Operating Systems
(Honor Track)

Memory 5: Memory Management in
Modern Computer Systems
Xin Jin
Spring 2023

Acknowledgments: lon Stoica, Berkeley CS 162

Memory Management in Modern Computer Systems

e Memory Abstraction
— NSDI’14 FaRM

e Demand paging: remote memory over RDMA

— NSDI’17 InfiniSwap
— OSDI'20 AIFM

e Demand paging: memory swapping between GPU memory and host memory
— OSDI’20 PipeSwitch

~aRM: Fast Remote Memory

Aleksandar Dragojevi¢, Dushyanth Narayanan,
Orion Hodson, Miguel Castro

Hardware trends

- Main memory is cheap

- 100 GB — 1 TB per server
- 10— 100 TBs in a small cluster

- New data centre networks

- 40 Gbps throughput (100 this year)
- 1-3 s latency
- RDMA primitives

Remote direct memory access

- Read / write remote memory
- NIC performs DMA requests

- FaRM uses RDMA extensively

- Reads to directly read data
- Writes into remote buffers for messaging

- Great performance

- Bypasses the kernel
- Bypasses the remote CPU

Machine A
DMA

RAM

CPU

NIC

Network

RAM

CPU

K

1]

Machine B D

MA

Requests / us / server

oO—_L N WhAuitOhON00OWOO

--RDMA #RDMA msg - TCP

32 64 128 256 512 1024 2048
Transfer bytes (log)

6

- RDMA #®RDMA msg <-TCP

[e)

O s o
~ <>____<> <> ‘~~<>____<>—___<>__— <>_ <>
(V)]

-

N

&

g 0 g---m--—-m----m----W----m----m--- -8
©

o ° — o ° — o o—*
©

o

>

< 1

16 32 64 128 256 512 1024 2048
Transfer bytes (log)

7

Applications

- Data centre applications

- Irreqular access patterns
- Latency sensitive

- Data serving

- Key-value store
- Graph store

- Enabling new applications

How to program a modern cluster?

We have: Desirable:

* TBs of DRAM » Keep data in memory

* 100s of CPU cores Access data using RDMA
 RDMA network * Collocate data and computation

(ay/f

b ;
x

Traditional model

Servers: store data

\&y
</// o///>

Clients: execute application

o

Symmetric model

Access to local N N

memory Is N N N N

much faster))~ p-)~
&~ Y &~ &

Server CPUs

are mostly idle

with RDMA

Machines store data and execute application

11

Shared address space

Supports direct
RDMA of objects

Programmability
a welcome bonus

O1

Oe6

@F:

O9

</// ° //@

</// o//@ 0

Shared address space

General primitive | Shared address space

. O7
Strong consistency: 02 O4 Os

serializability = " - t — [o @
Transparent: t Write t Write t t O10

e location
Read "
. concurrency Read Read Free

. failures Alloc

13

Optimizations: locality awareness

Optimizations: locality awareness
4

Collocate data
accessed together a a

Ship computation

to target data L ocal ﬁ e

Optimized (\ RPC (\

single server NS < S

transactions 0 0
N N

Transactions

Buffer writes
mmm | Llock Validate Update and unlock

RNAYVRYA
]| o o

Executioni Commit

16

TAQ [Bronson “13, Armstrong "13]

- Facebook’s in-memory graph store

- Workload
- Read-dominated (99.8%) 6 MOpS/S/SI‘V
- 10 operation types (10x improvement)
- FaRM implementation
- Nodes and edges are FaRM objects 42 ps average latency
- Lock-free reads for lookups (40 — 50x iImprovement)

- Transactions for updates

17

FaRM

- Platform for distributed computing

- Data is In memory
- RDMA

- Shared memory abstraction

- Transactions
- Lock-free reads

- Order-of-magnitude performance improvements

- Enables new applications

18

Memory Management in Modern Computer Systems

e Memory Abstraction
— NSDI’14 FaRM

e Demand paging: remote memory over RDMA

— NSDI’17 InfiniSwap
— OSDI'20 AIFM

e Demand paging: memory swapping between GPU memory and host memory
— OSDI’20 PipeSwitch

19

Efficient Memory Disaggregation with
Infiniswap

Juncheng Gu, Youngmoon Lee, Yiwen Zhang,
Mosharaf Chowdhury, Kang G. Shin

UNIVERSITY OF
MICHIGAN

Agenda

 Motivation and related work

3/30/17

Memory-intensive applications

YO L'r%g iFI emCached

©

powergraph Gr Clph/l/

Memory-intensive applications

A Your computer is low on memory

To restore enough memory for programs to work
correctly, save your files and then close or restart all
open programs.

3/30/17

Performance degradation

1 0.94 0.97
Q
e
o 0.8
S
1 S
O
‘t 0.6
2 0.47
o
- 0.4
F- 0.18
E 0.2 - 0.12
S 0.06
2 0.04 . . 0.04
0 —] —
VoltDB Memcached PowerGraph GraphX
(TPC-C) (Facebook/FB SYS) (TunkRank) (PageRank)

M 100% working sets inmemory ¥ 75% working sets inmemory M 50% working sets in memory

Memory underutilization

* Google Cluster Analysis.,

Allocated Used

o H
00 O

Portion of Memory
o
(92

o

7 14 21 28 7 14 21 28
. Time (days) .

[1] Reiss, Charles, et al. "Heterogeneity and dynamicity of clouds at scale: Google trace analysis." SoCC’12.

Memory underutilization

* Google Cluster Analysis.,

Allocated Used

FR AR R PR | IRRERRY! (NR] "N (R ERR frrrererrrrererrrrrrerrrrerrrrrrrerrrrrrrrrrrrrrrrrly

T G/ } :30% 0 Z

o+
00 O

e 0.5

On of Memory
=
o

|r'l

Can we utilize this memory?
Ime (day

3/30/17 18

[1] Reiss, Charles, et al. "Heterogeneity and dynamicity of clouds at scale: Google trace analysis." SoCC’12.

Disaggregate free memory

MacTne 1

|

Memory Disaggregation Layer

|

!

! I

o

Machine 2

Machine 3 Machine 4

!

Machine N

What are the challenges?

* Minimize deployment overhead
* No hardware design

* No application modification

* Tolerate failures
* e.g. network disconnection, machine crash

* Manage remote memory at scale

Recent work on memory disaggregation

No app Fault-

Memory Blade([IscA’09]

HPBD[CLUSTER’05] / NBDXx

O X

RDMA key-value service
(e.g. HERD[SIGCOMM’14], FaRM[NSDI'14])

(RSA):;

e xe

CoOx 00
cCee xC

Intel Rack Scale Architecture x

Infiniswap

1 https://github.com/accelio/NBDX

3/30/17
/30/ 2 http://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html

http://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html

Agenda

* Design and system overview

3/30/17

24

System Overview

User f g .
Sloace{Appllcatlonl Jg\[AppllcatlonZ J .
Kernel A\

[Virtual Memory Manager (VMM)]

s

Space

~

Async \DQEC
—
B (]
Machine 1

()
J {Application J User
¢ Space
{ RNIC J
N _J

Machine 2

3/30/17

System Overview

User {Applicationl J

Space [Appllcatlonz J .

Kernel - A\
Space[Virtual Memory Manager (VMM)]

Machine 1

~

Infiniswap Block Device
* Swap space
* Request router

~

J {Application JUSGF
Space

Machine 2

26

System Overview

~

szzie{/*pp“cationl J [Applicationz J Local disk
g\\ * [ASYNC] backup swapped-out
g;rzl[Virtual Memory Manager (VMM)] data
@ * Tolerate remote memory
failure

[e
; \Dﬂfc T
W [RNIC J L { RNIC J

Machine 1 Machine 2
3/30/17 27

System Overview

~

g;gge[ApplicationlJ [ApplicationZJ Infiniswap Deamon
9\\ Local memory region
gg;r;l[Virtual Memory Manager (VMM)] * Remote memory service

s

Async \DQEC

~N
{ J Application J User
Space
e

N T 2 S T

Machine 1 Machine 2

System Overview

[Applicationz J ".\ RDMA

g\\ * One-sided operations
g;;rg[Virtual Memory Manager (VMM)] ° Bypass remote CPU

User ...
Sloace[Apphcatlonl J

o)
Infiniswap
Daemon [Application J User
Space
J

Machine 1 Machine 2
3/30/17

How to meet the design objectives?

No hardware design
Remote paging
No application modification

Fault-tolerance Local backup disk

3/30/17 30

3/30/17

One-to-many

User [Applicationl J

Space [Apphcatlonz J .

X\

~

N\
[Virtual Memory Manager (VMM)]

Kernel
Space

-

Machine 1

\
Infiniswap
Daemon [Application } User
Space
[RNIC]
- - J
Machine 3
o ~N
Infiniswap
Daemon [Application JUser
Space
{ RNIC]
~ J

Machine 2

31

Many-to-many

~

User
Space

{Applicationl }

{Applicationz }

QA

Kernel
Space

N
[Virtual Memory Manager (VMM)]

| Application |

\

User
Space

RNIC }

J

-
(

Machine 3

| Application |

\

User
Space

{
[
|

Machine 1

)
RNIC }

-

[

Machine 2

Applicationl {Applicationz }

QA

}\

~

User
Space

[Virtual Memory Manager (VMM)]

Sync Async

)

i

Kernel
Space

Machine 4

3/30/17

Many-to-many

How to scale remote memory?

e How to find remote memory in the cluster?
e Which remote mapping should be evicted?

33

How to meet the design objectives?

Objectives _ ldeas

Decentralized remote memory

Scalability management

3/30/17 34

Management unit: memory page?

g Infiniswap
Daemon
4 .- . .)
Infiniswap Block Device Infiniswap
Daemon
_ .
:
p100 <sl, pl1>
. [Infiniswap]
. _ Daemon
1GB = 256K entries

3/30/17

1GB = 256K RTTs ”

Management unit: memory slab!

| Infiniswap
{ Daemon
g Infiniswap Block Device h Infiniswap
Daemon
- W,

Infiniswap
Daemon

3/30/17 37

Management unit: memory slab!

Infiniswap
Daemon
g Infiniswap Block Device h Infiniswap
Daemon
_ W,

Infiniswap
Daemon

3/30/17 38

Which remote machine should be selected?

NN Infiniswap
[§ \\ Daemon
g Infiniswap Block Device h Infiniswap
Daemon

- W,
N Infiniswap
\\\\ Daemon

3/30/17 39

Which remote machine should be selected?

Infiniswap Block Device

N Infiniswap
§ \\ Daemon

J

Infiniswap
Daemon

J

memory utilization

Which remote machine should be selected?

NN Infiniswap
[§ \\ Daemon
g Infiniswap Block Device A Infiniswap
Daemon

- W,

» Central controller —

N Infiniswap
\\\\ Daemon

3/30/17 41

Which remote machine should be selected?

N R Infiniswap

[§ \\ Daemon

g Infiniswap Block Device) Infiniswap

Daemon
- Y,
—>—Centralcontroter

[§ Infiniswap]

» Decentralized approach (& Daemon

3/30/17 -

Power offwo)choices,

-

Infiniswap Block Device h \

|

777

\

N

Infiniswap
Daemon

3/30/17

[1] Mitzenmacher, Michael. "The power of two choices in randomized load balancing.”, Ph.D. thesis, U.C. Berkeley, 1996

{

Infiniswap
Daemon

7

Infiniswap
Daemon

43

Power offwo)choices,

NN Infiniswap
[§ § Daemon]

4 . . .)
Infiniswap Block DEYICE %§ Infiniswap
\ &\\ Daemon

. N
§ Infiniswap
N Daemon
3/30/17 44

[1] Mitzenmacher, Michael. "The power of two choices in randomized load balancing.”, Ph.D. thesis, U.C. Berkeley, 1996

Agenda

* Implementation and evaluation

3/30/17

53

Implementation

Kernel Space User Space
Infiniswap
m Daemon

e Connection Management
* One RDMA connection per active block device - daemon pair
* Control Plane
* SEND, RECV
..» Data Plane
* One-sided RDMA READ, WRITE

54

3/30/17

What are we expecting from Infiniswap?

m Application performance
m Cluster memory utilization
m Network usage

m Eviction overhead

m Fault-tolerance overhead

m Performance as a block device

55

Evaluation

InfiniBand
Network

=

2 x 8 cores (32 vcores)
- 64GB DRAM

56Gbps InfiniBand NIC

Ay
&y

32-node cluster

R ©

e
VQLTDB HE' emCached powergraph Gl‘dph/\/

56

Application performance

* 50% working sets in memory

1
@
=
S 0s 0.77
£ 0.66
o 0.61
‘t 06
[
a
-
g 0.4
©
EOZ 012 Illllolasll‘.
2 0.04 0.06 - 004 =
0 — . = — .
VoltDB Memcached PowerGraph ‘Graphx" """
(TPC-C) (Facebook/FB SYS) (TunkRank) (PageRank)

M 100% working sets in memory M Disk + 50% working sets in memory

Infiniswap + 50% working sets in memory

* Application performance is improved by 2-16x

Cluster memory utilization

* 90 containers (applications), mixing all applications and memory constraints.

100
< —Infiniswap
o
g 30 ---w/o Infiniswap
-
T 60 T
- 40
S
£
S 20
=
0

1 3 | 5 ; 9 | 11 ll3 15 | 17 119 21 | 23 215 27 | 29
Rank of Machines

3/30/17 60

» Cluster memory utilization is improved from 40.8% to 60% (1.47x)

Agenda

 Future work and conclusion

3/30/17

61

Limitations and future work

e Trade-off in fault-tolerance
e Local diskis the bottleneck

* Multiple remote replicas

e Fault-tolerance vs. space-efficiency

e Performance isolation among applications

Conclusion
* Infiniswap: remote paging over RDMA
* Application performance
* Cluster memory utilization

e Efficient, practical memory disaggregation

* No hardware design

* No application modification
* Fault-tolerance

* Scalability

https://github.com/Infiniswap/infiniswap.git

Memory Management in Modern Computer Systems

e Memory Abstraction
— NSDI’14 FaRM

e Demand paging: remote memory over RDMA

— NSDI’17 InfiniSwap
— OSDI'20 AIFM

e Demand paging: memory swapping between GPU memory and host memory
— OSDI’20 PipeSwitch

59

AlF

Applicati

Zain (Zhenyuan) Ruan®

"MIT CSAIL

il

MITCSAIL

M: High-Perfor

on-Integrated

Malte Schwarzkopf”

"Brown University

mance,

Marcos K. Aguilera *

-ar Memory

Adam Belay”

fVMware Research

vmware

60

In-Memory Applications

!l pandas

Data Analytics

vy %Y

v V
yoLrbs

Database

& redis

Web Caching

©

powergraph

Graph Processing

61

Memory Is Inelastic

* Limited by the server physical boundary.

* Applications cannot overcommit memory.

Opening a 20GB file for analysis with pandas

Asked 2 years, 8 months ago Active 1 year, 4 months ago Viewed 81k times

| am currently trying to open a file with pandas and python for machine learning purposes it would

be ideal for me to have them all in a DataFrame. My RAM is 32 GB. | keep getting memory errors.
20

» Expensive solution: overprovision memory for peak usage.

62

Trending Solution: Far Memory

» Leverage the idle memory of remote servers (with fast network).

r N (~ Fast Network ~—— \
Local Memory NIC < NIC | Far Memory
I " I
| o
- J L J —_— — J \\ J
4 r- __________]
Local Server : Remote Server |
l

e —————— — — — — —

Existing Far-Memory Systems Perform Poorly

e Real-world Data Analytics from Kaggle.
* Provision 25% of working set in local mem.

» Goal: reclaim the wasted performance.

0 1 aN ideal

c

& 0.8 70% of

S 06 performance

E_’ wasted P state-of-the-art
< 0.4 .

Q M AIFM (this work)
< 0.2

-

2 0

64

Why Do Existing Systems Waste Performance?

* Problem: based on OS paging.
— Semantic gap.
— High kernel overheads.

Challenge 1: Semantic Gap

* Page granularity = R/W amplification.

OS ——

App —

» 0S lacks app know

App

Page

—>®

—»

—>

edge =» hard to prefetch, etc.

——»

—>

0S

A sequence of rangom Memory aCCesses.

Challenge 2: High Kernel Overheads

* Expensive page faults.

» Busy Polling for in-kernel net |/O =2 burn CPU cycles.

APP

@

N

Remote Object

@ Swap in page

Page Fault

Handler (8 us)

Net
(6 us)

;
(% @ Busy poll

67

Design Space

Manually manage
objects with RDMA

AIFM (this work)

Perf.

Existing OS
@ npagingsystems

Transparency

AIFM’s Design Overview

» Key idea: swap memory using a userspace runtime.

1. Semantic gap Remoteable Data structure library
(Amplification, Hard to prefetch)

2. Kernel overheads Userspace runtime
(page faults, busy poll for net 1/0)
3. Impact of Memory Reclamation Pauseless evacuator
(pause app threads)
4. network BW < DRAM BW Remote Agent

69

1. Remoteable Data Structure Library

» Solved challenge: semantic gap.

Remoteable
»| Data Structure

App User- 1 library API
Level Thread O |

App Semantics

v

Prefetcher

Local Memory

Far Memory

2. Userspace Runtime

» Solved challenge: kernel overheads.

App User- 1 library API
Level Thread O |

Local Memory

Far Memory

>

Remoteable
Data Structure

App Semantics

v

Prefetcher

Ptr O

e

2. Userspace Runtime

» Solved challenge: kernel overheads.

library API Remoteable < Ptr O

»| Data Structure

Ptr 1

App Semantics

v

Prefetcher

Local Memory

Far Memory i G

2. Userspace Runtime

» Solved challenge: kernel overheads.

library API

vield T

Local Memory

Far Memory

>

Remoteable
Data Structure

App Semantics

v

Prefetcher

Ptr O

<

Ptr 1

3. Pauseless Evacuator

» Solved challenge: impact of memory reclamation.

[App User-)IibraryAPI Remoteable Ptr O —@

Data Structure
Level Thread O | g

vield T App Semantics Ptr 1 m‘w@

v Pauseless
Prefetcher see
Evacuator

Ptr N Me

Local Memory

Far Memory

74

3. Pauseless Evacuator

» Solved challenge: impact of memory reclamation.

[App User-)IibraryAPI Remoteable Ptr O —@

Data Structure
Level Thread O | g

Vield T App Semantics Ptr1
v Pauseless
Prefetcher oee Evacuator

Ptr N

Local Memory

Far Memory

75

4. Remote Agent

» Solved challenge: network BW < DRAM BW.

[

App User- 1 library API

Level Thread O |

Yield T

Local Memory

Far Memory

>

Remoteable
Data Structure

App Semantics

v

Prefetcher

Ptr0

Ptr 1

Pauseless
Evacuator

Ptr N

J

4. Remote Agent

» Solved challenge: network BW < DRAM BW.

[

App User- 1 library API

Level Thread O |

Yield T

Local Memory

Far Memory

>

Remoteable

Data Structure

App Semantics

v

Prefetcher

Ptr0

Ptr 1

[

Remote
Agent

J

Pauseless
Evacuator

Ptr N

J

4. Remote Agent

» Solved challenge: network BW < DRAM BW.

[

App User- 1 library API

Level Thread O |

Yield T

Local Memory

Far Memory

Remoteable

»| Data Structure

App Semantics

v

Prefetcher

Ptr0

Ptr 1

e.g., Copy Obj 1

A 4

[

Remote
Agent

J

Pauseless
Evacuator

Ptr N

J

Sample Code

std::unordered_map<key t, int> hashtable;
std::array<LargeData> arr;

LargeData foo(std::list<key t> &keys list){
int sum = 0;
for (auto key : keys_list) {

sum += hashtable.at(key);

}

LargeData ret = arr.at(sum);
return ret;

}

79

Sample Code

RemHashTable<key t, int> hashtable;
RemArray<LargeData> arr;

LargeData foo(RemlList<key t> &keys list) {

int sum = 0;
for (auto key : keys_list) { Prefetch list data.
DerefScope scope;
sum += hashtable.at(key, scope); Cache hot objects.
}

DerefScope scope;

LargeData ret = arr.at</*don’t cache*/ true>(sum, scope); Avoid polluting local mem.
return ret;

30

Implementation

* Implemented 6 data structures.
* Array, List, Hashtable, Vector, Stack, and Queue.

* Runtime is built on top of Shenango [NSDI’ 19].
e TCP far-memory backend.
»LoC: 6.5K (runtime) + 5.5K (data structures) + 0.8K (Shenango)

Performance on Different Compute Intensities

Normalized Performance

1

0.8

0.6

0.4

0.2

0

<B-Fastswap “®-AlFM
ideal

0 2 4 6 8 10 12
Microseconds of compute per far memory access

AIFM hides far memory latency with moderate compute.

82

NYC Taxi Analysis (C++ DataFrame)

<-Fastswap ®-AlIFM

o 1 ideal
-
(U ||
c 08 (e (x=23%, y=0.95)
E “ J
L 06 (x=3%,y=0.77)
(T
T 04
Q
N
© 0.2
-
S 0
Z

0 20 40 60 80 100

Local Memory Ratio (%)

AIFM achieves near-ideal performance with small local memory.

83

Other Experiments

* Synthetic web frontend: up to 13X end-to-end speedup.
e Data structures microbenchmarks: up to 61X speedup.

* Design Drill-Down.

Read our paper for details.

Related Work

* OS-paging systemes.
e Fastswap [EuroSys’ 20], Leap [ATC 20]

* Distributed shared memory.
* Treadmarks [IEEE Computer’ 96]

e Garbage collection (GC).

Conclusion

* AIFM: Application-Integrated Far Memory.

* Key idea: swap memory using a userspace runtime.

e Data Structure Library: captures application semantics.
* Userspace Runtime: efficiently manages objects and memory.

* Achieves 13X end-to-end speedup over Fastswap.
» Code released at https://github.com/AIFM-sys/AIFM

Please send your questions to us

zainruan@csail.mit.edu

https://github.com/AIFM-sys/AIFM
mailto:zainruan@csail.mit.edu

Memory Management in Modern Computer Systems

e Memory Abstraction
— NSDI’14 FaRM

e Demand paging: remote memory over RDMA

— NSDI’17 InfiniSwap
— OSDI'20 AIFM

e Demand paging: memory swapping between GPU memory and host memory
— OSDI’20 PipeSwitch

87

PipeSwitch: Fast Pipelined Context
Switching for Deep Learning Applications

Zhihao Bai, Zhen Zhang, Yibo Zhu, Xin Jin

QY JOHNS HOPKINS |4/ Byte Dance

Deep learning powers intelligent
applications in many domains

Google €) amazon | |ber

o® Microsoft

.|II

Training and inference

High throughput

Low latency

90

GPUs clusters for DL workloads

91

Separate clusters for training and inference

Cluster for
training
I f

Inference

92

Utilization of GPU clusters is low

Today: separate clusters ldeal: shared clusters

50%
100%

Training 25%
75%

Daytime Midnight » 5 0%

25%

50%

Inference 25%

Daytime Midnight Daytime Midnight

Context switching overhead is high

, _____
[
New model \
————— - 4

94

Context switching overhead is high

Infer f
ResNet I
- 4

o -

NVIDIA T4

Latency: 6s

95

Drawbacks of existing solutions

* NVIDIA MPS
* High overhead due to contention

e Salus[MLSys’20]
* Requires all the models to be preloaded into the GPU memory

Latency: 6s

96

Goal: fast context switching

Enable GPU-efficient multiplexing of multiple DL apps
with fine-grained time-sharing

Achieve millisecond-scale context switching latencies
and high throughput

Latency: 6s

97

PipeSwitch overview: architecture

New
A‘ Task

PipeSwitch overview: execution

New
Task
 Stop the current task and
prepare for the next task. Controller
* Execute the task with pipelined r | Standby Standby Memory
model transmission. L---i----l WO‘rker ESNS | Daemon
* Clean the environment for the Active
previous task. Worker

Sources of context switching overhead

Model transmission
Memory allocation
Task initialization

Task cleaning

100

How to reduce the overhead?

. Pipelined
model transmission

101

DL models have layered structures

Forward
Propagation

Backward
Propagation

102

Sequential model transmission and execution

Transmit layer O Execute layer O

To | To| Ty [*ec | To1 | Ep E, E, oo E.4
N\ LN
Y Y
model transmission task execution

over PCle on GPU

Pipelined model transmission and execution

PCle T, T, T, | eee | T .

GPU EO E1 Ez o0e¢ En-l

Pipelined model transmission and execution

Transmit layer O

PCle T, T, T, | eee | T .

GPU EO E1 Ez o0e¢ En-l

Pipelined model transmission and execution

Transmit layer 1

PCle T, T, T, | eee | T .

GPU E, E, E, eoe | E_ .

Execute layer O

Pipelined model transmission and execution

Transmit layer 2

PCle T, T, T, | eee | T .

GPU E, E, E, eoe | E_ .

Execute layer 1

Pipelined model transmission and execution

1.Multiple calls to PCle;

2.Synchronize transmission and execution.

108

Pipelined model transmission and execution

PCle

GPU

Group Group cee Group
(O) I) (i+1) J) (k) n_l)
Group Group

(0, i)

(i+1, j)

Group
(k, n-1)

Pipelined model transmission and execution

 Exponential time to find the optimal strategy

* Two heuristics for pruning

110

How to reduce the overhead?

Model transmission

. Unified
memory management

Task initialization

Task cleaning

111

Unified memory management

Manage model parameters.
Allocate GPU memory.

Memor Pointer >
Daemon Offset
% GPU memory

112

How to reduce the overhead?

Model transmission
Memory allocation
Task initialization

Active-standby
worker switching
Task cleaning

113

Active-standby worker switching

Time
|
|
New Task | Init. | Execute | Clean
|

New Task Starts

114

Active-standby worker switching

Time

|
|

New Task | Init. | Init. | Execute | Clean
| 1 2

L

New Task Starts

115

Active-standby worker switching

Time

New Task

|
|
| Init. | Execute | Clean
I 2
Launch the process. t Allocate GPU memory.
Create CUDA context. New Task Starts

116

Active-standby worker switching

Time

1 2

New Task Starts

117

Implementation

* Testbed: AWS EC2
* p3.2xlarge: PCle 3.0x16, NVIDIA Tesla V100 GPU
e gddn.2xlarge: PCle 3.0x8, NVIDIA Tesla T4 GPU

e Software
 CUDA 10.1
* PyTorch 1.3.0

* Models
* ResNet-152
* Inception-v3
 BERT-base

118

Evaluation

* Can PipeSwitch satisfy SLOs?
* Can PipeSwitch provide high utilization?

* How well do the design choices of PipeSwitch work?

Evaluation

* Can PipeSwitch satisfy SLOs?

* Can PipeSwitch provide high utilization?

PipeSwitch satisfies SLOs

NVIDIA Tesla V100 NVIDIA Tesla T4
10000, HEE Ready model B MPS 100001 pumm Ready Model B MPS
8000 B PipeSwitch [Stop-and-start 2500 HEE PipeSwitch I Stop-and-start
#H000-+ o . = 000+ = . ==
€ 4001 £ 600+
5 5
§ 300 5 400
3 200 3
200 -
100 -

0- 0-
ResNet152 Inception_v3 Bert _base ResNet152 Inception_v3 Bert _base

PipeSwitch achieves low context switching latency.

PipeSwitch provide high utilization

)

N
o
o

| o PipeSwitch [Stop-and-start

300 MPS Upper bound

N
o
o

N
o
o

Throughput (batches/sec

o

1s 2s 5s 10s 30s

Scheduling cycles

PipeSwitch achieves near 100% utilization.

122

Summary

 GPU clusters for DL applications suffer from low utilization
* Limited share between training and inference workloads

e PipeSwitch introduces pipelined context switching
* Enable GPU-efficient multiplexing of DL apps with fine-grained time-sharing
* Achieve millisecond-scale context switching latencies and high throughput

123

