
Acknowledgments: Ion Stoica, Berkeley CS 162

Xin Jin
Spring 2024

Operating Systems
(Honor Track)

Scheduling 2: Case Studies, Fairness, Real Time, and
Forward Progress

2

Recap: First-Come, First-Served (FCFS) Scheduling
• First-Come, First-Served (FCFS)

– Also “First In, First Out” (FIFO) or “Run until done”
» In early systems, FCFS meant one program

scheduled until done (including I/O)
» Now, means keep CPU until thread blocks

• Example: Process Burst Time
P1 24
P2 3
P3 3

– Suppose processes arrive in the order: P1 , P2 , P3
The Gantt Chart for the schedule is:

– Waiting time for P1 = 0; P2 = 24; P3 = 27
– Average waiting time: (0 + 24 + 27)/3 = 17
– Average completion time: (24 + 27 + 30)/3 = 27

• Head-of-line blocking: short process stuck behind long process

P1 P2 P3

24 27 300

3

• FCFS Scheme: Potentially bad for short jobs!
– Depends on submit order
– If you are first in line at supermarket with milk, you don’t care

who is behind you, on the other hand…
• Round Robin Scheme: Preemption!

– Each process gets a small unit of CPU time
(time quantum), usually 10-100 milliseconds

– After quantum expires, the process is preempted
and added to the end of the ready queue.

– n processes in ready queue and time quantum is q Þ
» Each process gets 1/n of the CPU time
» In chunks of at most q time units
» No process waits more than (n-1)q time units

Recap: Round Robin (RR) Scheduling

4

• Execution Plan
– Always execute highest-priority runable jobs to completion
– Each queue can be processed in RR with some time-quantum

• Problems:
– Starvation:

» Lower priority jobs don’t get to run because higher priority jobs
– Deadlock: Priority Inversion

» Happens when low priority task has lock needed by high-priority task
» Usually involves third, intermediate priority task preventing high-priority task from running

• How to fix problems?
– Dynamic priorities: adjust base-level priority up or down based on heuristics about

interactivity, locking, burst behavior, etc…

Priority 3

Priority 2

Priority 1

Priority 0 Job 5 Job 6

Job 1 Job 2 Job 3

Job 7

Job 4

Recap: Handling Differences in Importance: Strict Priority Scheduling

5

Recap: What if we Knew the Future?
• Could we always mirror best FCFS?
• Shortest Job First (SJF):

– Run whatever job has least amount of
computation to do

– Sometimes called “Shortest Time to Completion First” (STCF)
• Shortest Remaining Time First (SRTF):

– Preemptive version of SJF: if job arrives and has a shorter time to
completion than the remaining time on the current job, immediately
preempt CPU

– Sometimes called “Shortest Remaining Time to Completion First”
(SRTCF)

• These can be applied to whole program or current CPU burst
– Idea is to get short jobs out of the system
– Big effect on short jobs, only small effect on long ones
– Result is better average completion time

6

Recap: Lottery Scheduling
• Yet another alternative: Lottery Scheduling

– Give each job some number of lottery tickets
– On each time slice, randomly pick a winning ticket
– On average, CPU time is proportional to number of tickets

given to each job
• How to assign tickets?

– To approximate SRTF, short running jobs get more, long running jobs get fewer
– To avoid starvation, every job gets at least one ticket (everyone makes progress)

• Advantage over strict priority scheduling: behaves gracefully as load changes
– Adding or deleting a job affects all jobs proportionally, independent of how many

tickets each job possesses

7

Recap: Multi-Level Feedback Scheduling

• Another method for exploiting past behavior (first use in CTSS)
– Multiple queues, each with different priority

» Higher priority queues often considered “foreground” tasks
– Each queue has its own scheduling algorithm

» e.g. foreground – RR, background – FCFS
» Sometimes multiple RR priorities with quantum increasing exponentially

(highest:1ms, next: 2ms, next: 4ms, etc)
• Adjust each job’s priority as follows (details vary)

– Job starts in highest priority queue
– If timeout expires, drop one level
– If timeout doesn’t expire, push up one level (or to top)

Long-Running Compute
Tasks Demoted to

Low Priority

8

Scheduling Details

• Result approximates SRTF:
– CPU bound jobs drop like a rock
– Short-running I/O bound jobs stay near top

• Scheduling must be done between the queues
– Fixed priority scheduling:

» serve all from highest priority, then next priority, etc.
– Time slice:

» each queue gets a certain amount of CPU time
» e.g., 70% to highest, 20% next, 10% lowest

Long-Running Compute
Tasks Demoted to

Low Priority

9

Scheduling Details

• Countermeasure: user action that can foil intent of the OS designers
– For multilevel feedback, put in a bunch of meaningless I/O to keep job’s priority high
– Of course, if everyone did this, wouldn’t work!

• Example of Othello program:
– Playing against competitor, so key was to do computing at higher priority than the

competitors.
» Put in printf’s, run much faster!

Long-Running Compute
Tasks Demoted to

Low Priority

10

• Consider mix of interactive and high throughput apps:
– How to best schedule them?
– How to recognize one from the other?

» Do you trust app to say that it is “interactive”?
– Should you schedule the set of apps identically on servers, workstations,

pads, and cellphones?
• For instance, is Burst Time (observed) useful to decide which application gets CPU

time?
– Short Bursts Þ Interactivity Þ High Priority?

• Assumptions encoded into many schedulers:
– Apps that sleep a lot and have short bursts must be interactive apps –

they should get high priority
– Apps that compute a lot should get low(er?) priority, since they won’t notice

intermittent bursts from interactive apps
• Hard to characterize apps:

– What about apps that sleep for a long time, but then compute for a long time?
– Or, what about apps that must run under all circumstances (say periodically)

How to Handle Simultaneous Mix of Diff Types of Apps?

11

Multi-Core Scheduling

• Algorithmically, not a huge difference from single-core scheduling

• Implementation-wise, helpful to have per-core scheduling data structures
– Cache coherence

• Affinity scheduling: once a thread is scheduled on a CPU, OS tries to reschedule it
on the same CPU

– Cache reuse

12

Spinlocks for multiprocessing
• Spinlock implementation:

int value = 0; // Free
Acquire() {

while (test&set(&value)) {}; // spin while busy
}
Release() {

value = 0; // atomic store
}

• Spinlock doesn’t put the calling thread to sleep—it just busy waits
– When might this be preferable?

» Waiting for limited number of threads at a barrier in a multiprocessing (multicore) program
» Wait time at barrier would be greatly increased if threads must be woken inside kernel

• Every test&set() is a write, which makes value ping-pong around between core-local caches
– So – really want to use test&test&set() !

• The extra read eliminates the ping-ponging issues:
// Implementation of test&test&set():
Acquire() {

do {
while(value); // wait until might be free

} while (test&set(&value)); // exit if acquire lock
}

13

Gang Scheduling and Parallel Applications

• When multiple threads work together on a multi-core system, try to schedule
them together

– Makes spin-waiting more efficient (inefficient to spin-wait for a thread that’s
suspended)

• Alternative: OS informs a parallel program how many processors its threads are
scheduled on (Scheduler Activations)

– Application adapts to number of cores that it has scheduled
– “Space sharing” with other parallel programs can be more efficient, because parallel

speedup is often sublinear with the number of cores

14

So, Does the OS Schedule Processes or Threads?

• Many textbooks use the “old model”—one thread per process
• Usually it's really: threads (e.g., in Linux)

• One point to notice: switching threads vs. switching processes incurs different
costs:

– Switch threads: Save/restore registers
– Switch processes: Change active address space too!

» Expensive
» Disrupts caching

15

Real-Time Scheduling
• Goal: Predictability of Performance!

– We need to predict with confidence worst case response times for systems!
– In RTS, performance guarantees are:

» Task- and/or class centric and often ensured a priori
– In conventional systems, performance is:

» System/throughput oriented with post-processing (… wait and see …)
– Real-time is about enforcing predictability; does not equal fast computing!!!

• Hard real-time: for time-critical safety-oriented systems
– Meet all deadlines (if at all possible)
– Ideally: determine in advance if this is possible (admission control)
– Earliest Deadline First (EDF), Rate-Monotonic Scheduling (RMS), Deadline Monotonic

Scheduling (DM)
• Soft real-time: for multimedia

– Attempt to meet deadlines with high probability
– Constant Bandwidth Server (CBS)

16

Example: Workload Characteristics
• Tasks are preemptable, independent with arbitrary arrival (=release) times
• Tasks have deadlines (D) and known computation times (C)
• Example Setup:

17

Example: Round-Robin Scheduling Doesn’t Work

Time

18

• Tasks i is periodic with period Pi and computation Ci in each period: (𝑃!, 𝐶!) for each
task 𝑖

• Preemptive priority-based dynamic scheduling:
– Each task is assigned a (current) priority based on how close the absolute deadline is (i.e.
𝐷!"#$ = 𝐷!" + 𝑃! for each task!)

– The scheduler always schedules the active task with the closest absolute deadline

Earliest Deadline First (EDF)

0 5 10 15

)1,4(1 =T

)2,5(2 =T

)2,7(3 =T

19

EDF Feasibility Testing

• Even EDF won’t work if you have too many tasks
• For 𝑛 tasks with computation time 𝐶𝑖 and deadline 𝐷𝑖, a feasible schedule exists

if:

!
!"#

$
𝐶!
𝐷!

≤ 1

1
4
+
2
5
+
2
7
= 0.936 ≤ 1

20

Ensuring Progress
• Starvation: thread fails to make progress for an indefinite period of time

• Starvation ≠ Deadlock
– Deadlock: cyclic requests for resources

• Let’s explore what sorts of problems we might encounter and how to avoid them…

21

Strawman: Non-Work-Conserving Scheduler

• A work-conserving scheduler is one that does not leave the CPU idle when there
is work to do

• A non-work-conserving scheduler could trivially lead to starvation

• In this class, we’ll assume that the scheduler is work-conserving (unless stated
otherwise)

22

Strawman: Last-Come, First-Served (LCFS)

• Stack (LIFO) as a scheduling data structure
– Late arrivals get fast service
– Early ones wait – extremely unfair
– In the worst case – starvation

• When would this occur?
– When arrival rate (offered load) exceeds service rate (delivered load)
– Queue builds up faster than it drains

• Queue can build in FIFO too, but “serviced in the order received”…

23

Is FCFS Prone to Starvation?

• If a task never yields (e.g., goes into an infinite loop), then other tasks
don’t get to run
• Problem with all non-preemptive schedulers…

• And early personal OSes such as original MacOS, Windows 3.1, etc.

time
Sc

he
du

lin
g

Q
ue

ue

Scheduled Task (process, thread)

24

Is Round Robin (RR) Prone to Starvation?

• Each of N processes gets ~1/N of CPU (in window)
– With quantum length Q ms, process waits at most

(N-1)*Q ms to run again
– So a process can’t be kept waiting indefinitely

• So RR is fair in terms of waiting time
– Not necessarily in terms of throughput…

25

Is Priority Scheduling Prone to Starvation?
• Recall: Priority Scheduler always runs the

thread with highest priority
– Low priority thread might never run!
– Starvation…

• But there are more serious problems as well…
– Priority inversion: even high priority threads might become starved

Priority 3

Priority 2

Priority 1

Priority 0 Job 5 Job 6

Job 1 Job 2 Job 3

Job 7

Job 4

26

Priority Inversion

• At this point, which job does the scheduler choose?
• Job 3 (Highest priority)

Priority 3

Priority 2

Priority 1 Job 1

Job 3

Job 2

Acquire()

27

Priority Inversion

• Job 3 attempts to acquire lock held by Job 1

Priority 3

Priority 2

Priority 1 Job 1

Job 3

Job 2

Acquire()

28

Priority Inversion

• At this point, which job does the scheduler choose?
• Job 2 (Medium Priority)
• Priority Inversion

Priority 3

Priority 2

Priority 1 Job 1

Job 3

Job 2

Blocked on Acquire

29

Priority Inversion

• Where high priority task is blocked waiting on low priority task
• Low priority one must run for high priority to make progress
• Medium priority task can starve a high priority one

• When else might priority lead to starvation or “live lock”?

lock.acquire(…)
…
lock.release(…)

Low Priority

while (try_lock) {
…
}

High Priority

30

One Solution: Priority Donation/Inheritance

• Job 3 temporarily grants Job 1 its “high priority” to run on its behalf

Priority 3

Priority 2

Priority 1 Job 1

Job 3

Job 2

Acquire()

31

One Solution: Priority Donation/Inheritance

• Job 3 temporarily grants Job 1 its “high priority” to run on its behalf

Priority 3

Priority 2

Priority 1

Job 1

Job 3

Job 2

Blocked on Acquire

Release()

32

One Solution: Priority Donation/Inheritance

• Job 1 completes critical section and releases lock
• Job 3 acquires lock, runs again

Priority 3

Priority 2

Priority 1 Job 1

Job 3

Job 2

Acquire()

33

• July 4, 1997 – Pathfinder lands on Mars
– First US Mars landing since Vikings in 1976; first rover
– Novel delivery mechanism: inside air-filled balloons

bounced to stop on the surface from orbit!
• And then…a few days into mission…:

– Multiple system resets occur to realtime OS (VxWorks)
– System would reboot randomly, losing valuable time and progress

• Problem? Priority Inversion!
– Low priority task grabs mutex trying to

communicate with high priority task
– Realtime watchdog detected lack of forward progress and invoked reset to safe state

» High-priority data distribution task was supposed to complete with regular deadline

• Solution: Turn priority donation back on and upload fixes!
• Original developers turned off priority donation (also called priority inheritance)

– Worried about performance costs of donating priority!

Case Study: Martian Pathfinder Rover

Priority 2
Priority 1
Priority 0 ASI/MET collector : grab lock

Lots of random medium stuff
Data Distribution Task: needs lock

34

Are SRTF and MLFQ Prone to Starvation?

• In SRTF, long jobs are starved in favor of short ones
– Same fundamental problem as priority scheduling

• MLFQ is an approximation of SRTF, so it suffers from the same problem

Long-Running Compute
Tasks Demoted to

Low Priority

35

Cause for Starvation: Priorities?

• Most of policies we’ve studied so far:
– Always prefer to give the CPU to a prioritized job
– Non-prioritized jobs may never get to run

• But priorities were a means, not an end
• Our end goal was to serve a mix of CPU-bound, I/O bound, and Interactive jobs

effectively on common hardware
– Give the I/O bound ones enough CPU to issue their next file operation and wait (on

those slow discs)
– Give the interactive ones enough CPU to respond to an input and wait (on those slow

humans)
– Let the CPU bound ones grind away without too much disturbance

36

Recall: Changing Landscape…

years

Computers
Per Person

103:1

1:106

Laptop

PDA

Mainframe

Mini

Workstation
PC

Cell

1:1

1:103

Mote!

Bell’s Law: New
computer class every
10 years

The Internet of
Things!

Number
crunching, Data
Storage, Massive
Inet Services,
ML, …

Productivity,
Interactive

Streaming
from/to the
physical world

37

Changing Landscape of Scheduling

• Priority-based scheduling rooted in “time-sharing”
– Allocating precious, limited resources across a diverse workload

» CPU bound vs. interactive vs. I/O bound

• 80’s brought about personal computers, workstations, and servers on networks
– Different machines of different types for different purposes
– Shift to fairness and avoiding extremes (starvation)

• 90’s emergence of the web, rise of internet-based services, the data-center-is-
the-computer

– Server consolidation, massive clustered services, huge flashcrowds
– It’s about predictability, 95th percentile performance guarantees

38

Priority in Unix – Being Nice
• The industrial operating systems of the 60s and 70s provided priority to enforce

desired usage policies.
– When it was being developed at Berkeley, instead it provided ways to “be nice”.

• nice values range from -20 to 19
– Negative values are “not nice”
– If you wanted to let your friends get more time, you would nice up your job

• Scheduler puts higher nice-value tasks (lower priority) to sleep more …
– In O(1) scheduler, this translated fairly directly to priority (and time slice)

39

Case Study: Linux O(1) Scheduler

• Priority-based scheduler: 140 priorities
– 40 for “user tasks” (set by “nice”), 100 for “Realtime/Kernel”
– Lower nice value Þ higher priority
– Higher nice value Þ lower priority
– All algorithms O(1)

» Timeslices/priorities/interactivity credits all compute when job finishes time slice
» 140-bit bit mask indicates presence or absence of job at given priority level

• Two separate priority queues: “active” and “expired”
– All tasks in the active queue use up their timeslices and get placed on the expired queue,

after which queues swapped
• Timeslice depends on priority – linearly mapped onto timeslice range

– Like a multi-level queue (one queue per priority) with different timeslice at each level
– Execution split into “Timeslice Granularity” chunks – round robin through priority

Kernel/Realtime Tasks User Tasks

0 100 139

40

Linux O(1) Scheduler

• Lots of ad-hoc
heuristics
–Try to boost priority

of I/O-bound tasks
–Try to boost priority

of starved tasks

41

O(1) Scheduler Continued
• Heuristics

– User-task priority adjusted ±5 based on heuristics
» Pàsleep_avg = (sleep_time – run_time) x coefficient
» Higher sleep_avg Þ more I/O bound the task, more reward (and vice versa)

– Interactive Credit
» Earned when a task sleeps for a “long” time
» Spend when a task runs for a “long” time
» IC is used to provide hysteresis to avoid changing interactivity for temporary changes in behavior

– However, “interactive tasks” get special dispensation
» To try to maintain interactivity
» Placed back into active queue, unless some other task has been starved for too long…

• Real-Time Tasks
– Always preempt non-RT tasks
– No dynamic adjustment of priorities
– Scheduling schemes:

» SCHED_FIFO: preempts other tasks, no timeslice limit
» SCHED_RR: preempts normal tasks, RR scheduling amongst tasks of same priority

42

Proportional-Share Scheduling

• Instead using priorities, share the CPU proportionally
– Give each job a share of the CPU according to its priority
– Low-priority jobs get to run less often
– But all jobs can at least make progress (no starvation)

43

Recall: Lottery Scheduling

• Given a set of jobs (the mix), provide each with a share of a resource
– e.g., 50% of the CPU for Job A, 30% for Job B, and 20% for Job C

• Idea: Give out tickets according to the proportion each should receive,
• Every quantum (tick): draw one at random, schedule that job (thread) to run

timeQ i Q i+1

44

Lottery Scheduling: Simple Mechanism

• 𝑁𝑡𝑖𝑐𝑘𝑒𝑡 = ∑Ni
• Pick a number 𝑑 in 1 . . 𝑁𝑡𝑖𝑐𝑘𝑒𝑡 as the

random “dart”
• Jobs record their Ni of allocated tickets
• Order them by Ni
• Select the first j such that ∑Ni up to j exceeds

d.

1

10

45

Linux Completely Fair Scheduler (CFS)
• Basic Idea: track CPU time per thread and schedule threads

to match up average rate of execution
• Scheduling Decision:

– “Repair” illusion of complete fairness
– Choose thread with minimum CPU time
– Closely related to Fair Queueing

• Use a heap-like scheduling queue for this…
– O(log N) to add/remove threads, where N is number

of threads
• Sleeping threads don’t advance their CPU time, so they get

a boost when they wake up again…
– Get interactivity automatically!

C
PU

 Tim
e

T1
T2

T3

1
𝑁

CFS: Average rate of
execution = "

#
:

46

• In addition to fairness, we want low waiting time and starvation freedom
– Make sure that everyone gets to run at least a bit!

• Constraint 1: Target Latency
– Period of time over which every process gets service
– Quanta = Target_Latency / n (n: number of processes)

• Target Latency: 20 ms, 4 Processes
– Each process gets 5ms time slice

• Target Latency: 20 ms, 200 Processes
– Each process gets 0.1ms time slice (!!!)
– Recall Round-Robin: large context switching overhead if slice gets to small

Linux CFS: Responsiveness/Starvation Freedom

47

Linux CFS: Throughput

• Goal: Throughput
– Avoid excessive overhead

• Constraint 2: Minimum Granularity
– Minimum length of any time slice

• Target Latency 20 ms, Minimum Granularity 1 ms, 100 processes
– Each process gets 1 ms time slice

48

Linux CFS: Proportional Shares
• What if we want to give more CPU to some and less to others in CFS (proportional

share) ?
– Allow different threads to have different rates of execution (cycles/time)

• Use weights: assign a weight wi to each process i to compute the switching quanta
Qi

– Basic equal share: 𝑄𝑖 = Target Latency ⋅ $
+

– Weighted Share: 𝑄! = .,!
∑"," ⋅ Target Latency

• Reuse nice value to reflect share, rather than priority
– Remember that lower nice value Þ higher priority
– CFS uses nice values to scale weights exponentially: Weight=1024/(1.25)nice

» Two CPU tasks separated by nice value of 5 Þ
Task with lower nice value has 3 times the weight, since (1.25)5 » 3

49

Choosing the Right Scheduler

I Care About: Then Choose:

CPU Throughput

Avg. CompletionTime

I/O Throughput

Fairness (CPU Time)

Fairness
(Wait Time to Get CPU)

Meeting Deadlines

Favoring Important Tasks

50

Choosing the Right Scheduler

I Care About: Then Choose:

CPU Throughput FCFS

Avg. CompletionTime SRTF Approximation

I/O Throughput SRTF Approximation

Fairness (CPU Time) Linux CFS

Fairness
(Wait Time to Get CPU)

Round Robin

Meeting Deadlines EDF

Favoring Important Tasks Priority

51

How to Evaluate a Scheduling algorithm?
• Deterministic modeling

– takes a predetermined workload and compute the performance of each algorithm
for that workload

• Queueing models
– Mathematical approach for handling stochastic workloads

• Implementation/Simulation:
– Build system which allows actual algorithms

to be run against actual data
– Most flexible/general

52

A Final Word On Scheduling
• When do the details of the scheduling policy and fairness really matter?

– When there aren’t enough resources to go around
• When should you simply buy a faster computer?

– (Or network link, or expanded highway, or …)
– One approach: Buy it when it will pay for itself in improved response time

» Perhaps you’re paying for worse response time in reduced
productivity, customer angst, etc…

» Might think that you should buy a faster X when X is utilized 100%,
but usually, response time goes to infinity as utilizationÞ100%

• An interesting implication of this curve:
– Most scheduling algorithms work fine in the “linear” portion of

the load curve, fail otherwise
– Argues for buying a faster X when hit “knee” of curve

Utilization

R
esponse
tim

e 100%

53

Summary (1 of 2)
• Scheduling Goals:

– Minimize Completion Time (e.g. for human interaction)
– Maximize Throughput (e.g. for large computations)
– Fairness (e.g. Proper Sharing of Resources)
– Predictability (e.g. Hard/Soft Realtime)

• Round-Robin Scheduling:
– Give each thread a small amount of CPU time when it executes; cycle between all ready

threads
– Pros: Better for short jobs

• Shortest Job First (SJF)/Shortest Remaining Time First (SRTF):
– Run whatever job has the least amount of computation to do/least remaining amount of

computation to do
• Multi-Level Feedback Scheduling:

– Multiple queues of different priorities and scheduling algorithms
– Automatic promotion/demotion of process priority in order to approximate SJF/SRTF

54

Summary (2 of 2)
• Realtime Schedulers such as EDF

– Guaranteed behavior by meeting deadlines
– Realtime tasks defined by tuple of compute time and period
– Schedulability test: is it possible to meet deadlines with proposed set of processes?

• Lottery Scheduling:
– Give each thread a priority-dependent number of tokens (short tasksÞmore tokens)

• Linux CFS Scheduler: Fair fraction of CPU
– Approximates an “ideal” multitasking processor
– Practical example of “Fair Queueing”

