
Xin Jin
Spring 2024

Operating Systems
(Honor Track)

Memory 3: Demand Paging

Acknowledgments: Ion Stoica, Berkeley CS 162

2

Recap: Base and Bound (with Translation)

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

Program
address

Base Address

Bound <

1000…

1100…
0100…

• Hardware relocation
• Can the program touch OS?
• Can it touch other programs?

0010…

Addresses translated
on-the-fly

1010…
code

Static Data

heap

stack

0000…

0100…

Original Program

3

Recap: Implementation of Multi-Segment Model

• Segment map resides in processor
– Segment number mapped into base/limit pair
– Base added to offset to generate physical address
– Error check catches offset out of range

• As many chunks of physical memory as entries
– Segment addressed by portion of virtual address
– However, could be included in instruction instead:

» x86 Example: mov [es:bx],ax.
• What is “V/N” (valid / not valid)?

– Can mark segments as invalid; requires check as well

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

OffsetSeg #Virtual
Address

Base2 Limit2 V

+ Physical
Address

> Erroroffset

Check Valid

Access
Error

4

Physical Address

Offset

Recap: How to Implement Simple Paging?

• Page Table (One per process)
– Resides in physical memory
– Contains physical page and permission for each virtual page (e.g. Valid bits, Read, Write, etc.)

• Virtual address mapping
– Offset from Virtual address copied to Physical Address

» Example: 10 bit offset Þ 1024-byte pages
– Virtual page # is all remaining bits

» Example for 32-bits: 32-10 = 22 bits, i.e. 4 million entries
» Physical page # copied from table into physical address

– Check Page Table bounds and permissions

OffsetVirtual
Page #Virtual Address:

Access Error

>PageTableSize

PageTablePtr page #0

page #2
page #3
page #4
page #5

V,R

page #1 V,R

V,R,W

V,R,W

N

V,R,W

page #1 V,R

Check Perm

Access
Error

Physical
Page #

5

Physical
Address:

OffsetPhysical
Page #

4KB

10 bits 10 bits 12 bits
Virtual
Address:

OffsetVirtual
P2 index

Virtual
P1 index

4 bytes

PageTablePtr

• Tree of Page Tables
– “Magic” 10b-10b-12b pattern!

• Tables fixed size (1024 entries)
– On context-switch: save single PageTablePtr register (i.e.

CR3)
• Valid bits on Page Table Entries

– Don’t need every 2nd-level table
– Even when exist, 2nd-level tables can reside on disk if not in

use
4 bytes

Recap: The two-level page table

6

Offset

Physical Address

• What about a tree of tables?
– Lowest level page table Þ memory still allocated with bitmap
– Higher levels often segmented

• Could have any number of levels. Example (top segment):

• What must be saved/restored on context switch?
– Contents of top-level segment registers (for this example)
– Pointer to top-level table (page table)

Recap: Multi-level Translation: Segments + Pages

page #0
page #1

page #3
page #4
page #5

V,R

V,R

page #2 V,R,W

V,R,W

N

V,R,W

Virtual
Address:

OffsetVirtual
Page #

Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

Base2 Limit2 V

Access
Error>

page #2 V,R,W

Physical
Page #

Check Permissions

Access
Error

7

• With all previous examples (“Forward Page Tables”)
– Size of page table is at least as large as amount of virtual memory allocated to

processes
– Physical memory may be much less

» Much of process space may be out on disk or not in use

• Answer: use a hash table
– Called an “Inverted Page Table”
– Size is independent of virtual address space
– Directly related to amount of physical memory
– Very attractive option for 64-bit address spaces

» PowerPC, UltraSPARC, IA64
• Cons:

– Complexity of managing hash chains: Often in hardware!
– Poor cache locality of page table

Recap: Inverted Page Table

OffsetVirtual
Page #

Hash
Table

OffsetPhysical
Page #

Total size of page table ≈ number of pages used by
program in physical memory. Hash more complex

8

Recap: Address Translation Comparison

Advantages Disadvantages

Simple Segmentation Fast context switching (segment
map maintained by CPU) Internal/External fragmentation

Paging (Single-Level) No external fragmentation
Fast and easy allocation

Large table size (~ virtual
memory)
Internal fragmentation

Paged Segmentation Table size ~ # of pages in virtual
memory
Fast and easy allocation

Multiple memory references per
page accessMulti-Level Paging

Inverted Page Table Table size ~ # of pages in
physical memory

Hash function more complex
No cache locality of page table

9

Recap: Caching Applied to Address Translation

• Question is one of page locality: does it exist?
– Instruction accesses spend a lot of time on the same page (since

accesses sequential)
– Stack accesses have definite locality of reference
– Data accesses have less page locality, but still some…

• Can we have a TLB hierarchy?
– Sure: multiple levels at different sizes/speeds

Data Read or Write
(untranslated)

CPU Physical
Memory

TLB

Translate
(MMU)

No

Virtual
Address

Physical
Address

Yes
Cached?

Sav
e

Resu
lt

10

What TLB Organization Makes Sense?

• Needs to be really fast
– Critical path of memory access

» In simplest view: before the cache
» Thus, this adds to access time (reducing cache speed)

– Seems to argue for Direct Mapped or Low Associativity
• However, needs to have very few conflicts!

– With TLB, the Miss Time extremely high! (PT traversal)
– Cost of Conflict (Miss Time) is high
– Hit Time – dictated by clock cycle

• Thrashing: continuous conflicts between accesses
– What if use low order bits of page as index into TLB?

» First page of code, data, stack may map to same entry
» Need 3-way associativity at least?

– What if use high order bits as index?
» TLB mostly unused for small programs

CPU TLB Cache Memory

11

TLB organization: include protection
•How big does TLB actually have to be?

– Usually small: 128-512 entries (larger now)
– Not very big, can support higher associativity

•Small TLBs usually organized as fully-associative cache
– Lookup is by Virtual Address
– Returns Physical Address + other info

•What happens when fully-associative is too slow?
– Put a small (4-16 entry) direct-mapped cache in front
– Called a “TLB Slice”

12

• As described, TLB lookup is in serial with
cache lookup

– Consequently, speed of TLB can impact
speed of access to cache

• Machines with TLBs go one step further:
overlap TLB lookup with cache access

– Works because offset available early
– Offset in virtual address exactly covers the “cache index” and “byte select”
– Thus can select the cached byte(s) in parallel to perform address translation

Virtual Address

TLB Lookup

V Access
Rights PA

V page no. offset
10

P page no. offset
10

Physical Address

OffsetVirtual Page #

indextag / page # byte

virtual address:

physical address:

Reducing translation time for physically-indexed caches

13

• Here is how this might work with a 4K cache:

• What if cache size is increased to 8KB?
– Overlap not complete
– Need to do something else

• Another option: Virtual Caches would make this faster
– Tags in cache are virtual addresses
– Translation only happens on cache misses

TLB 4K Cache

10 2 4 bytes

index 1 K

page #
20

assoc
lookup

32

Hit/
Miss

Tag Data Hit/
Miss

=FN

Overlapping TLB & Cache Access

14

What happens on a Context Switch?
• Need to do something, since TLBs map virtual addresses to physical

addresses
– Address Space just changed, so TLB entries no longer valid!

• Options?
– Invalidate TLB: simple but might be expensive

» What if switching frequently between processes?
– Include ProcessID in TLB

» This is an architectural solution: needs hardware
• What if translation tables change?

– For example, to move page from memory to disk or vice versa…
– Must invalidate TLB entry!

» Otherwise, might think that page is still in memory!
– Called “TLB Consistency”

• Aside: with Virtually-Indexed cache, need to flush cache!
– Remember, everyone has their own version of the address “0”!

15

Putting Everything Together: Address Translation

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

PageTablePtr

Page Table
(1st level)

Page Table
(2nd level)

Physical
Memory:

Offset
Physical Address:

Physical
Page #

16

Page Table
(2nd level)

PageTablePtr

Page Table
(1st level)

Putting Everything Together: TLB

Offset

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

Physical
Memory:

Physical Address:

…

TLB:

Physical
Page #
Physical
Page #

17

Page Table
(2nd level)

PageTablePtr

Page Table
(1st level)

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

…

TLB:

Putting Everything Together: Cache

Offset

Physical
Memory:

Physical Address:

…

tag: block:
cache:

index bytetag

Physical
Page #

18

Page Fault
• The Virtual-to-Physical Translation fails

– PTE marked invalid, Privilege Level Violation, Access violation, or does not exist
– Causes a Fault / Trap

» Not an interrupt because synchronous to instruction execution
– May occur on instruction fetch or data access

• Protection violations typically terminate the instruction
• Other Page Faults engage operating system to fix the situation and retry the

instruction
– Allocate an additional stack page, or
– Make the page accessible - Copy on Write,
– Bring page in from secondary storage to memory – demand paging

• Fundamental inversion of the hardware / software boundary

19

Demand Paging
• Modern programs require a lot of physical memory

– Memory per system growing faster than 25%-30%/year
• But they don’t use all their memory all of the time

– 90-10 rule: programs spend 90% of their time in 10% of their code
– Wasteful to require all of user’s code to be in memory

• Solution: use main memory as “cache” for disk

O
n-C

hip
C

ache

Control

Datapath

Secondary
Storage
(Disk)

Processor

Main
Memory
(DRAM)

Second
Level
Cache
(SRAM)

Tertiary
Storage
(Tape)

pagingcaching

20

Page Fault Þ Demand Paging

virtual address

MMU
PT

instruction

physical address

page#
frame#

offsetpage fault

Operating System

exception

Page Fault Handler

load page from disk

update PT entry

Process

scheduler

retry
frame#

offset

21

Group Discussion: Demand Paging as Caching, …

• What “block size”?
• What “organization” i.e., direct-mapped, set-associative, fully-associative?
• How do we locate a page?
• What is page replacement policy? (i.e., LRU, Random…)
• What happens on a miss?
• What happens on a write? (write-through, write back)

22

Demand Paging as Caching, …

• What “block size”? - 1 page (e.g., 4 KB)
• What “organization” i.e., direct-mapped, set-associative, fully-associative?

– Fully associative since arbitrary mapping
• How do we locate a page?

– First check TLB, then page-table traversal
• What is page replacement policy? (i.e., LRU, Random…)

– This requires more explanation… (more later)
• What happens on a miss?

– Go to lower level to fill miss (i.e., disk)
• What happens on a write? (write-through, write back)

– Definitely write-back – need dirty bit!

23

Page
Table

TLB

Illusion of Infinite Memory

• Disk is larger than physical memory Þ
– In-use virtual memory can be bigger than physical memory
– Combined memory of running processes much larger than physical memory

» More programs fit into memory, allowing more concurrency
• Principle: Transparent Level of Indirection (page table)

– Supports flexible placement of physical data
» Data could be on disk or somewhere across network (NSDI’17 InfiniSwap, OSDI’20 AIFM)

– Variable location of data transparent to user program
» Performance issue, not correctness issue

Physical
Memory
512 MB

Disk
500GB

¥

Virtual
Memory
4 GB

24

• PTE makes demand paging implementable
– Valid Þ Page in memory, PTE points at physical page
– Not Valid Þ Page not in memory; use info in PTE to find it on disk

when necessary
• Suppose user references page with invalid PTE?

– Memory Management Unit (MMU) traps to OS
» Resulting trap is a “Page Fault”

– What does OS do on a Page Fault?:
» Choose an old page to replace
» If old page modified (“Dirty=1”), write contents back to disk
» Change its PTE and any cached TLB to be invalid
» Load new page into memory from disk
» Update page table entry
» Continue thread from original faulting location

– TLB for new page will be loaded when thread continued!
– While pulling pages off disk for one process, OS runs another process

from ready queue
» Suspended process sits on wait queue

Demand Paging Mechanisms

25

Origins of Paging

Disks provide most of the
storage

Relatively small
memory, for many
processes

P

. . .

Many clients on dumb
terminals running
different programs

Keep memory full of
the frequently

accesses pages

Keep most of the address
space on disk

Actively swap pages
to/from

26

Very Different Situation Today

Powerful system
Huge memory
Huge disk
Single user

27

A Picture on one machine

• Memory stays about 80% used
• A lot of it is shared 1.9 GB

28

• Extend the stack
– Allocate a page and zero it

• Extend the heap
• Process Fork

– Create a copy of the page table
– Entries refer to parent pages – NO-WRITE
– Shared read-only pages remain shared
– Copy page on write

• Exec
– Only bring in parts of the binary in active use
– Do this on demand

• MMAP to explicitly share region (or to access a file as RAM)

Many Uses of Virtual Memory and “Demand Paging” …

29

Classic: Loading an Executable into Memory

• .exe
– lives on disk in the file system
– contains contents of code & data segments, relocation entries

and symbols
– OS loads it into memory, initializes registers (and initial stack

pointer)
– program sets up stack and heap upon initialization

disk (huge) memory

code

data

info

exe

30

Create Virtual Address Space of the Process

• Utilized pages in the VAS are backed by a page block on disk
– Called the backing store or swap file
– Typically, in an optimized block store, but can think of it like a file

disk (huge) memory

code

data

heap

stack

kernel

process VAS

kernel
code &
data

user page
frames

user
pagetable

31

Create Virtual Address Space of the Process

• User Page table maps entire VAS
• All the utilized regions are backed on disk

– swapped into and out of memory as needed
• For every process

disk (huge, TB) memory

code

data

heap

stack

kernel

process VAS (GBs)

kernel
code &
data

user page
frames

user
pagetable

code

data

heap

stack

32

Create Virtual Address Space of the Process

• User Page table maps entire VAS
– Resident pages mapped to the frame in memory they occupy
– The portion of page table that the HW needs to access must be

resident in memory

disk (huge, TB) memory

code

data

heap

stack

kernel

VAS
[per process]

kernel
code &
data

user page
frames

user
pagetable

code

data

heap

stack

PT

33

Provide Backing Store for VAS

• User Page table maps entire VAS
• Resident pages mapped to the frame in memory they occupy
• For all other pages, OS must record where to find them on disk

disk (huge, TB) memory

code

data

heap

stack

kernel

kernel
code &
data

user page
frames

user
pagetable

code

data

heap

stack

VAS
[per process] PT

34

What Data Structure Maps Non-Resident Pages to Disk?
• FindBlock(PID, page#) → disk_block

– Some OSs utilize spare space in PTE for paged blocks
– Like the PT, but purely software

• Where to store it?
– In memory – can be compact representation if swap storage is

contiguous on disk
– Could use hash table (like Inverted PT)

• Usually want backing store for resident pages too

• May map code segment directly to on-disk image
– Saves a copy of code to swap file

• May share code segment with multiple instances of
the program

35

Provide Backing Store for VAS

disk (huge, TB)
memory

kernel
code &
data

user
page
frames

user
pagetable

code

data

heap

stack

code

data

heap

stack

kernel

VAS 1 PT 1

code

data

heap

stack

kernel

VAS 2 PT 2
heap

stack

data

36

On Page Fault …

disk (huge, TB)
memory

kernel
code
& data

user
page
frames

user
pagetable

code

data

heap

stack

code

data

heap

stack

kernel

VAS 1 PT 1

code

data

heap

stack

kernel

VAS 2 PT 2
heap

stack

data

active process & PT

37

On Page Fault … Find & Start Load

disk (huge, TB)
memory

user
page
frames

code

data

heap

stack

code

data

heap

stack

kernel

VAS 1 PT 1

code

data

heap

stack

kernel

VAS 2 PT 2
heap

stack

data

active process & PT

kernel
code
& data

user
pagetable

38

On page Fault … schedule other Process or Thread

disk (huge, TB)
memory

kernel
code &
data

user
page
frames

user
pagetable

code

data

heap

stack

code

data

heap

stack

kernel

VAS 1 PT 1

code

data

heap

stack

kernel

VAS 2 PT 2
heap

stack

data

active process & PT

39

On Page Fault … Update PTE

disk (huge, TB)
memory

kernel
code &
data

user
page
frames

user
pagetable

code

data

heap

stack

code

data

heap

stack

kernel

VAS 1 PT 1

code

data

heap

stack

kernel

VAS 2 PT 2
heap

stack

data

active process & PT

40

Eventually reschedule faulting thread

disk (huge, TB)
memory

kernel
code &
data

user
page
frames

user
pagetable

code

data

heap

stack

code

data

heap

stack

kernel

VAS 1 PT 1

code

data

heap

stack

kernel

VAS 2 PT 2
heap

stack

data

active process & PT

41

Summary: Steps in Handling a Page Fault

42

Some questions we need to answer!
• During a page fault, where does the OS get a free frame?

– Keeps a free list
– Unix runs a “reaper” if memory gets too full

» Schedule dirty pages to be written back on disk
» Zero (clean) pages which haven’t been accessed in a while

– As a last resort, evict a page first

• How can we organize these mechanisms?
– Work on the replacement policy

• How many page frames/process?
– Like thread scheduling, need to “schedule” memory resources:

» Utilization? fairness? priority?
– Allocation of disk paging bandwidth

43

Working Set Model
• As a program executes it transitions through a sequence of

“working sets” consisting of varying sized subsets of the
address space

Time

A
dd

re
ss

44

Cache Behavior under WS model

• Amortized by fraction of time the Working Set is active
• Transitions from one WS to the next
• Capacity, Conflict, Compulsory misses
• Applicable to memory caches and pages

H
it

R
at

e

Cache Size

new working set fits

0

1

45

Demand Paging Cost Model
• Since Demand Paging like caching, can compute average access time!

(“Effective Access Time”)
– EAT = Hit Rate x Hit Time + Miss Rate x Miss Time (Hit Rate + Miss Rate = 1)
– EAT = Hit Time + Miss Rate x Miss Penalty (Miss Penalty = Miss Time – Hit Time)

• Example:
– Memory access time = 200 nanoseconds
– Average page-fault service time (Miss Penalty) = 8 milliseconds
– Suppose p = Probability of miss, 1-p = Probably of hit
– Then, we can compute EAT as follows:

EAT = 200ns + p x 8 ms
= 200ns + p x 8,000,000ns

• If one access out of 1,000 causes a page fault, then EAT = 8.2 μs:
– This is a slowdown by a factor of 40x !

• What if want slowdown by less than 10%?
– EAT < 200ns x 1.1 Þ p < 2.5 x 10-6

– This is about 1 page fault in 400,000!

46

Group Discussion
• Compulsory Misses:

– What are they in the context of demand paging?
– How might we remove these misses?

• Capacity Misses:
– What are they in the context of demand paging?
– How might we remove these misses?

• Conflict Misses:
– What are they in the context of demand paging?
– How might we remove these misses?

• Policy Misses:
– What are they in the context of demand paging?
– How might we remove these misses?

47

What Factors Lead to Misses in Page Cache?
• Compulsory Misses:

– Pages that have never been paged into memory before
– How might we remove these misses?

» Prefetching: loading them into memory before needed
» Need to predict future somehow!

• Capacity Misses:
– Not enough memory. Must somehow increase available memory size.
– Can we do this?

» One option: Increase amount of DRAM (not quick fix!)
» Another option: If multiple processes in memory: adjust percentage of memory allocated to

each one!
• Conflict Misses:

– Technically, conflict misses don’t exist in virtual memory, since it is a “fully-associative”
cache

• Policy Misses:
– Caused when pages were in memory, but kicked out prematurely because of the

replacement policy
– How to fix? Better replacement policy

48

Page Replacement Policies
• Why do we care about Replacement Policy?

– Replacement is an issue with any cache
– Particularly important with pages

» The cost of being wrong is high: must go to disk
» Must keep important pages in memory, not toss them out

• FIFO (First In, First Out)
– Throw out oldest page. Be fair – let every page live in memory for same amount of time.
– Bad – throws out heavily used pages instead of infrequently used

• RANDOM:
– Pick random page for every replacement
– Typical solution for TLB’s. Simple hardware
– Pretty unpredictable – makes it hard to make real-time guarantees

• MIN (Minimum):
– Replace page that won’t be used for the longest time
– Great (provably optimal), but can’t really know future…
– But past is a good predictor of the future …

49

Replacement Policies (Con’t)
• LRU (Least Recently Used):

– Replace page that hasn’t been used for the longest time
– Programs have locality, so if something not used for a while,

unlikely to be used in the near future.
– Seems like LRU should be a good approximation to MIN.

• How to implement LRU? Use a list:

– On each use, remove page from list and place at head
– LRU page is at tail

• Problems with this scheme for paging?
– Need to know immediately when page used so that can change position in list…
– Many instructions for each hardware access

• In practice, people approximate LRU (more later)

Page 6 Page 7 Page 1 Page 2Head

Tail (LRU)

50

Group Discussion

• Topic: replacement policies
– Can you compare FIFO, RANDOM, MIN and LRU?
– What are the pros and cons of each approach?

• Discuss in groups of two to three students
– Each group chooses a leader to summarize the discussion
– In your group discussion, please do not dominate the discussion, and give

everyone a chance to speak

51

• Suppose we have 3 page frames, 4 virtual pages, and following
reference stream:

– A B C A B D A D B C B
• Consider FIFO Page replacement:

• FIFO: 7 faults
• When referencing D, replacing A is bad choice, since need A again right

away

Example: FIFO (strawman)

C

B

A

D

C

B

A

BCBDADBACBA

3

2

1

Ref:
Page:

52

• Suppose we have the same reference stream:
– A B C A B D A D B C B

• Consider MIN Page replacement:

• MIN: 5 faults
– Where will D be brought in? Look for page not referenced farthest in future

• What will LRU do?
– Same decisions as MIN here, but won’t always be true!

Example: MIN / LRU

C

DC

B

A

BCBDADBACBA

3

2

1

Ref:
Page:

53

• Consider the following: A B C D A B C D A B C D
• LRU Performs as follows (same as FIFO here):

– Every reference is a page fault!
• Fairly contrived example of working set of N+1 on N frames

D

Is LRU guaranteed to perform well?

C

B

A

D

C

B

A

D

C

B

A

CBADCBADCBA D

3

2

1

Ref:
Page:

54

• Consider the following: A B C D A B C D A B C D
• LRU Performs as follows (same as FIFO here):

– Every reference is a page fault!
• MIN Does much better:

D

When will LRU perform badly?

C

B

A

D

C

B

A

D

C

B

A

CBADCBADCBA D

3

2

1

Ref:
Page:

B

C

DC

B

A

BADCBADCBA C D

3

2

1

Ref:
Page:

55

Summary
• Demand Paging: Treating the DRAM as a cache on disk

– Page table tracks which pages are in memory
– Any attempt to access a page that is not in memory generates a page fault, which

causes OS to bring missing page into memory
• Replacement policies

– FIFO: Place pages on queue, replace page at end
– MIN: Replace page that will be used farthest in future
– LRU: Replace page used farthest in past

