
Pintos Overview

TA: xiangyuxing 向昱⾏
Email: echostone@stu.pku.edu.cn
GitHub: EchoStone1101

TA Session
—— Why, What and How

mailto:echostone@stu.pku.edu.cn

Some announcements:

Getting right started…

Ø Lab 0 is released this Tuesday

Ø Lab 0 Code will be due next Thursday 11:59 pm

Ø Lab 0 Design Doc will due next Sunday 11:59 pm

The rest Labs have similar deadlines…

JOS

Educational OS Project Zoo

xv6

Nachos Pintos

IA32
MIT6.828

RISCV32
MIT6.S081

IA32
CS162

MIPS
Old CS162

Q : Why Pintos ?

Design and Implementation

Ø OSDI, NSDI, PLDI … …

Ø Your design matters !!

Ø Talk is cheap, show me the code

Ø Write 2000+ LOC in a 10000+ LOC codebase

Q : Why Pintos ?

You will learn by Read The Code

Ø important skill both in production and research

Ø learn from good coding style

Ø some tools may help you

Q : Why Pintos ?

You will learn by Design The Code

Ø think tenth, code once

Ø design doc template may help you

Ø not Pintos, but Your Pintos

Q : Why Pintos ?

You will learn by Write The Code

Ø maybe your first time writing 2000+ LOC

Ø tricky multi-threading synchronization

Ø test-driven development

Q : Why Pintos ?

You will learn by Debug The Code

Ø You will live in the GDB

Ø start early, start early, start early

Me, debugging

Q : Why not Pintos ?

Ø IA32 architecture : CISC ISA, historical legacy

Pintos Tacos

Pintos reimplemented in Rust
based on RISCV64.

Q : Why not Pintos ?

Ø IA32 architecture : CISC ISA, historical legacy

Ø time consuming : 100 hours +++

Pintos Tacos

optional lab4, long long long lab document, per-lab TA session

Q : So … what will you do?

Students
Create

Support Code

P0: Boot Support
Pintos Kernel

Simple FIFO
Scheduler Device Support

Keyboard, VGA, Serial Port, Timer, PCI, IDE

MMU
Support

Physical
Memory
Manager

Basic
Filesystem

P1: Priority
Scheduler

P1: Priority
Donation

P1:Alarm Clock

P1:MLFQS

P2: System Call Layer

P2: Process Management P2: File Management

P3a: Page
Fault

Handler

P3a:
Demand
Paging

P3b: Mmap
File

P4: Hierarchical
Multi-threaded

Filesystem

P0: Getting Real

P1: Threading

P2: User Programs

P3: Virtual Memory

P4: File System

Typical workflow:
Lab released

on the Course Website

Read through the lab document
and design doc carefully

TA session

Read through the lab document

Design your data structures
and interfaces

Write and Debug code
Pass all the test cases
Submit code zip before code DDL

Answer the questions in design doc
submit it before design doc DDL

We are here for Lab 0!

Q :How to survive? PintosBook

Set up your local development environment.

Look through it and look back if needed.

long, but helpful

Important, read it carefully.

Q :How to survive? PintosBook

Look through it before each TA Session.

Read it carefully during implementation.

Optional but rewarding Lab4.

Q :How to survive? PintosBook

Read when needed as the projects going.

Referenced in the previous chapters.

Q :How to survive? Your kind TA

Learn to ask questions.

Do not be shy, ask in class, in office hour or in the Piazza.

Office hour: Friday 10:00-11:00 a.m., Yan Yuan Building 818
Piazza: https://piazza.com/pku.edu.cn/spring2025/04834490
(see course page)

https://piazza.com/pku.edu.cn/spring2025/04834490

But … … your TAs are not your personal assistants (or
Mr.Deepseek).

Ø“My program crashed.”

Ø“What does this error mean?”

Ø“I failed xxx testcase.”

Ø “My computer can not boot.”

Think twice, Ask once.

Ø How to ask questions the smart way.

Ø RTFM

Ø STFW

https://github.com/ryanhanwu/How-To-Ask-Questions-The-Smart-Way/blob/main/README-zh_CN.md

Think twice, Ask once.

Ø“I encounter xxx under xxx condition.”

Ø“Google says xxx, StackOverflow says xxx,
Document says xxx, but yyy.”

Ø“Hey, TA, I found xxx and I think you do not
know about it !”

Q :How to survive? Good habits awkward, but helpful

Use Version Control tool —— Git

Newly written code

A week later

The same code

How to write good commit message.

https://cbea.ms/git-commit/

Q :How to survive? Good habits

Write concise but good comments.

Ø Summarize the function in one sentence first.

Ø Pre-condition: input constraints (You may ASSERT these
constraints)

Ø Post-condition: return value, exception (kernel panic)

Q :How to survive? Good habits

Module and Abstraction.

Ø A function should (only) do one thing

Ø A function more than 100 LOC

Ø A function more than 200 LOC

warning

Something may go wrong

clean

Q :How to survive?
Spend time

Be patient

Start early
It is hard,
but it is worth it.

Lab0 FAQs

In this Lab, you will be…

Ø Walking through the booting of Pintos

Ø Try your hands on debugging Pintos

Ø Write your first line of code in Pintos: a tiny shell

OS Booting sounds overwhelming?
• All essential information are provided in the PintosBook
• You don't need to master all details; you practice how you

learn from new information!

Cutting through the confusing jargons…

You will (assuming you use Docker for running Pintos):
Ø develop Pintos in a ubuntu:18.04 container (regardless of your host)
Ø cross-compile Pintos into i386 (Intel 80386) binaries (IA32, 4GB)

This architecture is hopefully familiar - it was discussed in ICS.
Ø execute Pintos with either QEMU or Bochs, kernel emumators

Ø ...which come with the BIOS (Basic Input/Output System) firmware
that loads a custom OS bootloader
Ø …which, as part of Pintos, locates and loads the actual kernel

Ø …which is nothing but an i386 ELF executable, with .text, .data,
and an entry point
Ø …which switches from real mode to protected mode, and

calls pintos_init()

D
oc

ke
r

EN
V

Pi
nt

os

loader.S

start.S

This MBR code is usually referred to as a boot loader.
Booting Pintos

Pintos Kernel
Partition

Pintos
kernel

Boot loader

Physical Address Space

Hard-wired by the hardware

The real-world booting
process can be much more
complicated

GRUB (GRand Unified
Bootloader),
UEFI (Unified Extensible
Firmware Interface), …

X86 Mode (history legacy)

X86 Real Mode X86 Protected Mode
Enabled in start.S

Ø 16-bit Instructions and Registers

Ø 20-bit Memory Address Space (Up to 1MB)

AX, BX, CX, DX, SI, DI, BP, SP

16-bit segment registers

CS, DS, SS, ES, FS, GS

PAddr = SEG << 4 + Operand

Ø 32-bit Instructions and Registers

Ø 32-bit Memory Address Space (Up to 4GB)

EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP

Reserved segment registers, but for protection

Address translation enabled

And if you really want to know every detail…

ØDig through Makefiles for how the Bootloader (loader.S) and
the kernel itself is linked and run

Øsrc/utils/pintos is how you will be running Pintos, which is
actually a Perl script that you can try to read and understand

Conclusion

ØWhy Pintos?

ØWhat will you do in the projects?

ØHow to survive the projects?

ØLab0 FAQs: Booting Pintos, X86 mode

• Design and Implementation
• Read, Design, Write, Debug the code

• Projects Map
• Typical workflow

• PintosBook
• Ask questions
• Good habits
• Good attitude

Learn it,
Master it,
Love it,
and Join us.

https://github.com/PKU-OS

Email: echostone@stu.pku.edu.cn
GitHub:EchoStone1101

https://github.com/PKU-OS
mailto:echostone@stu.pku.edu.cn

