Operating Systems
(Honor Track)

File System 3: Buffering, Reliability, and Transactions

Xin Jin
Spring 2023

Acknowledgments: lon Stoica, Berkeley CS 162

Recap: FAT (File Allocation Table)

e Assume (for now) we have a

way to translate a path to
a “file number”

— i.e., a directory structure
e Disk Storage is a collection of Blocks
— Just hold file data (offset 0o =< B, x >)
e Example: file_read 31,<2,x>
— Index into FAT with file number
— Follow linked list to block

— Read the block from disk
into memory

memory

0:

File number \
31

N-1:

FAT

1]

Disk Blocks

File 31, Block O

File 31, Block |

File 31, Block 2

N-1:

Inode Array

Recap: Inode Structure

File”
Metadata

Direct
Pointers

Indirect i’olnter
Dbl. Indirect Ptr.

Tripl. Indrect Ptr:

Inode

Triple Double

Indirect Indirect Indirect Data
Blocks Blocks Blocks Blocks

Recap: FFS Locality: Block Groups
e The UNIX BSD 4.2 (FFS) distributed the header information (inodes) closer

to the data blocks

— Often, inode for file stored in same “cylinder group”
as parent directory of the file

— makes an “Is” of that directory run very fast
e File system volume divided into set of block groups

— Close set of tracks

e Data blocks, metadata, and free space
interleaved within block group

— Avoid huge seeks between user data and
system structure

e Put directory and its files in common block group

Block Group 0)

Block Group 1

Block Group 2%'%0
A

N '-' % ‘.:O- ! >-
I' !) }; "% ! &
' = | o
o | | - K -
l_ﬂ, 2 [o
o | | | - | I c
%‘n ?i | _." :: .'. g | "‘1 |
| % | g, ..' V?‘ lu '53 .o
ﬁ’\ 6) y, @ :'I" 'SJ :l' 5 “' ..'
A CoLE fos
') 94 ‘4'-. .. o N \\Qa Q\" N . "V] J V’I‘
T RN oW dL c?
6 DR CIs = P v, &
AN Blocks fot ;ST
S T Yy,
' o o S
IGS /) e N v
G W R,
gy Y
e T R
0% _gs®

Recap: UNIX 4.2 BSD FFS First Fit Block Allocation

In-Use Free
Start of Block Block

Block EEEEN
Group

Start of Write Two Block File
Block ERLED

Start of Write Larg\c'e File

Recap: New Technology File System (NTFS)

Default on modern Windows systems
Variable length extents

— Rather than fixed blocks eter Pile Tebie |E| |t| |t| MIRRIRRNARINR
Instead of FAT or inode array: Master File Table e ANRNRENAR
— Like a database, with max 1 KB size for each — ST
table entry
— Everything (almost) is a sequence of N
<attribute:value> pairs el me e giliiiidiiniininninnnanaing
» Meta-data and data ST
. . Large file recorxd |
Each entry in MFT contains metadata and: cmall dizectory zecord]| | Extent 3

il lRNNRINEERINND

— File’s data directly (for small files)
— A list of extents (start block, size) for file’s data

— For big files: pointers to other MFT entries with
more extent lists

Recap: Sharing through Mapped Files

VAS |

instructions

data

heapl

0x000...

OxFFF...

VAS 2

File _L

Memory

knstructioL\s

data

heapl

e Also: anonymous memory between parents and children
— no file backing — just swap space

0x000...

OxFFF...

Recap: Buffer Cache

e Kernel must copy disk blocks to main memory to access their contents and write
them back if modified

— Could be data blocks, inodes, directory contents, etc.
— Possibly dirty (modified and not written back)
e Key ldea: Exploit locality by caching disk data in memory
— Name translations: mapping from paths — inodes
— Disk blocks: mapping from block address — disk content

e Buffer Cache: Memory used to cache kernel resources, including disk blocks and
name translations

— Can contain “dirty” blocks (with modifications not on disk)

Recap: Buffer Cache Discussion

Implemented entirely in OS software
— Unlike memory caches and TLB
Blocks go through transitional states between free and in-use
— Being read from disk, being written to disk
Blocks are used for a variety of purposes
— inodes, data for dirs and files, freemap
— OS maintains pointers into them

Termination —e.g., process exit — open, read, write

Replacement — what to do when it fills up?

File System Caching

e Replacement policy?
— LRU. Can afford overhead for full LRU implementation.

— Advantages:

» Works well in general as long as memory is big enough to accommodate a host’s
working set of files.

— Disadvantages:

» Fails when some application scans through file system, thereby flushing the cache with
data used only once

e Other replacement policies?
— Some systems allow applications to request other policies

— Example, ‘Use Once’:
» File system can discard blocks as soon as they are used

10

File System Caching (con’t)

e Cache Size: How much memory should the OS allocate to the buffer cache vs virtual
memory?

— Too much memory to the file system cache = won’t be able to run many applications

— Too little memory to file system cache = many applications may run slowly (disk
caching not effective)

— Solution: adjust boundary dynamically so that the disk access rates for paging and file
access are balanced

11

File System Prefetching

e Read Ahead Prefetching: fetch sequential blocks early

— Key Idea: exploit fact that most common file access is sequential by prefetching
subsequent disk blocks ahead of current read request

— Elevator algorithm can efficiently interleave prefetches from concurrent
applications

e How much to prefetch?
— Too much prefetching imposes delays on requests by other applications

— Too little prefetching causes many seeks (and rotational delays) among concurrent
file requests

12

Delayed Writes

Buffer cache is a writeback cache (writes are termed “Delayed Writes”)

write() copies data from user space to kernel buffer cache
— Quick return to user space

read() is fulfilled by the cache, so reads see the results of writes
— Even if the data has not reached disk

When does data from a write syscall finally reach disk?
— When the buffer cache is full (e.g., we need to evict something)
— When the buffer cache is flushed periodically (in case we crash)

13

Delayed Writes (Advantages)

Performance advantage: return to user quickly without writing to disk!

Disk scheduler can efficiently order lots of requests

— Elevator Algorithm can rearrange writes to avoid random seeks
Delay block allocation:

— May be able to allocate multiple blocks at same time for file, keep them contiguous
Some files never actually make it all the way to disk

— Many short-lived files!

14

Buffer Caching vs. Demand Paging

e Demand paging
— LRU is infeasible; use approximation (like Clock)
— Evict not-recently-used pages when memory is close to full

e Buffer Cache
— LRU is OK

— Buffer Cache: write back dirty blocks periodically, even if used recently
» Why? To minimize data loss in case of a crash

15

Dealing with Persistent State

e Buffer Cache: write back dirty blocks periodically, even if used recently
— Why? To minimize data loss in case of a crash
— Linux does periodic flush every 30 seconds

e Not foolproof! Can still crash with dirty blocks in the cache

— What if the dirty block was for a directory?
» Lose pointer to file’s inode (leak space)
» File system now in inconsistent state ®

Takeaway: File systems need
recovery mechanisms

16

Important “ilities”

e Availability: the probability that the system can accept and process requests

— Measured in “nines” of probability: e.g. 99.9% probability is “3-nines of availability”
— Key idea here is independence of failures

e Durability: the ability of a system to recover data despite faults
— This idea is fault tolerance applied to data

— Doesn’t necessarily imply availability: data in disk is durable, but cannot be accessed when
the machine is down

e Reliability: the ability of a system or component to perform its required functions
under stated conditions for a specified period of time (IEEE definition)

— Usually stronger than simply availability: means that the system is not only “up”, but also
working correctly

— Includes availability, security, fault tolerance/durability
— Must make sure data survives system crashes, disk crashes, other problems

17

HOW TO MAKE FILE SYSTEMS MORE DURABLE?

18

How to Make File Systems more Durable?

e Disk blocks contain Reed-Solomon error correcting codes (ECC) to deal with small
defects in disk drive

— Can allow recovery of data from small media defects

e Make sure writes survive in short term
— Either abandon delayed writes or

— Use special, battery-backed RAM (called non-volatile RAM or NVRAM) for dirty blocks in
buffer cache

e Make sure that data survives in long term
— Need to replicate! More than one copy of data!
— Important element: independence of failure
» Could put copies on one disk, but if disk head fails...
» Could put copies on different disks, but if server fails...
» Could put copies on different servers, but if building is struck by lightning....
» Could put copies on servers in different continents...

19

RAID

e RAID: Redundant array of inexpensive/independent disks

e Goal: reliability, performance, capacity

e Data storage virtualization
— Build a logical disk drive from multiple physical disk drives
— Better reliability, performance and capacity than a single physical drive

20

RAID 1: Disk Mirroring/Shadowing

<—_lecovery

group

o O

Each disk is fully duplicated onto its “shadow”

— For high 1/0 rate, high availability environments
— Most expensive solution: 100% capacity overhead

Bandwidth sacrificed on write:

— Logical write = two physical writes

— Highest bandwidth when disk heads
and rotation synchronized (challenging)

Reads may be optimized

— Can have two independent reads to same data

Recovery:

— Disk failure = replace disk and copy data to new disk

OO

Write

Eé AND\@

Read

$ &

— Hot Spare: idle disk attached to system for immediate replacement

21

RAID 5+: High 1/0O Rate Parity

Data stripped across multiple disks

— Successive blocks stored on successive
(non-parity) disks

— Increased bandwidth over single disk

Parity block (in green) constructed
by XORing data bocks in stripe
— PO=D0OPD1DD2®D3

— Can destroy any one disk and still
reconstruct data

Suppose Disk 3 fails, then can reconstruct:
D2=D0®D1®D3DPO

Can spread information widely across internet for durability

— RAID algorithms work over geographic scale

Stripe Unit
o P
DO DI D2 D3 PO
Increasing
D4 D5 6 Pl D7 Logical
Disk
D8 D9 DIO DI | Addresses
D12 P3 D14 DI5
P4 D16 I DI8 D19
D20] | D2l D2 D23 P5
Disk | Disk2 Disk3 Disk4 Disk5

22

RAID 6 and other Erasure Codes

In general: RAIDX is an “erasure code”
— Must have ability to know which disks are bad
— Treat missing disk as an “Erasure”
Today, disks so big that: RAID 5 not sufficient!
— Time to repair disk sooooo long, another disk might fail in process!
— “RAID 6” — allow 2 disks in replication stripe to fail
— Requires more complex erasure code, such as EVENODD code
More general option for general erasure code: Reed-Solomon codes
- m data fragments
— generate n - m extra fragments
— can tolerate n — m failures

Erasure codes not just for disk arrays. For example, geographic replication

— E.g., split data into m = 4 fragments, generate n = 16 fragments and distribute across
Internet

— Any 4 fragments can be used to recover the original data --- very durable!

23

Higher Durability through Geographic Replication

Highly durable — hard to destroy all copies
Highly available for reads

— Simple replication: read any copy
— Erasure coded: read m of n

Low availability for writes
— Can’t write if any one replica is not up
— Or — need relaxed consistency model

Reliability? — availability, security, durability, fault-tolerance

Replica/Frag #1

i Replica/Frag #2

Replica/Frag #n

25

HOW TO MAKE FILE SYSTEMS MORE RELIABLE?

26

File System Reliability:
(Difference from Block-level reliability)

What can happen if disk loses power or software crashes?
— Some operations in progress may complete
— Some operations in progress may be lost
— Overwrite of a block may only partially complete

Having RAID doesn’t necessarily protect against all such failures
— No protection against writing bad state
— What if one disk of RAID group not written?

File system needs durability (as a minimum!)

— Data previously stored can be retrieved (maybe after some recovery step), regardless
of failure

But durability is not quite enough...!

27

Storage Reliability Problem

e Single logical file operation can involve updates to multiple physical disk
blocks

— inode, indirect block, data block, bitmap, ...

— With sector remapping, single update to physical disk block can require multiple
(even lower level) updates to sectors

e At a physical level, operations complete one at a time

— Want concurrent operations for performance

e How do we guarantee consistency regardless of when crash occurs?

28

Threats to Reliability

e Interrupted Operation

— Crash or power failure in the middle of a series of related updates may leave stored data in
an inconsistent state

— Example: transfer funds from one bank account to another

— What if transfer is interrupted after withdrawal and before deposit?

e |Loss of stored data

— Failure of non-volatile storage media may cause previously stored data to disappear or be
corrupted

29

Two Reliability Approaches

Careful Ordering and Recovery Versioning and Copy-on-Write

e FAT & FFS + fsck e /FS, ...

e Each step builds structure e Version files at some granularity

e Data block <= inode <= free <= directory e Create new structure linking back to
e Last step links it in to rest of FS unchanged parts of old

e Recover scans structure looking for * Laststepis to declare that the new

incomplete actions version is ready

30

Reliability Approach #1: Careful Ordering

e Sequence operations in a specific order
— Careful design to allow sequence to be interrupted safely

e Post-crash recovery

— Read data structures to see if there were any operations in progress
— Clean up/finish as needed

e Approach taken by
— FAT and FFS (fsck) to protect file system structure/metadata
— Many app-level recovery schemes (e.g., Word, emacs autosaves)

31

Question

e Assume you need to store
— A piece of data
— A directory entry / pointer for the data

e Assume each of these operations is atomic

e Which one you should write first ? Data or Pointer ?

32

Berkeley FFS: Create a File

Normal operation:

Allocate data block
Write data block
Allocate inode
Write inode block

Update bitmap of free blocks and
inodes

Update directory with file name —
inode number

Update modify time for directory

Recovery:

e Scan inode table

e If any unlinked files (not in any

directory), delete or put in lost &
found dir

e Compare free block bitmap against
inode trees

e Scan directories for missing
update/access times

Time proportional to disk size

33

Reliability Approach #2: Copy on Write File Layout

Recall: multi-level index structure lets us find the data blocks of a file

Instead of over-writing existing data blocks and updating the index structure:
— Create a new version of the file with the updated data
— Reuse blocks that don’t change much of what is already in place
— This is called: Copy On Write (COW)

Seems expensive! But
— Updates can be batched
— Almost all disk writes can occur in parallel

Approach taken in network file server appliances
— NetApp’s Write Anywhere File Layout (WAFL)
— ZFS (Sun/Oracle) and OpenZFS

34

COW with Smaller-Radix Blocks

old version new version

L

y
éaz“ s

e |f file represented as a tree of bIocks, jUSt need to
update the leading fringe

Example: ZFS and OpenZFS

Variable sized blocks: 512 B— 128 KB
Symmetric tree
— Know if it is large or small when we make the copy
Store version number with pointers
— Can create new version by adding blocks and new pointers
Buffers a collection of writes before creating a new version with them
Free space represented as tree of extents in each block group

— Delay updates to free space (in log) and do them all when block group is activated

36

More General Reliability Solutions

e Use Transactions for atomic updates
— Ensure that multiple related updates are performed atomically

— i.e., if a crash occurs in the middle, the state of the systems reflects either all or none of
the updates

— Most modern file systems use transactions internally to update filesystem structures and
metadata

— Many applications implement their own transactions

e Provide Redundancy for media failures
— Redundant representation on media (Error Correcting Codes)
— Replication across media (e.g., RAID disk array)

37

Transactions

e Closely related to critical sections for manipulating shared data structures

e They extend concept of atomic update from memory to stable storage
— Atomically update multiple persistent data structures

e Many ad-hoc approaches

— FFS carefully ordered the sequence of updates so that if a crash occurred while
manipulating directory or inodes the disk scan on reboot would detect and recover
the error (fsck)

— Applications use temporary files and rename

38

Key Concept: Transaction

e A transaction is an atomic sequence of reads and writes that takes the system from
consistent state to another.

.] transaction .
consistent state | J consistent state 2

e Recall: Code in a critical section appears atomic to other threads

e Transactions extend the concept of atomic updates from memory to persistent
storage

39

Typical Structure

e Begin a transaction — get transaction id

e Do a bunch of updates

— If any fail along the way, roll-back
— Or, if any conflicts with other transactions, roll-back

e Commit the transaction

40

“Classic” Example: Transaction

BEGIN; --BEGIN TRANSACTION
UPDATE accounts SET balance = balance - 100.00 WHERE
name = 'Alice’;

UPDATE branches SET balance = balance - 100.00 WHERE
name = (SELECT branch_name FROM accounts WHERE name
= 'Alice');

UPDATE accounts SET balance = balance + 100.00 WHERE
name = 'Bob’;

UPDATE branches SET balance = balance + 100.00 WHERE

name = (SELECT branch_name FROM accounts WHERE name
= 'Bob');

COMMIT, --COMMIT WORK

Transfer $100 from Alice’s account to Bob’s account

41

Concept of a log

e One simple action is atomic — write/append a basic item
e Use that to seal the commitment to a whole series of actions

Start Tran N
Get 10$ from account A
Get 7% from account B
Get 3% from account C
Put I5% into account X
Put 15% into accountY

Commit Tran N

42

Transactional File Systems

e Better reliability through use of log
— Changes are treated as transactions
— A transaction is committed once it is written to the log

» Data forced to disk for reliability
» Process can be accelerated with NVRAM

— Although File system may not be updated immediately, data preserved in the log

e Difference between “Log Structured” and “Journaled”

— In a Log Structured filesystem, data stays in log form
— In a Journaled filesystem, Log used for recovery

43

File System Summary

Buffer Cache: Memory used to cache kernel resources, including disk blocks and
name translations

— Can contain “dirty” blocks (blocks yet on disk)

File system operations involve multiple distinct updates to blocks on disk
— Need to have all or nothing semantics
— Crash may occur in the midst of the sequence

Traditional file system perform check and recovery on boot

— Along with careful ordering so partial operations result in loose fragments, rather than
loss

Copy-on-write provides richer function (versions) with much simpler recovery
— Little performance impact since sequential write to storage device is nearly free

44

