
Xin Jin
Spring 2023

Operating Systems
(Honor Track)

Memory 4: Demand Paging

Acknowledgments: Ion Stoica, Berkeley CS 162

2

Recap: Putting Everything Together: Address Translation

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

PageTablePtr

Page Table
(1st level)

Page Table
(2nd level)

Physical
Memory:

Offset
Physical Address:

Physical
Page #

3

Page Table
(2nd level)

PageTablePtr

Page Table
(1st level)

Recap: Putting Everything Together: TLB

Offset

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

Physical
Memory:

Physical Address:

…

TLB:

Physical
Page #
Physical
Page #

4

Page Table
(2nd level)

PageTablePtr

Page Table
(1st level)

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

…

TLB:

Recap: Putting Everything Together: Cache

Offset

Physical
Memory:

Physical Address:

…

tag: block:
cache:

index bytetag

Physical
Page #

5

Recap: Demand Paging as Caching, …

• What “block size”? - 1 page (e.g., 4 KB)
• What “organization” i.e., direct-mapped, set-associative, fully-associative?

– Fully associative since arbitrary mapping
• How do we locate a page?

– First check TLB, then page-table traversal
• What is page replacement policy? (i.e., LRU, Random…)

– This requires more explanation… (more later)
• What happens on a miss?

– Go to lower level to fill miss (i.e., disk)
• What happens on a write? (write-through, write back)

– Definitely write-back – need dirty bit!

6

Recap: Page Replacement Policies
• Why do we care about Replacement Policy?

– Replacement is an issue with any cache
– Particularly important with pages

» The cost of being wrong is high: must go to disk
» Must keep important pages in memory, not toss them out

• FIFO (First In, First Out)
– Throw out oldest page. Be fair – let every page live in memory for same amount of time.
– Bad – throws out heavily used pages instead of infrequently used

• RANDOM:
– Pick random page for every replacement
– Typical solution for TLB’s. Simple hardware
– Pretty unpredictable – makes it hard to make real-time guarantees

• MIN (Minimum):
– Replace page that won’t be used for the longest time
– Great (provably optimal), but can’t really know future…
– But past is a good predictor of the future …

7

Recap: Replacement Policies (Con’t)
• LRU (Least Recently Used):

– Replace page that hasn’t been used for the longest time
– Programs have locality, so if something not used for a while,

unlikely to be used in the near future.
– Seems like LRU should be a good approximation to MIN.

• How to implement LRU? Use a list:

– On each use, remove page from list and place at head
– LRU page is at tail

• Problems with this scheme for paging?
– Need to know immediately when page used so that can change position in list…
– Many instructions for each hardware access

• In practice, people approximate LRU (more later)

Page 6 Page 7 Page 1 Page 2Head

Tail (LRU)

8

• One desirable property: When you add memory the miss rate
drops (stack property)

– Does this always happen?
– Seems like it should, right?

Graph of Page Faults Versus The Number of Frames

9

Group Discussion
• One desirable property: When you add memory the miss rate drops (stack

property)
– Does this always happen?
– Seems like it should, right?

• Topic: Bélády’s anomaly
– Does LRU and MIN have this property?

» If so, can you prove it?
» If not, can you give an example?

• Discuss in groups of two to three students
– Each group chooses a leader to summarize the discussion
– In your group discussion, please do not dominate the discussion, and give everyone a

chance to speak

10

• Answer: Yes for LRU and MIN
– Contents of memory with X pages are a subset of contents with

X+1 pages

11

Group Discussion
• One desirable property: When you add memory the miss rate drops (stack

property)
– Does this always happen?
– Seems like it should, right?

• Topic: Bélády’s anomaly
– Does FIFO have this property?

» If so, can you prove it?
» If not, can you give an example?

• Discuss in groups of two to three students
– Each group chooses a leader to summarize the discussion
– In your group discussion, please do not dominate the discussion, and give everyone a

chance to speak

12

Adding Memory Doesn’t Always Help Fault Rate
• Does adding memory reduce number of page faults?

– Yes for LRU and MIN
– Not necessarily for FIFO! (Called Bélády’s anomaly)

• After adding memory:
– With FIFO, contents can be completely different
– In contrast, with LRU or MIN, contents of memory with X pages are a subset

of contents with X+1 Page

D
C

E

B
A

D

C
B

A

DCBAEBADCBA E

3
2
1

Ref:
Page:

CD4

E
D

B
A

E

C
B

A

DCBAEBADCBA E

3
2
1

Ref:
Page:

9 page faults

10 page faults!

13

Approximating LRU: Clock Algorithm

Set of all pages
in Memory

Single Clock Hand:
Advances only on page fault!
Check for pages not used recently
Mark pages as not used recently

• Clock Algorithm: Arrange physical pages in circle with single clock hand
– Approximate LRU (approximation to approximation to MIN)
– Replace an old page, not the oldest page

• Details:
– Hardware “use” bit per physical page (called “accessed” in Intel architecture):

» Hardware sets use bit on each reference
» If use bit isn’t set, means not referenced in a long time

– On page fault:
» Advance clock hand (not real time)
» Check use bit: 1® used recently; clear and leave alone

0® selected candidate for replacement

14

Clock Algorithm Example

use: 1

use: 1

use
: 1

use: 0

Free frame

Page

15

Clock Algorithm Example: Page Fault

use: 1

use: 1

use
: 1

use: 0

Free frame

Page

16

Clock Algorithm Example: Page Fault

use: 1

use: 1

use
: 0

use: 0

Free frame

Page

17

Clock Algorithm Example: Page Fault

use: 0

use: 1

use
: 0

use: 0

Free frame

Page

18

Clock Algorithm Example: Page Fault

use: 0

use: 1

use
: 0

use: 0

Free frame

Page

This is ”0”. We
can replace it!

19

Clock Algorithm Example: Page Fault

use: 0

use: 1

use
: 0

use: 0

Free frame

Page

Save the page, if “dirty”;
invalidate TLB and PTE

20

Clock Algorithm Example: Page Fault

use: 0

use: 1

use
: 0

use: 1

Free frame

Page

Load page;
update PTE

21

Clock Algorithm Example

use: 0

use: 1

use
: 1

use: 1

Free frame

Page

Access page
(red or write)

22

Clock Algorithm Example: Another Page Fault

use: 0

use: 1

use
: 1

use: 0

Free frame

Page

23

Clock Algorithm Example: Another Page Fault

use: 0

use: 0

use
: 1

use: 0

Free frame

Page

24

Clock Algorithm Example: Another Page Fault

use: 0

use: 0

use
: 1

use
: 1

use: 0

Free frame

Page

Free frame; Load page;
update PTE

25

Group Discussion: Clock Algorithm

• Will always find a page or loop forever?

• What if hand is moving slowly?
– Good sign or bad sign?

• What if hand is moving quickly?
– Good sign or bad sign?

Set of all pages
in Memory

Single Clock Hand

26

Clock Algorithm: More details

• Will always find a page or loop forever?
– Even if all use bits set, will eventually loop

all the way around
• What if hand is moving slowly?

– Good sign or bad sign?
» Not many page faults or find page quickly

• What if hand is moving quickly?
– Good sign or bad sign?

» Lots of page faults or lots of reference bits set
• One way to view clock algorithm:

– Crude partitioning of pages into two groups: young and old
– Why not partition into more than 2 groups?

Set of all pages
in Memory

Single Clock Hand

27

Nth Chance version of Clock Algorithm
• Nth chance algorithm: Give page N chances

– OS keeps counter per page: # sweeps
– On page fault, OS checks use bit:

» 1 ® clear use and also clear counter (used in last sweep)
» 0 ® increment counter; if count=N, replace page

– Means that clock hand has to sweep by N times without page being used before page is
replaced

• How do we pick N?
– Why pick large N? Better approximation to LRU

» If N ~ 1K, really good approximation
– Why pick small N? More efficient

» Otherwise might have to look a long way to find free page
• What about “modified” (or “dirty”) pages?

– Takes extra overhead to replace a dirty page, so give dirty pages an extra chance before
replacing?

– Common approach:
» Clean pages, use N=1
» Dirty pages, use N=2 (and write back to disk when N=1)

28

Group Discussion

• Topic: Clock algorithm variations
– Do we really need a hardware-supported “modified” bit?
– Do we really need a hardware-supported “use” bit?

• Discuss in groups of two to three students
– Each group chooses a leader to summarize the discussion
– In your group discussion, please do not dominate the discussion, and give

everyone a chance to speak

29

Clock Algorithms Variations
• Do we really need hardware-supported “modified” bit?

– No. Can emulate it using read-only bit
» Need software DB of which pages are allowed to be written (needed this anyway)
» We will tell MMU that pages have more restricted permissions than they actually do to force

page faults (and allow us notice when page is written)
– Algorithm (Clock-Emulated-Modified):

» Initially, mark all pages as read-only (W®0), even writable data pages.
Further, clear all software versions of the “modified” bit ® 0 (page not dirty)

» Writes will cause a page fault. Assuming write is allowed, OS sets software “modified” bit ®
1, and marks page as writable (W®1).

» Whenever page written back to disk, clear “modified” bit ® 0, mark read-only

30

Clock Algorithms Variations (continued)
• Do we really need a hardware-supported “use” bit?

– No. Can emulate it similar to above (e.g. for read operation)
» Kernel keeps a “use” bit and “modified” bit for each page

– Algorithm (Clock-Emulated-Use-and-Modified):
» Mark all pages as invalid, even if in memory.

Clear emulated “use” bits ® 0 and “modified” bits ® 0 for all pages (not used, not dirty)
» Read or write to invalid page traps to OS to tell use page has been used
» OS sets “use” bit ® 1 in software to indicate that page has been “used”.

Further:
1) If read, mark page as read-only, W®0 (will catch future writes)
2) If write (and write allowed), set “modified” bit ® 1, mark page as writable (W®1)

» When clock hand passes, reset emulated “use” bit ® 0 and mark page as invalid again
» Note that “modified” bit left alone until page written back to disk

• Remember, however, clock is just an approximation of LRU!
– Can we do a better approximation, given that we have to take page faults on some reads

and writes to collect use information?
– Need to identify an old page, not oldest page!
– Answer: second chance list

31

Second-Chance List Algorithm (VAX/VMS)

• Split memory in two: Active list (RW), SC list (Invalid)
• Access pages in Active list at full speed
• Otherwise, Page Fault

– Always move overflow page from end of Active list to front of Second-chance list (SC)
and mark invalid

– Desired Page in SC List: move it to front of Active list, mark it RW
– Not in SC list: page in to front of Active list, mark RW; page out LRU victim at end of SC

list

Directly
Mapped Pages

Marked: RW
List: FIFO

Second
Chance List

Marked: Invalid
List: LRU

LRU victim

Page-in
From disk

New
Active Pages

Acc
es

s

New
SC Victims

O
verflow

32

Second-Chance List Algorithm (continued)
• How many pages for second chance list?

– If 0 Þ FIFO
– If all Þ LRU, but page fault on every page reference

• Pick intermediate value. Compared to FIFO:
– Pro: Few disk accesses (page only goes to disk if unused for a long time)

– Con: Increased overhead trapping to OS (software / hardware tradeoff)

• History: The VAX architecture did not include a “use” bit.
Why did that omission happen???

– Strecker (architect) asked OS people, they said they didn’t need it, so didn’t implement it
– He later got blamed, but VAX did OK anyway

33

Free List

• Keep set of free pages ready for use in demand paging
– Free list filled in background by Clock algorithm or other technique (“Pageout daemon”)
– Dirty pages start copying back to disk when enter list

• Like VAX second-chance list
– If page needed before reused, just return to active set

• Advantage: faster for page fault
– Can always use page (or pages) immediately on fault

Set of all pages
in Memory

Single Clock Hand: Advances as needed to keep
free list full (“background”)

D

D

Free Pages
For Processes

34

• When evicting a page frame, how to know which PTEs to invalidate?
– Hard in the presence of shared pages (forked processes, shared memory, …)

• Reverse mapping mechanism must be very fast
– Must hunt down all page tables pointing at given page frame when freeing a page
– Must hunt down all PTEs when seeing if pages “active”

• Implementation options:
– For every page descriptor, keep linked list of page table entries that point to it

» Management nightmare – expensive
– Linux: Object-based reverse mapping

» Link together memory region descriptors instead (much coarser granularity)
» E.g., program code and files mapped in with mmap()

Reverse Page Mapping (Sometimes called “Coremap”)

35

Allocation of Page Frames (Memory Pages)
• How do we allocate memory among different processes?

– Does every process get the same fraction of memory? Different fractions?
– Should we completely swap some processes out of memory?

• Each process needs minimum number of pages
– Want to make sure that all processes that are loaded into memory can make forward progress
– Example: IBM 370 – 6 pages to handle SS MOVE instruction:

» instruction is 6 bytes, might span 2 pages
» 2 pages to handle from
» 2 pages to handle to

• Possible Replacement Scopes:
– Global replacement – process selects replacement frame from set of all frames; one process can

take a frame from another

– Local replacement – each process selects from only its own set of allocated frames

36

Fixed/Priority Allocation

• Equal allocation (Fixed Scheme):
– Every process gets same amount of memory
– Example: 100 frames, 5 processes ® process gets 20 frames

• Proportional allocation (Fixed Scheme)
– Allocate according to the size of process
– Computation proceeds as follows:

𝑠! = size of process 𝑝! and S = ∑𝑠!
𝑚 = total number of physical frames in the system
𝑎! = (allocation for 𝑝!) =

!!
"
×𝑚

• Priority Allocation:
– Proportional scheme using priorities rather than size

» Same type of computation as previous scheme
– Possible behavior: If process pi generates a page fault, select for replacement a frame from a process

with lower priority number

• Perhaps we should use an adaptive scheme instead???
– What if some application just needs more memory?

37

Page-Fault Frequency Allocation
• Can we reduce capacity misses by dynamically changing

the number of pages/application?

• Establish “acceptable” page-fault rate
– If actual rate too low, process loses frame
– If actual rate too high, process gains frame

• Question: What if we just don’t have enough memory?

38

Thrashing
• If a process does not have “enough” pages, the

page-fault rate is very high.
This leads to:

– low CPU utilization
– operating system spends most of its time swapping to

disk
• Thrashing º a process is busy swapping pages in and

out with little or no actual progress
• Questions:

– How do we detect Thrashing?
– What is best response to Thrashing?

39

Locality In A Memory-Reference Pattern
• Program Memory Access Patterns have

temporal and spatial locality
– Group of Pages accessed along a given time

slice called the “Working Set”
– Working Set defines minimum number of

pages for process to behave well
• Not enough memory for Working Set Þ

Thrashing
– Better to swap out process?

40

Working-Set Model

• D º working-set window º fixed number of page references
– Example: 10,000 instructions

• WSi (working set of Process Pi) = total set of pages referenced in the most
recent D (varies in time)

– if D too small will not encompass entire locality
– if D too large will encompass several localities
– if D = ¥Þ will encompass entire program

• D = S|WSi| º total demand frames
• if D > m Þ Thrashing

– Policy: if D > m, then suspend/swap out processes
– This can improve overall system behavior by a lot!

41

What about Compulsory Misses?
• Recall that compulsory misses are misses that occur the first time that a page

is seen
– Pages that are touched for the first time
– Pages that are touched after process is swapped out/swapped back in

• Clustering:
– On a page-fault, bring in multiple pages “around” the faulting page
– Since efficiency of disk reads increases with sequential reads, makes sense to read

several sequential pages
• Working Set Tracking:

– Use algorithm to try to track working set of application
– When swapping process back in, swap in working set

42

Summary
• Clock Algorithm: Approximation to LRU

– Arrange all pages in circular list
– Sweep through them, marking as not “in use”
– If page not “in use” for one pass, than can replace

• Nth-chance clock algorithm: Another approximate LRU
– Give pages multiple passes of clock hand before replacing

• Second-Chance List algorithm: Yet another approximate LRU
– Divide pages into two groups, one of which is truly LRU and managed on page faults.

• Working Set:
– Set of pages touched by a process recently

• Thrashing: a process is busy swapping pages in and out
– Process will thrash if working set doesn’t fit in memory
– Need to swap out a process

