
Acknowledgments: Ion Stoica, Berkeley CS 162

Xin Jin
Spring 2023

Operating Systems
(Honor Track)

File System 2: File System Case Studies, Buffering

2

Recap: A Little Queuing Theory: Some Results (1/2)
• Assumptions:

– System in equilibrium; No limit to the queue
– Time between successive arrivals is random and memoryless

• Parameters that describe our system:
– l: mean number of arriving customers/second
– Tser: mean time to service a customer (“m”)
– C: squared coefficient of variance = s2/m2

– μ: service rate = 1/Tser
– u: server utilization (0£u£1): u = l/μ = l ´ Tser

• Parameters we wish to compute:
– Tq: Time spent in the queue
– Lq: Length of queue = l ´ Tq (by Little’s law)

Arrival Rate
l

Queue Server
Service Rate

μ=1/Tser

3

Recap: A Little Queuing Theory: Some Results (2/2)

• Parameters that describe our system:
– l: mean number of arriving customers/second l= 1/TA
– Tser: mean time to service a customer (“m”)
– C: squared coefficient of variance = s2/m2
– μ: service rate = 1/Tser
– u: server utilization (0£u£1): u = l/μ = l ´ Tser

• Parameters we wish to compute:
– Tq: Time spent in the queue
– Lq: Length of queue = l ´ Tq (by Little’s law)

• Results (M: Poisson arrival process, 1 server):
– Memoryless service time distribution (C = 1): Called an M/M/1 queue

» Tq= Tser x u/(1 – u)
– General service time distribution (no restrictions): Called an M/G/1 queue

» Tq = Tser x ½(1+C) x u/(1 – u)

Arrival Rate
l

Queue Server
Service Rate

μ=1/Tser

4

Recap: Disk Scheduling (1/3)
• Disk can do only one request at a time; What order do you choose to

do queued requests?

• FIFO Order
– Fair among requesters, but order of arrival may be

to random spots on the disk Þ Very long seeks
• SSTF: Shortest seek time first

– Pick the request that’s closest on the disk
– Although called SSTF, today must include

rotational delay in calculation, since
rotation can be as long as seek

– Con: SSTF good at reducing seeks, but
may lead to starvation

2,3
2,1
3,10
7,2
5,2
2,2 HeadUser

Requests

1

4

2

D
isk H

ead

3

cylinder
sector

5

Recap: Disk Scheduling (2/3)
• Disk can do only one request at a time; What order do you choose to

do queued requests?

• SCAN: Implements an Elevator Algorithm: take the closest request in
the direction of travel

– No starvation, but retains flavor of SSTF

2,3
2,1
3,10
7,2
5,2
2,2 HeadUser

Requests

6

Recap: Disk Scheduling (3/3)
• Disk can do only one request at a time; What order do you choose to

do queued requests?

• C-SCAN: Circular-Scan: only goes in one direction
– Skips any requests on the way back
– Fairer than SCAN, not biased towards pages in middle

2,3
2,1
3,10
7,2
5,2
2,2 HeadUser

Requests

7

Recap: Translation from User to System View

• What happens if user says: “give me bytes 2 – 12?”
– Fetch block corresponding to those bytes
– Return just the correct portion of the block

• What about writing bytes 2 – 12?
– Fetch block, modify relevant portion, write out block

• Everything inside file system is in terms of whole-size blocks
– Actual disk I/O happens in blocks
– read/write smaller than block size needs to translate and buffer

File
System

File
(Bytes)

8

CASE STUDY:
FAT: FILE ALLOCATION TABLE
• MS-DOS, 1977
• Still widely used!

9

File 31, Block 2File 31, Block 2

FAT (File Allocation Table)

• Assume (for now) we have a
way to translate a path to
a “file number”

– i.e., a directory structure

• Disk Storage is a collection of Blocks
– Just hold file data (offset o = < B, x >)

• Example: file_read 31, < 2, x >
– Index into FAT with file number
– Follow linked list to block
– Read the block from disk

into memory

File 31, Block 0
File 31, Block 1

Disk BlocksFAT

N-1:

0:0:

N-1:

31:

File number

memory

10

FAT (File Allocation Table)

• File is a collection of disk blocks
• FAT is a linked list with blocks
• File number is index of root of block

list for the file
• File offset: block number and offset

within block
• Follow list to get block number
• Unused blocks marked free

– Could require scan to find
– Or, could use a free list

File 31, Block 0
File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

31:

File number

memory

free

11

FAT (File Allocation Table)

• File is a collection of disk blocks
• FAT is a linked list with blocks
• File number is index of root of block

list for the file
• File offset: block number and offset

within block
• Follow list to get block number
• Unused blocks marked free

– Could require scan to find
– Or, could use a free list

• Ex: file_write(31, < 3, y >)
– Grab free block
– Linking them into file

File 31, Block 0
File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

31:

File number

memory

free
File 31, Block 3

12

File 31, Block 3

FAT (File Allocation Table)

• Where is FAT stored?
– On disk

• How to format a disk?
– Zero the blocks, mark FAT entries “free”

• How to quick format a disk?
– Mark FAT entries “free”

• Simple: can implement in device
firmware

File 31, Block 0
File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

31:

File #1

memory

free

File #2

13

FAT: Directories

• A directory is a file containing <file_name: file_number> mappings
• Free space for new/deleted entries
• In FAT: file attributes are kept in directory (!!!)

– Not directly associated with the file itself
• Each directory is a linked list of entries

– Requires linear search of directory to find particular entry
• Where do you find root directory (“/”)?

– At well-defined place on disk
– For FAT, this is at block 2 (there are no blocks 0 or 1)

14

File 31, Block 3

FAT Discussion

Suppose you start with the file number:
• Time to find block?
• Block layout for file?
• Sequential access?
• Random access?
• Fragmentation?
• Small files?
• Big files?

File 31, Block 0
File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

31:

File #1

memory

free

File #2

15

CASE STUDY:
UNIX FILE SYSTEM (BERKELEY FFS)

16

Inodes in Unix (Including Berkeley FFS)

• File Number (inumber) is index into an array of inodes (index structure)

• Each inode corresponds to a file and contains its metadata
– So, things like read/write permissions are stored with file, not in directory (like in FAT)
– Allows multiple names (directory entries) for a file

• Inode maintains a multi-level tree structure to find storage blocks for files
– Great for little and large files
– Asymmetric tree with fixed sized blocks

• Original inode format appeared in BSD 4.1 (more following)
– Berkeley Standard Distribution Unix!
– Similar structure for Linux Ext 2/3

17

Inode Structure

18

File Atributes

User
Group
9 basic access control bits

- UGO x RWX
SetUID bit

- execute at owner permissions
rather than user

SetGID bit
- execute at group’s permissions

19

Small Files: 12 Pointers Direct to Data Blocks

Direct pointers

4KB blocks Þ sufficient for
files up to 48KB

20

Large Files: 1-, 2-, 3-level indirect pointers
Indirect pointers
- point to a disk block

containing only pointers
- 4 KB blocks => 1024 ptrs

=> 4 MB @ level 2
=> 4 GB @ level 3
=> 4 TB @ level 4 48 KB

+4 MB

+4 GB

+4 TB

21

Putting it All Together: On-Disk Index
• Sample file in multilevel

indexed format:
– 10 direct ptrs, 1KB blocks

» 256 indirect blocks
» 2562 double indirect blocks
» 2563 triple indirect blocks

– How many accesses for
block #23? (assume file
header accessed on open)?

» Two: One for indirect block,
one for data

– How about block #5?
» One: One for data

– Block #340?
» Three: double indirect block,

indirect block, and data

22

CASE STUDY:
BERKELEY FAST FILE SYSTEM (FFS)

23

Fast File System (BSD 4.2, 1984)

• Same inode structure as in BSD 4.1
– Same file header and triply indirect blocks like we just studied
– Some changes to block sizes from 1024 Þ 4096 bytes for performance

• Paper on FFS: “A Fast File System for UNIX”
– Marshall McKusick, William Joy, Samuel Leffler and Robert Fabry

• Optimization for Performance and Reliability:
– Distribute inodes among different tracks to be closer to data
– Use bitmap allocation in place of freelist
– Attempt to allocate files contiguously
– 10% reserved disk space
– Skip-sector positioning

24

FFS Changes in Inode Placement: Motivation
• In early UNIX and DOS/Windows FAT file system, headers stored in special array in

outermost cylinders
– Fixed size, set when disk is formatted

» At formatting time, a fixed number of inodes are created
» Each is given a unique number, called an “inumber”

• Problem #1: Inodes all in one place (outer tracks)
– Head crash potentially destroys all files by destroying inodes
– Inodes not close to the data that they point to

» To read a small file, seek to get header, seek to get data

• Problem #2: When create a file, don’t know how big it will become (in UNIX, most
writes are by appending)

– How much contiguous space do you allocate for a file?
– Makes it hard to optimize for performance

25

FFS Locality: Block Groups
• The UNIX BSD 4.2 (FFS) distributed the header information (inodes) closer

to the data blocks
– Often, inode for file stored in same “cylinder group”

as parent directory of the file
– makes an “ls” of that directory run very fast

• File system volume divided into set of block groups
– Close set of tracks

• Data blocks, metadata, and free space
interleaved within block group

– Avoid huge seeks between user data and
system structure

• Put directory and its files in common block group

26

FFS Locality: Block Groups (Con’t)
• First-Free allocation of new file blocks

– To expand file, first try successive blocks in bitmap, then
choose new range of blocks

– Few little holes at start, big sequential runs at
end of group

– Avoids fragmentation
– Sequential layout for big files

• Important: keep 10% or more free!
– Reserve space in the Block Group

• Summary: FFS Inode Layout Pros
– For small directories, can fit all data, file headers,

etc. in same cylinder Þ no seeks!
– File headers much smaller than whole block

(a few hundred bytes), so multiple headers fetched from disk at same time
– Reliability: whatever happens to the disk, you can find many of the files (even if

directories disconnected)

27

UNIX 4.2 BSD FFS First Fit Block Allocation

• Fills in the small holes at the start of block group
• Avoids fragmentation, leaves contiguous free space at end

28

Attack of the Rotational Delay
• Problem 3: Missing blocks due to rotational delay

– Issue: Read one block, do processing, and read next block. In meantime, disk has continued
turning: missed next block! Need 1 revolution/block!

– Solution1: Skip sector positioning (“interleaving”)
» Place the blocks from one file on every other block of a track: give time for processing to overlap

rotation
» Can be done by OS or in modern drives by the disk controller

– Solution 2: Read ahead: read next block right after first, even if application hasn’t asked for it yet
» This can be done either by OS (read ahead)
» By disk itself (track buffers) - many disk controllers have internal RAM that allows them to read a

complete track
• Modern disks + controllers do many things “under the covers”

– Track buffers, elevator algorithms, bad block filtering

Skip Sector

Track Buffer
(Holds complete track)

29

UNIX 4.2 BSD FFS
• Pros

– Efficient storage for both small and large files
– Locality for both small and large files
– Locality for metadata and data
– No defragmentation necessary!

• Cons
– Inefficient for tiny files (a 1 byte file requires both an inode and a data block)
– Inefficient encoding when file is mostly contiguous on disk
– Need to reserve 10-20% of free space to prevent fragmentation

30

Hard Links
• Hard link

– Mapping from name to file number in the directory structure

– First hard link to a file is made when file created
– Create extra hard links to a file with the link() system call
– Remove links with unlink() system call

• When can file contents be deleted?
– When there are no more hard links to the file
– Inode maintains reference count for this purpose

/usr

/usr/lib4.3

/usr/lib4.3/foo

/usr/lib

31

Soft Links (Symbolic Links)
• Soft link or Symbolic Link or Shortcut

– Directory entry contains the path and name of the file
– Map one name to another name

• Contrast these two different types of directory entries:
– Normal directory entry: <file name, file #>
– Symbolic link: <file name, dest. file name>

• OS looks up destination file name each time program accesses
source file name

– Lookup can fail (error result from open)

• Unix: Create soft links with symlink syscall

32

Directory Traversal
• What happens when we open /home/pkuos/stuff.txt?
• “/” - inumber for root inode configured into kernel, say 2

– Read inode 2 from its position in inode array on disk
– Extract the direct and indirect block pointers
– Determine block that holds root directory (say block 49358)
– Read that block, scan it for “home” to get inumber for this

directory (say 8086)
• Read inode 8086 for /home, extract its blocks, read block (say

7756), scan it for “pkuos” to get its inumber (say 732)
• Read inode 732 for /home/pkuos, extract its blocks, read block

(say 12132), scan it for “stuff.txt” to get its inumber, say 9909
• Read inode 9909 for /home/pkuos/stuff.txt
• Set up file description to refer to this inode so reads / write can

access the data blocks referenced by its direct and indirect
pointers

• Check permissions on the final inode and each directory’s
inode…

“home”:8086

block 49358

2

8086 block 7756

“pkuos”:732

732 block 12132

“stuff.txt”:9909

9909
Blocks of
stuff.txt

inode

33

Large Directories

• Early file systems organize directories as:
– List of <file_name, inode> entries
– Array of <file_name, inode> entries

• Challenges
– Linear search: expensive
– Might need to read entire directory just to find a file: many disk accesses

34

Large Directories: B-Trees (dirhash)

in FreeBSD, NetBSD, OpenBSD

Recall B-Trees data structure

Points to
smaller values

Points to values between
itself and its left sibling

35

Large Directories: B-Trees (dirhash)

.
36210429

..
983211

!le1
239341

!le2
231121

...

...
!le9841
243212

out1
841013

out2
841014

...

...
out16341

324114
Name

File Number

B+Tree LeafB+Tree Leaf
...Hash

Entry Pointer
0000a0d1 0000b971 ... 0000c194

B+Tree Leaf

Before
Child Pointer

0000c195 00018201 ...
B+Tree Node

Before
Child Pointer

00ad1102 b0bf8201 ... c"1a412
B+Tree Root

B+Tree Node B+Tree Node
...

Search for hash(”out2”) = 0x0000c194

“out2” is !le 841014

in FreeBSD, NetBSD, OpenBSD

36

CASE STUDY:
WINDOWS NTFS

37

New Technology File System (NTFS)

• Default on modern Windows systems
• Variable length extents

– Rather than fixed blocks
• Instead of FAT or inode array: Master File Table

– Like a database, with max 1 KB size for each
table entry

– Everything (almost) is a sequence of
<attribute:value> pairs

» Meta-data and data
• Each entry in MFT contains metadata and:

– File’s data directly (for small files)
– A list of extents (start block, size) for file’s data
– For big files: pointers to other MFT entries with

more extent lists

38

NTFS Small File: Data stored with Metadata

Std. Info. File Name Data (resident) (free)

MFT Record (small !le)

Master File Table

Create time, modify time, access time,
Owner id, security specifier, flags (RO, hidden, sys)

data attribute

Attribute list

39

NTFS Medium File: Extents for File Data

40

NTFS Large File: Pointers to Other MFT Records

41

NTFS Huge, Fragmented File:
Many MFT Records

42

NTFS Directories

• Directories implemented as B Trees
• File's number identifies its entry in MFT
• MFT entry always has a file name attribute

– Human readable name, file number of parent dir
• Hard link? Multiple file name attributes in MFT entry

43

MEMORY MAPPED FILES

44

Memory Mapped Files

• Traditional I/O involves explicit transfers between buffers in process
address space to/from regions of a file

– This involves multiple copies into buffers in memory, plus system calls

• What if we could “map” the file directly into an empty region of our
address space

– Implicitly “page it in” when we read it
– Write it and “eventually” page it out

• Executable files are treated this way when we exec the process!!

45

Recall: Who Does What, When?

virtual address

MMU
PT

instruction

physical address
page#

frame#

offsetpage fault

Operating System

exception

Page Fault Handler

load page from disk

update PT entry

Process

scheduler

retry frame#

offset

46

Using Paging to mmap() Files

virtual address

MMU PTinstruction

physical address

page#
frame#

offset
page fault

Process

File

mmap() file to region of VAS

Create PT entries
for mapped region
as “backed” by file

Operating System

exception

Page Fault Handler

scheduler

retry

Read File
contents

from memory!

47

mmap() system call

• May map a specific region or let the system find one for you
– Tricky to know where the holes are

• Used both for manipulating files and for sharing between processes

48

An mmap() Example
#include <sys/mman.h> /* also stdio.h, stdlib.h, string.h, fcntl.h, unistd.h */

int something = 162;

int main (int argc, char *argv[]) {
int myfd;
char *mfile;

printf("Data at: %16lx\n", (long unsigned int) &something);
printf("Heap at : %16lx\n", (long unsigned int) malloc(1));
printf("Stack at: %16lx\n", (long unsigned int) &mfile);

/* Open the file */
myfd = open(argv[1], O_RDWR | O_CREAT);
if (myfd < 0) { perror("open failed!");exit(1); }

/* map the file */
mfile = mmap(0, 10000, PROT_READ|PROT_WRITE, MAP_FILE|MAP_SHARED, myfd, 0);
if (mfile == MAP_FAILED) {perror("mmap failed"); exit(1);}

printf("mmap at : %16lx\n", (long unsigned int) mfile);

puts(mfile);
strcpy(mfile+20,"Let's write over it");
close(myfd);
return 0;

}

OS chooses
starting address

Return starting
address

49

An mmap() Example
#include <sys/mman.h> /* also stdio.h, stdlib.h, string.h, fcntl.h, unistd.h */

int something = 162;

int main (int argc, char *argv[]) {
int myfd;
char *mfile;

printf("Data at: %16lx\n", (long unsigned int) &something);
printf("Heap at : %16lx\n", (long unsigned int) malloc(1));
printf("Stack at: %16lx\n", (long unsigned int) &mfile);

/* Open the file */
myfd = open(argv[1], O_RDWR | O_CREAT);
if (myfd < 0) { perror("open failed!");exit(1); }

/* map the file */
mfile = mmap(0, 10000, PROT_READ|PROT_WRITE, MAP_FILE|MAP_SHARED, myfd, 0);
if (mfile == MAP_FAILED) {perror("mmap failed"); exit(1);}

printf("mmap at : %16lx\n", (long unsigned int) mfile);

puts(mfile);
strcpy(mfile+20,"Let's write over it");
close(myfd);
return 0;

}

$./mmap test
Data at: 105d63058
Heap at : 7f8a33c04b70
Stack at: 7fff59e9db10
mmap at : 105d97000
This is line one
This is line two
This is line three
This is line four

$ cat test
This is line one
ThiLet's write over its line three
This is line four

50

Sharing through Mapped Files

• Also: anonymous memory between parents and children
– no file backing – just swap space

File

0x000…

0xFFF…

instructions

data

heap

stack

OS

0x000…

0xFFF…

instructions

data

heap

stack

OS

VAS 1 VAS 2

Memory

51

THE BUFFER CACHE

52

Buffer Cache
• Kernel must copy disk blocks to main memory to access their contents and write

them back if modified
– Could be data blocks, inodes, directory contents, etc.
– Possibly dirty (modified and not written back)

• Key Idea: Exploit locality by caching disk data in memory
– Name translations: mapping from paths ® inodes

– Disk blocks: mapping from block address ® disk content

• Buffer Cache: Memory used to cache kernel resources, including disk blocks and
name translations

– Can contain “dirty” blocks (with modifications not on disk)

53

File System Buffer Cache

• OS implements a
cache of disk blocks
for efficient access
to data, directories,
inodes, freemap

Memory

DiskData blocks

Dir Data blocks

iNodes

Free bitmap

file
desc

PCB
Reading

Writing

Blocks

State free free

54

File System Buffer Cache: open

• Directory lookup
repeat as needed:

– load block of
directory

– search for map

Memory

Blocks

State

Disk

Dir Data blocks

iNodes

Free bitmap

file
desc

PCB
Reading

Writing

free freerddir

Data blocks

55

File System Buffer Cache: open

• Directory lookup
repeat as needed:

– load block of
directory

– search for map
• Create reference via

open file descriptor

Memory

Blocks

State

DiskData blocks

Dir Data blocks

iNodes

Free bitmap

file
desc

PCB
Reading

Writing

free inode

<name>:inumber

dir rd

56

File System Buffer Cache: Read?

• Read Process
– From inode,

traverse index
structure to find
data block

– load data block
– copy all or part to

read data buffer

Memory

Blocks

State

DiskData blocks

Dir Data blocks

iNodes

Free bitmap

file
desc

PCB
Reading

Writing

free

<name>:inumber

dir inode

57

File System Buffer Cache: Write?

• Process similar to
read, but may
allocate new blocks
(update free map),
blocks need to be
written back to
disk; inode?

Memory

Blocks

State

DiskData blocks

Dir Data blocks

iNodes

Free bitmap

file
desc

PCB
Reading

Writing

free

<name>:inumber

dir inode

58

File System Buffer Cache: Eviction?

• Blocks being
written back to
disc go through a
transient state

Memory

Blocks

State

DiskData blocks

Dir Data blocks

iNodes

Free bitmap

file
desc

PCB
Reading

Writing

free

<name>:inumber

dir dirty inode

59

Buffer Cache Discussion
• Implemented entirely in OS software

– Unlike memory caches and TLB
• Blocks go through transitional states between free and in-use

– Being read from disk, being written to disk
• Blocks are used for a variety of purposes

– inodes, data for dirs and files, freemap
– OS maintains pointers into them

• Termination – e.g., process exit – open, read, write
• Replacement – what to do when it fills up?

60

File System Summary (1/2)
• File System:

– Transforms blocks into Files and Directories
– Optimize for size, access and usage patterns
– Maximize sequential access, allow efficient random access
– Projects the OS protection and security regime (UGO vs ACL)

• File defined by header, called “inode”
• Naming: translating from user-visible names to actual sys resources

– Directories used for naming for local file systems
– Linked or tree structure stored in files

• 4.2 BSD Multilevel Indexed Scheme
– inode contains file info, direct pointers to blocks, indirect blocks, doubly indirect,

etc..
– NTFS: variable extents not fixed blocks, tiny files data is in header

61

File System Summary (2/2)
• File layout driven by freespace management

– Optimizations for sequential access: start new files in open ranges of free blocks,
rotational optimization

– Integrate freespace, inode table, file blocks and dirs into block group

• Deep interactions between mem management, file system, sharing

– mmap(): map file or anonymous segment to memory
• Buffer Cache: Memory used to cache kernel resources, including disk blocks and

name translations
– Can contain “dirty” blocks (blocks yet on disk)

