
Acknowledgments: Ion Stoica, Berkeley CS 162

Xin Jin
Spring 2024

Operating Systems
(Honor Track)

Memory 2: Virtual Memory (Con’t), Caching and TLBs

2

Recap: Base and Bound (with Translation)

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

Program
address

Base Address

Bound <

1000…

1100…
0100…

• Hardware relocation
• Can the program touch OS?
• Can it touch other programs?

0010…

Addresses translated
on-the-fly

1010…
code

Static Data

heap

stack

0000…

0100…

Original Program

3

Recap: Implementation of Multi-Segment Model

• Segment map resides in processor
– Segment number mapped into base/limit pair
– Base added to offset to generate physical address
– Error check catches offset out of range

• As many chunks of physical memory as entries
– Segment addressed by portion of virtual address
– However, could be included in instruction instead:

» x86 Example: mov [es:bx],ax.
• What is “V/N” (valid / not valid)?

– Can mark segments as invalid; requires check as well

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

OffsetSeg #Virtual
Address

Base2 Limit2 V

+ Physical
Address

> Erroroffset

Check Valid

Access
Error

4

Physical Address

Offset

Recap: How to Implement Simple Paging?

• Page Table (One per process)
– Resides in physical memory
– Contains physical page and permission for each virtual page (e.g. Valid bits, Read, Write, etc.)

• Virtual address mapping
– Offset from Virtual address copied to Physical Address

» Example: 10 bit offset Þ 1024-byte pages
– Virtual page # is all remaining bits

» Example for 32-bits: 32-10 = 22 bits, i.e. 4 million entries
» Physical page # copied from table into physical address

– Check Page Table bounds and permissions

OffsetVirtual
Page #Virtual Address:

Access Error

>PageTableSize

PageTablePtr page #0

page #2
page #3
page #4
page #5

V,R

page #1 V,R

V,R,W

V,R,W

N

V,R,W

page #1 V,R

Check Perm

Access
Error

Physical
Page #

5

Recap: Page Table Discussion
• What needs to be switched on a context switch?

– Page table pointer and limit
• What provides protection here?

– Translation (per process) and dual-mode!
– Can’t let process alter its own page table!

• Analysis
– Pros

» Simple memory allocation
» Easy to share

– Con: What if address space is sparse?
» E.g., on UNIX, code starts at 0, stack starts at (231-1)
» With 4KB pages, need 1 million page table entries!

– Con: What if table really big?
» Not all pages used all the time Þ would be nice to have working set of page table

in memory
• Simple Page table is way too big!

– Does it all need to be in memory?
– How about multi-level paging?
– or combining paging and segmentation

6

How to Structure a Page Table

• Page Table is a map (function) from VPN to PPN

• Simple page table corresponds to a very large lookup table
– VPN is index into table, each entry contains PPN

• What other map structures can you think of?
– Trees?
– Hash Tables?

Page
TableVirtual Address Physical Address

7

Physical
Address:

OffsetPhysical
Page #

4KB

10 bits 10 bits 12 bits
Virtual
Address:

OffsetVirtual
P2 index

Virtual
P1 index

4 bytes

PageTablePtr

• Tree of Page Tables
– “Magic” 10b-10b-12b pattern!

• Tables fixed size (1024 entries)
– On context-switch: save single PageTablePtr register (i.e.

CR3)
• Valid bits on Page Table Entries

– Don’t need every 2nd-level table
– Even when exist, 2nd-level tables can reside on disk if not in

use
4 bytes

Fix for sparse address space: The two-level page table

8

Page Table Entry (PTE)
• What is in a Page Table Entry (or PTE)?

– Pointer to next-level page table or to actual page
– Flags: valid, read-only, read-write, write-only, etc.

• How do we use the PTE?
– Invalid PTE can imply different things:

» Region of address space is actually invalid or
» Page/directory is just somewhere else than memory

– Validity checked first
» OS can use other bits for location info

9

Page Table Entry (PTE)
• Usage Example: Demand Paging

– Keep only active pages in memory
– Place others on disk and mark their PTEs invalid

• Usage Example: Copy on Write
– UNIX fork gives copy of parent address space to child

» Address spaces disconnected after child created
– How to do this cheaply?

» Make copy of parent’s page tables (point at same memory)
» Mark entries in both sets of page tables as read-only
» Page fault on write creates two copies

• Usage Example: Zero Fill On Demand
– New data pages must carry no information (say be zeroed)
– Mark PTEs as invalid; page fault on use gets zeroed page
– Often, OS creates zeroed pages in background

10

Sharing with multilevel page tables

• Entire regions of the address space
can be efficiently shared

OffsetPhysical
Page #

4KB

10 bits 10 bits 12 bits
Virtual
Address:

OffsetVirtual
P2 index

Virtual
P1 index

PageTablePtr

PageTablePtr’

11

stack

Summary: Two-Level Paging

1111 1111
stack

heap

code

data

Virtual memory view

0000 0000

0100 0000

1000 0000

1100 0000

page1 # offset

Physical memory view

data

code

heap

stack

0000 0000
0001 0000

0101 000

0111 000

1110 0000

page2 #

111
110 null
101 null
100
011 null
010
001 null
000

11 11101
10 11100
01 10111
00 10110

11 01101
10 01100
01 01011
00 01010

11 00101
10 00100
01 00011
00 00010

11 null
10 10000
01 01111
00 01110

Page Tables
(level 2)

Page Table
(level 1)

1111 0000

12

stack

Summary: Two-Level Paging

stack

heap

code

data

Virtual memory view

1001 0000
(0x90)

Physical memory view

data

code

heap

stack

0000 0000
0001 0000

1000 0000
(0x80)

1110 0000

111
110 null
101 null
100
011 null
010
001 null
000

11 11101
10 11100
01 10111
00 10110

11 01101
10 01100
01 01011
00 01010

11 00101
10 00100
01 00011
00 00010

11 null
10 10000
01 01111
00 01110

Page Tables
(level 2)

Page Table
(level 1)

13

Offset

Physical Address

• What about a tree of tables?
– Lowest level page table Þ memory still allocated with bitmap
– Higher levels often segmented

• Could have any number of levels. Example (top segment):

• What must be saved/restored on context switch?
– Contents of top-level segment registers (for this example)
– Pointer to top-level table (page table)

Multi-level Translation: Segments + Pages

page #0
page #1

page #3
page #4
page #5

V,R

V,R

page #2 V,R,W

V,R,W

N

V,R,W

Virtual
Address:

OffsetVirtual
Page #

Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

Base2 Limit2 V

Access
Error>

page #2 V,R,W

Physical
Page #

Check Permissions

Access
Error

14

What about Sharing (Complete Segment)?
Process A: OffsetVirtual

Page #
Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

Base2 Limit2 V

page #0
page #1
page #2
page #3
page #4
page #5

V,R

V,R

V,R,W

V,R,W

N

V,R,W

Shared Segment

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

Base2 Limit2 V

Process B: OffsetVirtual
Page #

Virtual
Seg #

15

Physical
Address:
(40-50 bits)

12bit OffsetPhysical Page #

X86_64: Four-level page table!
9 bits 9 bits 12 bits

48-bit Virtual
Address: OffsetVirtual

P2 index
Virtual
P1 index

8 bytes

PageTablePtr

Virtual
P3 index

Virtual
P4 index

9 bits 9 bits

4096-byte pages (12 bit offset)
Page tables also 4k bytes (pageable)

16

7 bits 9 bits 12 bits64bit
Virtual

Address:
OffsetVirtual

P2 index
Virtual
P1 index

Virtual
P3 index

Virtual
P4 index

9 bits 9 bits
Virtual
P5 index

Virtual
P6 index

9 bits 9 bits

No!

Too slow
Too many almost-empty tables

IA64: 64bit addresses: Six-level page table?!?

17

Group Discussion

• Topic: multi-level translation
– What are the pros and cons of multi-level translation?

• Discuss in groups of two to three students
– Each group chooses a leader to summarize the discussion
– In your group discussion, please do not dominate the discussion, and give

everyone a chance to speak

18

Multi-level Translation Analysis
• Pros:

– Only need to allocate as many page table entries as we need for application
» In other words, sparse address spaces are easy

– Easy memory allocation
– Easy Sharing

» Share at segment or page level (need additional reference counting)
• Cons:

– One pointer per page (typically 4K – 16K pages today)
– Page tables need to be contiguous

» However, the 10b-10b-12b configuration keeps tables to exactly one page
in size

– Two (or more, if >2 levels) lookups per reference
» Seems very expensive!

19

Recall: Dual-Mode Operation
• Can a process modify its own translation tables? NO!

– If it could, could get access to all of physical memory (no protection!)
• To Assist with Protection, Hardware provides at least two modes (Dual-Mode Operation):

– “Kernel” mode (or “supervisor” or “protected”)
– “User” mode (Normal program mode)
– Mode set with bit(s) in control register only accessible in Kernel mode
– Kernel can easily switch to user mode; User program must invoke an exception of some sort to get

back to kernel mode
• Note that x86 model actually has more modes:

– Traditionally, four “rings” representing priority; most OSes use only two:
» Ring 0 Þ Kernel mode, Ring 3 Þ User mode
» Called “Current Privilege Level” or CPL

– Newer processors have additional mode for hypervisor (“Ring -1”)
• Certain operations restricted to Kernel mode:

– Modifying page table base, and segment descriptor tables
» Have to transition into Kernel mode before you can change them!

– Also, all page-table pages must be mapped only in kernel mode

20

• With all previous examples (“Forward Page Tables”)
– Size of page table is at least as large as amount of virtual memory allocated to

processes
– Physical memory may be much less

» Much of process space may be out on disk or not in use

• Answer: use a hash table
– Called an “Inverted Page Table”
– Size is independent of virtual address space
– Directly related to amount of physical memory
– Very attractive option for 64-bit address spaces

» PowerPC, UltraSPARC, IA64
• Cons:

– Complexity of managing hash chains: Often in hardware!
– Poor cache locality of page table

Alternative: Inverted Page Table

OffsetVirtual
Page #

Hash
Table

OffsetPhysical
Page #

by

21

Group Discussion

• Topic: simple segmentation, paging (single-level), paged
segmentation, multi-level paging, inverted page tables

– What are the pros and cons of each solution?

• Discuss in groups of two to three students
– Each group chooses a leader to summarize the discussion
– In your group discussion, please do not dominate the discussion, and give

everyone a chance to speak

22

Address Translation Comparison

Advantages Disadvantages

Simple Segmentation Fast context switching (segment
map maintained by CPU) Internal/External fragmentation

Paging (Single-Level) No external fragmentation
Fast and easy allocation

Large table size (~ virtual
memory)
Internal fragmentation

Paged Segmentation Table size ~ # of pages in virtual
memory
Fast and easy allocation

Multiple memory references per
page accessMulti-Level Paging

Inverted Page Table Table size ~ # of pages in
physical memory

Hash function more complex
No cache locality of page table

23

How is the Translation Accomplished?

• The MMU must translate virtual address to physical address on:
– Every instruction fetch
– Every load
– Every store

• What does the MMU need to do to translate an address?
– 1-level Page Table

» Read PTE from memory, check valid, merge address
» Set “accessed” bit in PTE, Set “dirty bit” on write

– 2-level Page Table
» Read and check first level
» Read, check, and update PTE

– N-level Page Table …
• MMU does page table Tree Traversal to translate each address

CPU MMU

Virtual
Addresses

Physical
Addresses

24

Where and What is the MMU ?

• The processor requests READ Virtual-Address to memory system
– Through the MMU to the cache (to the memory)

• Some time later, the memory system responds with the data stored at the physical address
(resulting from virtual à physical) translation

– Fast on a cache hit, slow on a miss
• So what is the MMU doing?
• On every reference (I-fetch, Load, Store) read (multiple levels of) page table entries to get

physical frame or FAULT
– Through the caches to the memory
– Then read/write the physical location

Processor
(core) Cache(s)

Physical
Memory

MMU

Read <V_Addr m>

< data @ mem[VtoP(m)] >

Read <P_Addr X >

Mem
or

y B
us

page
tables

25

ICS: Caching Concept

• Cache: a repository for copies that can be accessed more quickly than the original
– Make frequent case fast and infrequent case less dominant

• Caching underlies many techniques used today to make computers fast
– Can cache: memory locations, address translations, pages, file blocks, file names,

network routes, etc…
• Only good if:

– Frequent case frequent enough
– Infrequent case not too expensive

• Important measure: Average Access time =
(Hit Rate x Hit Time) + (Miss Rate x Miss Time)

26

ICS: In Machine Structures…
• Caching is the key to memory system performance

Average Memory Access Time (AMAT)
= (Hit Rate x HitTime) + (Miss Rate x MissTime)
Where HitRate + MissRate = 1

HitRate = 90% => AMAT = (0.9 x 1) + (0.1 x 101)=11 ns
HitRate = 99% => AMAT = (0.99 x 1) + (0.01 x 101)=2 ns

Processor

Main
Memory
(DRAM)

100ns1 ns

Cache
(SRAM)

Processor

Main
Memory
(DRAM)

Access time = 100ns

27

• Cannot afford to translate on every access
– At least three DRAM accesses per actual DRAM access
– Or: perhaps I/O if page table partially on disk!

• Solution? Cache translations!
– Translation Cache: TLB (“Translation Lookaside Buffer”)

Another Major Reason to Deal with Caching

page #0
page #1

page #3
page #4
page #5

V,R

V,R

page #2 V,R,W

V,R,W

N

V,R,W

Offset

Physical Address

Virtual
Address:

Offset
Virtual
Page #

Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V Access

Error>

Physical
Page #

Check Perm

Access
Error

28

Why Does Caching Help? Locality!

• Temporal Locality (Locality in Time):
– Keep recently accessed data items closer to processor

• Spatial Locality (Locality in Space):
– Move contiguous blocks to the upper levels

Address Space0 2n - 1

Probability
of reference

Lower Level
MemoryUpper Level

Memory
To Processor

From Processor
Blk X

Blk Y

29

Recall: Memory Hierarchy
• Caching: Take advantage of the principle of locality to:

– Present the illusion of having as much memory as in the cheapest technology
– Provide average speed similar to that offered by the fastest technology

Core

Core

Secondary
Storage
(Disk)

Processor

Main
Memory
(DRAM)

1 10,000,000
(10 ms)Speed (ns): 10-30 100

100BsSize (bytes): MBs GBs TBs

0.3 3

10kBs 100kBs

Secondary
Storage
(SSD)

100,000
(0.1 ms)
100GBs

Address Translation needs
to occur here

Page table lives here
(perhaps cached)

30

How do we make Address Translation Fast?
• Cache results of recent translations !

– Different from a traditional cache
– Cache Page Table Entries using Virtual Page # as the key

Processor
(core) Cache(s)

Physical
Memory

MMU

Rea
d <

V_A
ddr

m>

Rea
d <

P_A
ddr

X >

M
em

or
y B

us

page
tables

V_Page #1 : <P_Page #1, V, … >

V_Page #2 : <P_Page #2, V, … >

V_Page #k : <P_Page #k, V, … >

31

Translation Look-Aside Buffer

• Record recent Virtual Page # to Physical Page # translation
• If present, have the physical address without reading any of the page tables !!!

– Even if the translation involved multiple levels
– Caches the end-to-end result

• Was invented by Sir Maurice Wilkes – prior to caches
– When you come up with a new concept, you get to name it!

• On a TLB miss, the page tables may be cached, so only go to memory when
both miss

32

Caching Applied to Address Translation

• Question is one of page locality: does it exist?
– Instruction accesses spend a lot of time on the same page (since

accesses sequential)
– Stack accesses have definite locality of reference
– Data accesses have less page locality, but still some…

• Can we have a TLB hierarchy?
– Sure: multiple levels at different sizes/speeds

Data Read or Write
(untranslated)

CPU Physical
Memory

TLB

Translate
(MMU)

No

Virtual
Address

Physical
Address

Yes
Cached?

Sav
e

Resu
lt

33

• Compulsory (cold start, first reference): first access to a block
– “Cold” fact of life: not a whole lot you can do about it
– Note: If you are going to run “billions” of instruction, Compulsory Misses are

insignificant
• Capacity:

– Cache cannot contain all blocks access by the program
– Solution: increase cache size

• Conflict (collision):
– Multiple memory locations mapped to the same cache location
– Solution 1: increase cache size
– Solution 2: increase associativity

• Coherence (Invalidation): other process (e.g., I/O) updates memory

A Summary on Sources of Cache Misses

34

• Block is minimum quantum of caching
– Data select field used to select data within block
– Many caching applications don’t have data select field

• Index Used to Lookup Candidates in Cache
– Index identifies the set

• Tag used to identify actual copy
– If no candidates match, then declare cache miss

How is a Block found in a Cache?

Block
offset

Block Address
Tag Index

Set Select

Data Select

35

:

0x50

Valid Bit

:

Cache Tag

Byte 32
0
1
2
3

:

Cache Data
Byte 0Byte 1Byte 31 :

Byte 33Byte 63 :
Byte 992Byte 1023 : 31

Review: Direct Mapped Cache
• Direct Mapped 2N byte cache:

– The uppermost (32 - N) bits are always the Cache Tag
– The lowest M bits are the Byte Select (Block Size = 2M)

• Example: 1 KB Direct Mapped Cache with 32 B Blocks
– Index chooses potential block
– Tag checked to verify block
– Byte select chooses byte within block

Ex: 0x50 Ex: 0x00
Cache Index

0431
Cache Tag Byte Select

9

Ex: 0x01

36

Cache Index
0431

Cache Tag Byte Select
8

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Mux 01Sel1 Sel0

OR

Hit

Review: Set Associative Cache
• N-way set associative: N entries per Cache Index

– N direct mapped caches operates in parallel
• Example: Two-way set associative cache

– Cache Index selects a “set” from the cache
– Two tags in the set are compared to input in parallel
– Data is selected based on the tag result

Compare Compare

Cache Block

37

Review: Fully Associative Cache
• Fully Associative: Every block can hold any line

– Address does not include a cache index
– Compare Cache Tags of all Cache Entries in Parallel

• Example: Block Size=32B blocks
– We need N 27-bit comparators
– Still have byte select to choose from within block

:

Cache Data
Byte 0Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Valid Bit

::

Cache Tag

04
Cache Tag (27 bits long) Byte Select

31

=

=
=

=

=

Ex: 0x01

38

• Example: Block 12 placed in 8 block cache

0 1 2 3 4 5 6 7Block
no.

Direct mapped:
block 12 can go
only into block 4
(12 mod 8)

Set associative:
block 12 can go
anywhere in set 0
(12 mod 4)

0 1 2 3 4 5 6 7Block
no.

Set
0

Set
1

Set
2

Set
3

Fully associative:
block 12 can go
anywhere

0 1 2 3 4 5 6 7Block
no.

Where does a Block Get Placed in a Cache?

39

• Easy for Direct Mapped: Only one possibility
• Set Associative or Fully Associative:

– Random
– LRU (Least Recently Used)

Which block should be replaced on a miss?

40

• Write through: The information is written to both the block in the cache and to
the block in the lower-level memory

• Write back: The information is written only to the block in the cache
– Modified cache block is written to main memory only when it is replaced

• Pros and Cons of each?
– Write through:

» Pros: read misses cannot result in writes
» Cons: processor held up on writes

– Write back:
» Pros: repeated writes not sent to DRAM

processor not held up on writes
» Cons: more complex

read miss may require writeback of dirty data

Review: What happens on a write?

41

Physically-Indexed vs Virtually-Indexed Caches
• Physically-Indexed Caches

– Address handed to cache after translation
– Page Table holds physical addresses
– Benefits:

» Every piece of data has single place in cache
» Cache can stay unchanged on context switch

– Challenges:
» TLB is in critical path of lookup!

– Pretty Common today (e.g., x86 processors)
• Virtually-Indexed Caches

– Address handed to cache before translation
– Page Table holds virtual addresses (one option)
– Benefits:

» TLB not in critical path of lookup, so can be faster
– Challenges:

» Same data could be mapped in multiple places
of cache

» May need to flush cache on context switch

• We will stick with Physically Addressed Caches for now!

CPU
Cache

[Virtually
indexed]

Memory

[Virtually
addressed]

Page Table

TLB Å

offset

virtual

virtual

virtual

ph
ys

ica
l

CPU Cache
[Physically
indexed]

Memory

[Physically
addressed]

Page Table

TLB Å

offset

physicalvirtual

physical ph
ys

ica
l

42

Summary (1/3)
• Page Tables

– Memory divided into fixed-sized chunks of memory
– Virtual page number from virtual address mapped through page table to physical page

number
– Offset of virtual address same as physical address
– Large page tables can be placed into virtual memory

• Multi-Level Tables
– Virtual address mapped to series of tables
– Permit sparse population of address space

• Inverted Page Table
– Use of hash-table to hold translation entries
– Size of page table ~ size of physical memory rather than size of virtual memory

43

Summary (2/3)
• The Principle of Locality:

– Program likely to access a relatively small portion of the address space at any instant
of time.

» Temporal Locality: Locality in Time
» Spatial Locality: Locality in Space

• Three (+1) Major Categories of Cache Misses:
– Compulsory Misses: sad facts of life. Example: cold start misses.
– Conflict Misses: increase cache size and/or associativity
– Capacity Misses: increase cache size
– Coherence Misses: Caused by external processors or I/O devices

• Cache Organizations:
– Direct Mapped: single block per set
– Set associative: more than one block per set
– Fully associative: all entries equivalent

44

Summary (3/3)
• “Translation Lookaside Buffer” (TLB)

– Small number of PTEs and optional process IDs (< 512)
– Fully Associative (Since conflict misses expensive)
– On TLB miss, page table must be traversed and if located PTE is invalid, cause

Page Fault
– On change in page table, TLB entries must be invalidated
– TLB is logically in front of cache (need to overlap with cache access)

