the situation and retry the
instruction

— Allocate an additional stack page, or
— Make the page accessible - Copy on Write,
— Bring page in from secondary storage to memory — demand paging

Fundamental inversion of the hardware / software boundary

15

Demand Paging

e Modern programs require a lot of physical memory
— Memory per system growing faster than 25%-30%/year

e But they don’t use all their memory all of the time
— 90-10 rule: programs spend 90% of their time in 10% of their code
— Wasteful to require all of user’s code to be in memory

e Solution: use main memory as “cache” for disk

Processor
in
Control Tertiary
= Secondary Storage
& 9 Storage (Tape)
Datapath| |3 O (Disk)
=

Page Fault = Demand Paging

Process
\

virtual address

instrMon

—!

/ \

scheduler

exception

Operaling System

pagett

MMU

Page Fault Handle/n/"/

physical address

frame#t

PT

offset

rame#

/page fault |}~

,,,,/'update PT entry

offset

oad page from disk

17

Group Discussion: Demand Paging as Caching, ...

What “block size”?

What “organization” i.e., direct-mapped, set-associative, fully-associative?
How do we locate a page?

What is page replacement policy? (i.e., LRU, Random...)

What happens on a miss?

What happens on a write? (write-through, write back)

18

Demand Paging as Caching, ...

What “block size”? - 1 page (e.g., 4 KB)

What “organization” i.e., direct-mapped, set-associative, fully-associative?
— Fully associative since arbitrary mapping

How do we locate a page?
— First check TLB, then page-table traversal

What is page replacement policy? (i.e., LRU, Random...)
— This requires more explanation... (more later)

What happens on a miss?
— Go to lower level to fill miss (i.e., disk)

What happens on a write? (write-through, write back)
— Definitely write-back — need dirty bit!

19

lllusion of Infinite Memory

2

o0 | 2

Page =
----------- Tabl :
- e Physical Disk
Virtual Memory 500GB
Memory 5 | 2 MB

4 GB

e Disk is larger than physical memory =
— In-use virtual memory can be bigger than physical memory
— Combined memory of running processes much larger than physical memory
» More programs fit into memory, allowing more concurrency
e Principle: Transparent Level of Indirection (page table)
— Supports flexible placement of physical data
» Data could be on disk or somewhere across network (NSDI’17 InfiniSwap, OSDI’20 AIFM)
— Variable location of data transparent to user program
» Performance issue, not correctness issue

Demand Paging Mechanisms

e PTE makes demand paging implementable
— Valid = Page in memory, PTE points at physical page
— Not Valid = Page not in memory; use info in PTE to find it on disk
when necessary
e Suppose user references page with invalid PTE?
— Memory Management Unit (MMU) traps to OS
» Resulting trap is a “Page Fault”
— What does OS do on a Page Fault?:
» Choose an old page to replace
If old page modified (“Dirty=1"), write contents back to disk
Change its PTE and any cached TLB to be invalid
» Load new page into memory from disk
Update page table entry
Continue thread from original faulting location
— TLB for new page will be loaded when thread continued!
— While pulling pages off disk for one process, OS runs another process
from ready queue
» Suspended process sits on wait queue

)

~

)

~

)

~

)

~

21

Origins of Paging

\
Keep most of the address Disks provide most of the
space on disk storage
R R
Actively swap pages E;I Relatively small
to/from memory, for many

Keep memory full of

‘E’ processes

the frequently
accesses pages

/

Many clients on dumb
J - terminals running
=\ different programs

22

Very Different Situation Today

Powerful system
Huge memory
Huge disk
Single user

23

A Picture on one machine

Processes: 407 total, 2 running, 405 sleeping, 2135 threads 22:10:3¢
Load Avg: 1.26, 1.26, 0.98 CPU usage: 1.35% user, 1.59% sys, 97.5% idle

SharedLibs: 292M resident, 54M data, 43M linkedit.

MemRegions: 155071 total, 4489M resident, 124M private, 1 shared.

PhysMem:§ 13Gjused (3518M wired), unused.

VM: 1819 1ze, 1372M framework vspAze, 68020510(0) swapiffs, 71200340(0) swapouts.

Networks: p{ckets: 40629441/21G in, §21395374/7747M out.

Disks: 17026\80/555G read, 15757470J)638G written.

PID COMMAND %CPU TIME TH #WQ #PORTS MEM PURG CMPRS PGRP PPID STATE
90498 bash 0.0 00:00.41] 21 080K 0B 564K 90498 90497 sleeping
90497 login 0.0 00:00.10 J 1 31 1236K 0B 1220K 98497 908496 sleeping
90496 Terminal 0.5 01:43.28 1 378- 4 103M- 16M 13M 90496 1 sleeping
89197 siriknowledg\0.0 ©00:00.83 I 2 45 2664K 0B 1528K 89197 1 sleeping
89193 com.apple.DF §.0 1 68 2688K 0B 1700K 89193 1 sleeping
82655 LookupViewSe 0 1 169 13M 0B 8064K 82655 1 sleeping
82453 PAH_Extensio 1 23 15M 0B 7996K 82453 1 sleeping
75819 tzlinkd 2 452K 0B 444K 75819 1 sleeping
75787 MTLCompilerS 2 4 9032K 0B 9020K 75787 1 sleeping
75776 secd 2 36 3208K 0B 2328K 75776 1 sleeping
75098 DiskUnmountW 2 34 1420K 0B 728K 75098 1 sleeping
75893 MTLCompilerS 2 21 5924K 0B 5912K 75093 1 sleeping
74938 ssh-agent [’] 21 908K 0B 892K 74938 1 sleeping
74063 Google Chrom]5 1 678 192M @B 51M 54320 54320 sleeping

e Memory stays about 80% used
e Alotofitisshared 1.9 GB

Many Uses of Virtual Memory and “Demand Paging” ...

Extend the stack
— Allocate a page and zero it
Extend the heap
Process Fork
— Create a copy of the page table
— Entries refer to parent pages — NO-WRITE
— Shared read-only pages remain shared
— Copy page on write
Exec
— Only bring in parts of the binary in active use
— Do this on demand

MMAP to explicitly share region (or to access a file as RAM)

25

Classic: Loading an Executable into Memory
disk (huge)

T
o -

EE——

memory

exe

~_

e .exe
— lives on disk in the file system

— contains contents of code & data segments, relocation entries
and symbols

— OS loads it into memory, initializes registers (and initial stack
pointer)

— program sets up stack and heap upon initialization

26

Create Virtual Address Space of the Process

}k(fﬂge)\ process VAS
~ kernel
E stack
| 2 e -
e _
i heap
data
w code

memory

user page
frames

user
pagetable

kernel

code &
data

e Utilized pages in the VAS are backed by a page block on disk

— Called the backing store or swap file

— Typically, in an optimized block store, but can think of it like a file

27

Create Virtual Address Space of the Process

disk (huge, TB)

T
S

mi stack
o heap
data

. Lgede U

process VAS (GBs)

kernel

memory

e User Page table maps entire VAS

e All the utilized regions are backed on disk
— swapped into and out of memory as needed

e For every process

user page
frames

user
pagetable

kernel
code &

data

28

Create Virtual Address Space of the Process

disk (huge, TB)

T
S

mi stack
o heap
data

. Lgede L

e User Page table maps entire VAS

VAS

[per process]

PT

kernel

"\

/
/

memory

user page
frames

user
pagetable

kernel

code &
data

— Resident pages mapped to the frame in memory they occupy

— The portion of page table that the HW needs to access must be

resident in memory

29

Provide Backing Store for VAS

PT

. VAS
M [per process]
w kernel

. stac k &-1--- T s— ¥-a'c """"
. T i

E heap *- e S2tsasa,

exe ‘:::: _____ QNI;I --------

data , iiii ea-P

T -dataz

code [

memory

e User Page table maps entire VAS

user page
frames

user
pagetable

kernel

code &
data

e Resident pages mapped to the frame in memory they occupy

e For all other pages, OS must record where to find them on disk

30

What Data Structure Maps Non-Resident Pages to Disk?
e FindBlock(PID, page#) - disk block

— Some OSs utilize spare space in PTE for paged blocks
— Like the PT, but purely software

e Where to store it?

— In memory — can be compact representation if swap storage is
contiguous on disk

— Could use hash table (like Inverted PT)
e Usually want backing store for resident pages too

e May map code segment directly to on-disk image
— Saves a copy of code to swap file

e May share code segment with multiple instances of
the program

disk (huge, TB)

stack

heap

\
\
\
\\ N 1
\ \
\ \ \
d)
ata \ :
\ N
\ L “
‘\\ 3 b
\
\ < o
\ \
\
N 3 A
\ \
\ \
\

Provide Backing Store for VAS

v VAS 2
kernel
\[®
\ stack
e - _
AN ea
. P
i data
°
code

RN

PT |

VAS |

kernel
‘ stack
i J

N
7
7

il

memory

user

page
frames

user
pagetable

kernel

code &
data

32

disk (huge, TB)

T
S

stack

stack

. heap

—

heap

N
\ N
\ N
) d:
\ ata
D
D) \
\ Y

N N
3 N N
> \ N
S \ \
Y
.. €ode .
AY
3 \
T ~

A

data N
1
A
N Y N
\
\ 1y
\ \
N 3 A
\ \
\ \

On Page Fault ...

VAS | PT |

memory

kernel

«-.YAS 2
b kernel
e
' stack
e
“L o hea

. P

. data

°

code

user

page
frames

user

pagetable

AN

kernel

code
& data

active process & PT

33

disk (huge, TB)

T
S

On Page Fault ... Find & Start Load

stack
.
stack | heap
—
heap m

3 N ~ A
\\ \

Y
\ N
\ N
N \ N
code ¢
Y Y
N
\ L
\ \

data N

N

N \
N

\ 3 \‘ S
N \
N 3 A
N N
\ \

kernel
N
' stack
e
N4 hea
. P
. data
°
code

RN

VAS | PT |
memory
kernel
q
stack |
user
» v page
r SPPEPPPPEP
heaP/ e e e e e frames
- g user
" code A pagetable
kernel
code
& data

active process & PT

34

On page Fault ...

disk (huge, TB)

T
S

stack

heap

schedule other Process or Thread

VAS | PT |

memory

kernel

N N
3 \ S \
> \ N
S \ \
Y
.. €ode .
AY
3 \
S —y

}/

data N
N
N \
\ (RN
\ VS
N \
N 3 A
N N
\ \
\

Vi - - - - - — -

/| active process & PT
‘ /

user

page
frames

user
pagetable

kernel

code &
data

35

disk (huge, TB)

T
S

On Page Fault ... Update PTE

stack

stack

>

.. heap

heap

> S
AY
\
\
\ S

3 N N J{
\\ \

Y
\ N
\ N
N \ N
code ¢
Y Y
N
\ L
\ \

data Y
N
N \
\ "
\ 1y
N \
N 3 A
N N
\ \
\

VAS |

PT |

kernel

}/

Vi - - - - - — -

/ active process & PT
‘ /

memory

user

page
frames

user

pagetable

kernel

code &
data

36

Eventually reschedule faulting thread

disk (huge, TB)

T
S

stack

stack

\d

.. heap

heap

» S
AY
\
\
\ S

»> N N J\
\\ \

Y
\ N
\ N
N \ N
code ¢
Y Y
N
\ o
\ \

data N
K
\ N\
\ "
\ 1y
\ \
N 3 A
\ \
\ \
\

Vi - - - - - — -

VAS |

PT |

kernel

RN

memory

active process & PT

user

page
frames

user
pagetable

kernel

code &
data

37

Summary: Steps in Handling a Page Fault

page is on
backing store

operating
system

@

reference
trap

load M (e "‘, i
restart page table
instruction

free frame « —
® @

reset page bring in
table missing page

physical
memory

Some questions we need to answer!

e During a page fault, where does the OS get a free frame?
— Keeps a free list

— Unix runs a “reaper” if memory gets too full
» Schedule dirty pages to be written back on disk
» Zero (clean) pages which haven’t been accessed in a while

— As a last resort, evict a page first

e How can we organize these mechanisms?
— Work on the replacement policy

e How many page frames/process?
— Like thread scheduling, need to “schedule” memory resources:
» Utilization? fairness? priority?
— Allocation of disk paging bandwidth

39

Working Set Model

e As a program executes it transitions through a sequence of

“working sets” consisting of varying sized subsets of the
address space

>

Address

Time

40

Cache Behavior under WS model

| 4
% new working set fits ‘
[a'd
o
I ﬂ-

0

Cache Size

Amortized by fraction of time the Working Set is active
Transitions from one WS to the next

Capacity, Conflict, Compulsory misses

Applicable to memory caches and pages

41

Demand Paging Cost Model

Since Demand Paging like caching, can compute average access time!
(“Effective Access Time”)

— EAT = Hit Rate x Hit Time + Miss Rate x Miss Time (Hit Rate + Miss Rate = 1)
— EAT = Hit Time + Miss Rate x Miss Penalty (Miss Penalty = Miss Time — Hit Time)
Example:
— Memory access time = 200 nanoseconds
— Average page-fault service time (Miss Penalty) = 8 milliseconds
— Suppose p = Probability of miss, 1-p = Probably of hit
— Then, we can compute EAT as follows:
EAT =200ns+px8 ms
= 200ns + p x 8,000,000ns

If one access out of 1,000 causes a page fault, then EAT = 8.2 us:
— This is a slowdown by a factor of 40x !

What if want slowdown by less than 10%?
— EAT<200nsx1.1 = p<2.5x10°
— This is about 1 page fault in 400,000!

42

Group Discussion

Compulsory Misses:
— What are they in the context of demand paging?
— How might we remove these misses?

Capacity Misses:
— What are they in the context of demand paging?
— How might we remove these misses?

Conflict Misses:
— What are they in the context of demand paging?
— How might we remove these misses?

Policy Misses:
— What are they in the context of demand paging?
— How might we remove these misses?

43

What Factors Lead to Misses in Page Cache?

Compulsory Misses:
— Pages that have never been paged into memory before
— How might we remove these misses?
» Prefetching: loading them into memory before needed
» Need to predict future somehow!
Capacity Misses:
— Not enough memory. Must somehow increase available memory size.
— Can we do this?

» One option: Increase amount of DRAM (not quick fix!)

» Another option: If multiple processes in memory: adjust percentage of memory allocated to
each one!

Conflict Misses:

— Technically, conflict misses don’t exist in virtual memory, since it is a “fully-associative”
cache

Policy Misses:

— Caused when pages were in memory, but kicked out prematurely because of the
replacement policy

— How to fix? Better replacement policy

44

Page Replacement Policies

Why do we care about Replacement Policy?
— Replacement is an issue with any cache
— Particularly important with pages
» The cost of being wrong is high: must go to disk
» Must keep important pages in memory, not toss them out
FIFO (First In, First Out)
— Throw out oldest page. Be fair — let every page live in memory for same amount of time.
— Bad — throws out heavily used pages instead of infrequently used
RANDOM:
— Pick random page for every replacement
— Typical solution for TLB’s. Simple hardware
— Pretty unpredictable — makes it hard to make real-time guarantees
MIN (Minimum):
— Replace page that won’t be used for the longest time
— Great (provably optimal), but can’t really know future...
— But past is a good predictor of the future ...

45

Replacement Policies (Con’t)

LRU (Least Recently Used):
— Replace page that hasn’t been used for the longest time

— Programs have locality, so if something not used for a while,
unlikely to be used in the near future.

— Seems like LRU should be a good approximation to MIN.
How to implement LRU? Use a list:

Head =—> Page 6 —>{ Page 7 || Page | [Page 2

Tail (LRU)

— On each use, remove page from list and place at head
— LRU page is at tail
Problems with this scheme for paging?
— Need to know immediately when page used so that can change position in list...
— Many instructions for each hardware access
In practice, people approximate LRU (more later)

46

Group Discussion

e Topic: replacement policies

— Can you compare FIFO, RANDOM, MIN and LRU?
— What are the pros and cons of each approach?

e Discuss in groups of two to three students

— Each group chooses a leader to summarize the discussion

— In your group discussion, please do not dominate the discussion, and give
everyone a chance to speak

47

Example: FIFO (strawman)

e Suppose we have 3 page frames, 4 virtual pages, and following
reference stream:

—ABCABDADBCB
e Consider FIFO Page replacement:

Ref:]A |[B |C |[A |B |D |A |D |[B |[C |B

e FIFO: 7 faults

e When referencing D, replacing A is bad choice, since need A again right
away

Example: MIN / LRU

e Suppose we have the same reference stream:
—ABCABDADBCB

e Consider MIN Page replacement:

e MIN: 5 faults
— Where will D be brought in? Look for page not referenced farthest in future

e \What will LRU do?

— Same decisions as MIN here, but won’t always be true!

49

Is LRU guaranteed to perform well?

e Consider the following: ABCDABCDABCD
e LRU Performs as follows (same as FIFO here):

— Every reference is a page fault!
e Fairly contrived example of working set of N+1 on N frames

50

When will LRU perform badly?
e Consider the following: ABCDABCDABCD
e LRU Performs as follows (same as FIFO here):

— Every reference is a page fault!
e MIN Does much better:

51

Summary

e Demand Paging: Treating the DRAM as a cache on disk
— Page table tracks which pages are in memory

— Any attempt to access a page that is not in memory generates a page fault, which
causes OS to bring missing page into memory

e Replacement policies
— FIFO: Place pages on queue, replace page at end
— MIN: Replace page that will be used farthest in future
— LRU: Replace page used farthest in past

52

