
Acknowledgments: Ion Stoica, Berkeley CS 162

Xin Jin
Spring 2024

Operating Systems
(Honor Track)

Synchronization 2: Lock Implementation

2

Recap: Keshav’s Three-Pass Approach
• A ten-minute scan to get the general idea

– Title, abstract, and introduction
– Section and subsection titles
– Conclusion and bibliography

• A more careful, one-hour reading
– Read with greater care, but ignore details like proofs
– Figures, diagrams, and illustrations
– Mark relevant references for later reading

• Several-hour virtual re-implementation of the work
– Making the same assumptions, recreate the work
– Identify the paper’s innovations and its failings
– Identify and challenge every assumption
– Think how you would present the ideas yourself
– Jot down ideas for future work

3

Recap: Context Switch

Privilege Level: 0 - sysPrivilege Level: 3 - user Privilege Level: 3 - user

4

Recap: The Core of Concurrency: the Dispatch Loop

• Conceptually, the scheduling loop of the operating system looks as follows:

Loop {
RunThread();
ChooseNextThread();
SaveStateOfCPU(curTCB);
LoadStateOfCPU(newTCB);

}

• This is an infinite loop
– One could argue that this is all that the OS does

5

Recap: ATM Bank Server

• ATM server problem:
– Service a set of requests
– Do so without corrupting database
– Don’t hand out too much money

6

Thread C

• Identify critical sections (atomic instruction sequences) and add locking:
Deposit(acctId, amount) {

acquire(&mylock) // Wait if someone else in critical section!
acct = GetAccount(actId);
acct->balance += amount;
StoreAccount(acct);
release(&mylock) // Release someone into critical section

}

• Must use SAME lock (mylock) with all of the methods (Withdraw, etc…)
– Shared with all threads!

Thread AThread B

Thread A

Recap: Fix banking problem with Locks!

Thread A Thread C

Thread B

Thread B

Critical Section

acquire(&mylock)

release(&mylock)
Critical Section

Threads serialized by lock
through critical section.
Only one thread at a time

7

Recap: Producer-Consumer with a Bounded Buffer
• Problem Definition

– Producer(s) put things into a shared buffer
– Consumer(s) take them out
– Need synchronization to coordinate producer/consumer

• Don’t want producer and consumer to have to work in lockstep, so put a
fixed-size buffer between them

– Need to synchronize access to this buffer
– Producer needs to wait if buffer is full
– Consumer needs to wait if buffer is empty

• Example: Coke machine
– Producer can put limited number of Cokes in machine
– Consumer can’t take Cokes out if machine is empty

• Others: Web servers, Routers, ….

Consumer
Consumer

Producer ConsumerBuffer
Producer

8

mutex buf_lock = <initially unlocked>

Producer(item) {
acquire(&buf_lock);
while (buffer full) {}; // Wait for a free slot
enqueue(item);
release(&buf_lock);

}

Consumer() {
acquire(&buf_lock);
while (buffer empty) {}; // Wait for arrival
item = dequeue();
release(&buf_lock);
return item;

}

Will we ever come out of
the wait loop?

Recap: Circular Buffer – first cut

9

mutex buf_lock = <initially unlocked>

Producer(item) {
acquire(&buf_lock);
while (buffer full) {release(&buf_lock); acquire(&buf_lock);}
enqueue(item);
release(&buf_lock);

}

Consumer() {
acquire(&buf_lock);
while (buffer empty) {release(&buf_lock); acquire(&buf_lock);}
item = dequeue();
release(&buf_lock);
return item;

}

What happens when one
is waiting for the other?

Recap: Circular Buffer – 2nd cut

10

Recall: Semaphores
• Semaphores are a kind of generalized lock

– First defined by Dijkstra in late 60s
– Main synchronization primitive used in original UNIX

• Definition: a Semaphore has a non-negative integer value and supports the
following two operations:
– Down() or P(): an atomic operation that waits for semaphore to become positive,

then decrements it by 1
» Think of this as the wait() operation

– Up() or V(): an atomic operation that increments the semaphore by 1, waking up a
waiting P, if any

» This of this as the signal() operation
– Note that P() stands for “proberen” (to test) and V() stands for “verhogen” (to

increment) in Dutch

11

Group Discussion

• Topic: Circular Buffer
– How to implement it with locks?
– How to implement it with semaphores?
– What are the pros and cons of each solution?

• Discuss in groups of two to three students
– Each group chooses a leader to summarize the discussion
– In your group discussion, please do not dominate the discussion, and give

everyone a chance to speak

Producer(item) {
enqueue(item);

}

Consumer() {
item = dequeue();
return item;

}

12

Revisit Bounded Buffer: Correctness constraints for solution

• Correctness Constraints:
– Consumer must wait for producer to fill buffers, if none full (scheduling constraint)
– Producer must wait for consumer to empty buffers, if all full (scheduling constraint)
– Only one thread can manipulate buffer queue at a time (mutual exclusion)

• Remember why we need mutual exclusion
– Because computers are stupid
– Imagine if in real life: the delivery person is filling the machine and somebody

comes up and tries to stick their money into the machine
• General rule of thumb: Use a separate semaphore for each constraint

– Semaphore fullBuffers; // consumer’s constraint
– Semaphore emptyBuffers;// producer’s constraint
– Semaphore mutex; // mutual exclusion

13

Semaphore fullSlots = 0; // Initially, no coke
Semaphore emptySlots = bufSize;

// Initially, num empty slots
Semaphore mutex = 1; // No one using machine

Producer(item) {
semaP(&emptySlots); // Wait until space
semaP(&mutex); // Wait until machine free
Enqueue(item);
semaV(&mutex);
semaV(&fullSlots); // Tell consumers there is

// more coke
}
Consumer() {

semaP(&fullSlots); // Check if there’s a coke
semaP(&mutex); // Wait until machine free
item = Dequeue();
semaV(&mutex);
semaV(&emptySlots); // tell producer need more
return item;

}

fullSlots signals coke

emptySlots
signals space

Full Solution to Bounded Buffer (coke machine)

Critical sections
using mutex
protect integrity of
the queue

14

Discussion about Solution

• Why asymmetry?
– Producer does: semaP(&emptySlots), semaV(&fullSlots)
– Consumer does: semaP(&fullSlots), semaV(&emptySlots)

• Is order of P’s important?
– Yes! Can cause deadlock

• Is order of V’s important?
– No, except that it might

affect scheduling efficiency
• What if we have 2 producers

or 2 consumers?
– Do we need to change anything?
– No

Decrease # of
empty slots

Increase # of
occupied slots

Increase # of
empty slots

Decrease # of
occupied slots

Producer(item) {
semaP(&mutex);
semaP(&emptySlots);
Enqueue(item);
semaV(&mutex);
semaV(&fullSlots);

}
Consumer() {
semaP(&fullSlots);
semaP(&mutex);
item = Dequeue();
semaV(&mutex);
semaV(&emptySlots);
return item;

}

15

Hardware

Higher-
level
API

Programs

Where are we going with synchronization?

• We are going to implement various higher-level synchronization
primitives using atomic operations

– Everything is pretty painful if only atomic primitives are load and store
– Need to provide primitives useful at user-level

Load/Store Disable Ints Test&Set Compare&Swap

Locks Semaphores Monitors Send/Receive

Shared Programs

16

Motivating Example: “Too Much Milk”
• Great thing about OS’s – analogy between problems in

OS and problems in real life
– Help you understand real life problems better
– But, computers are much stupider than people

• Example: People need to coordinate:

Arrive home, put milk away3:30
Buy milk3:25
Arrive at storeArrive home, put milk away3:20
Leave for storeBuy milk3:15

Leave for store3:05
Look in Fridge. Out of milk3:00

Look in Fridge. Out of milkArrive at store3:10

Person BPerson ATime

17

Recall: What is a lock?
• Lock: prevents someone from doing something

– Lock before entering critical section and before accessing shared data
– Unlock when leaving, after accessing shared data
– Wait if locked

» Important idea: all synchronization involves waiting

• For example: fix the milk problem by putting a key on the refrigerator
– Lock it and take key if you are going to go buy milk
– Fixes too much: roommate angry if only wants orange juice

• Of Course – We don’t know how to make a lock yet
– Let’s see if we can answer this question!

#$@%@#$@

18

Too Much Milk: Correctness Properties

• Need to be careful about correctness of concurrent programs, since non-
deterministic

– Impulse is to start coding first, then when it doesn’t work, pull hair out
– Instead, think first, then code
– Always write down behavior first

• What are the correctness properties for the “Too much milk” problem???
– Never more than one person buys
– Someone buys if needed

• First attempt: Restrict ourselves to use only atomic load and store operations
as building blocks

19

• Use a note to avoid buying too much milk:
– Leave a note before buying (kind of “lock”)
– Remove note after buying (kind of “unlock”)
– Don’t buy if note (wait)

• Suppose a computer tries this (remember, only memory read/write are
atomic):

if (noMilk) {
if (noNote) {

leave Note;
buy Milk;
remove Note;

}
}

Too Much Milk: Solution #1

20

Too Much Milk: Solution #1
• Use a note to avoid buying too much milk:

– Leave a note before buying (kind of “lock”)
– Remove note after buying (kind of “unlock”)
– Don’t buy if note (wait)

• Suppose a computer tries this (remember, only memory read/write are atomic):

Thread A Thread B
if (noMilk) {

if (noMilk) {
if (noNote) {

if (noNote) {
leave Note;
buy Milk;
remove Note;

}
}

leave Note;
buy Milk;
remove Note;

}
}

21

Too Much Milk: Solution #1
• Use a note to avoid buying too much milk:

– Leave a note before buying (kind of “lock”)
– Remove note after buying (kind of “unlock”)
– Don’t buy if note (wait)

• Suppose a computer tries this (remember, only memory read/write are atomic):
if (noMilk) {

if (noNote) {
leave Note;
buy Milk;
remove Note;

}
}

• Result?
– Still too much milk but only occasionally!
– Thread can get context switched after checking milk and note but before buying milk!

• Solution makes problem worse since fails intermittently
– Makes it really hard to debug…
– Must work despite what the dispatcher does!

22

Too Much Milk: Solution #1½
• Clearly the Note is not quite blocking enough

– Let’s try to fix this by placing note first
• Another try at previous solution:

leave Note;
if (noMilk) {

if (noNote) {
buy Milk;

}
}
remove Note;

• What happens here?
– Well, with human, probably nothing bad
– With computer: no one ever buys milk

23

Too Much Milk Solution #2
• How about labeled notes?

– Now we can leave note before checking
• Algorithm looks like this:

Thread A Thread B
leave Note A; leave Note B;
if (noNote B) { if (noNote A) {

if (noMilk) { if (noMilk) {
buy Milk; buy Milk;

} }
} }
remove Note A; remove Note B;

• Does this work?
• Possible for neither thread to buy milk

– Context switches at exactly the wrong times can lead each to think that the
other is going to buy

• Really insidious:
– Extremely unlikely this would happen, but will at worse possible time
– Probably something like this in UNIX

24

Too Much Milk Solution #2: problem!

• I’m not getting milk, You’re getting milk
• This kind of lockup is called “starvation!”

25

Too Much Milk Solution #3
• Here is a possible two-note solution:

Thread A Thread B
leave Note A; leave Note B;
while (Note B) {\\X if (noNote A) {\\Y

do nothing; if (noMilk) {
} buy Milk;
if (noMilk) { }

buy Milk; }
} remove Note B;
remove Note A;

• Does this work? Yes. Both can guarantee that:
– It is safe to buy, or
– Other will buy, ok to quit

• At X:
– If no note B, safe for A to buy,
– Otherwise wait to find out what will happen

• At Y:
– If no note A, safe for B to buy
– Otherwise, A is either buying or waiting for B to quit

26

Case 1

leave Note B;
if (noNote A) {\\Y

if (noMilk) {
buy Milk;

}
}
remove Note B;

happened
before

leave Note A;
while (Note B) {\\X

do nothing;
};

if (noMilk) {
buy Milk;}

}
remove Note A;

• “leave note A” happens before “if (noNote A)”

27

leave Note A;
while (Note B) {\\X

do nothing;
};

if (noMilk) {
buy Milk;}

}
remove Note A;

Case 1

leave Note B;
if (noNote A) {\\Y

if (noMilk) {
buy Milk;

}
}
remove Note B;

happened
before

• “leave note A” happens before “if (noNote A)”

28

leave Note A;
while (Note B) {\\X

do nothing;
};

if (noMilk) {
buy Milk;}

}
remove Note A;

Case 1

leave Note B;
if (noNote A) {\\Y

if (noMilk) {
buy Milk;

}
}
remove Note B;

Wait for
note B to be
removed

happened
before

• “leave note A” happens before “if (noNote A)”

29

Case 2

leave Note B;
if (noNote A) {\\Y

if (noMilk) {
buy Milk;

}
}
remove Note B;

happened

beforeleave Note A;
while (Note B) {\\X

do nothing;
};

if (noMilk) {
buy Milk;}

}
remove Note A;

• “if (noNote A)” happens before “leave note A”

30

Case 2

leave Note B;
if (noNote A) {\\Y

if (noMilk) {
buy Milk;

}
}
remove Note B;

happened

beforeleave Note A;
while (Note B) {\\X

do nothing;
};

if (noMilk) {
buy Milk;

}
remove Note A;

• “if (noNote A)” happens before “leave note A”

31

Case 2

leave Note B;
if (noNote A) {\\Y

if (noMilk) {
buy Milk;

}
}
remove Note B;

happened

beforeleave Note A;
while (Note B) {\\X

do nothing;
};

if (noMilk) {
buy Milk;

}
remove Note A;

• “if (noNote A)” happens before “leave note A”

Wait for
note B to be
removed

32

Solution #3 discussion
• Our solution protects a single “Critical-Section” piece of code for each thread:

if (noMilk) {
buy milk;

}

• Solution #3 works, but it’s really unsatisfactory
– Really complex – even for this simple an example

» Hard to convince yourself that this really works
– A’s code is different from B’s – what if lots of threads?

» Code would have to be slightly different for each thread
– While A is waiting, it is consuming CPU time

» This is called “busy-waiting”
• There’s got to be a better way!

– Have hardware provide higher-level primitives than atomic load & store
– Build even higher-level programming abstractions on this hardware support

33

Summary

• Synchronization: using atomic operations to ensure cooperation between threads
• Mutual Exclusion: ensuring that only one thread does a particular thing at a time

– One thread excludes the other while doing its task

• Critical Section: piece of code that only one thread can execute at once. Only one
thread at a time will get into this section of code

• Locks: synchronization mechanism for enforcing mutual exclusion on critical
sections to construct atomic operations

• Semaphores: synchronization mechanism for enforcing resource constraints
• Important concept: Atomic Operations

– An operation that runs to completion or not at all
– These are the primitives on which to construct various synchronization primitives

