Operating Systems
(Honor Track)

Scheduling 2: Case Studies, Fairness, Real Time, and
Forward Progress

Xin Jin
Spring 2024

Acknowledgments: lon Stoica, Berkeley CS 162

Recap: First-Come, First-Served (FCFS) Scheduling

e First-Come, First-Served (FCFS)

— Also “First In, First Out” (FIFO) or “Run until done”

» In early systems, FCFS meant one program
scheduled until done (including 1/0)

» Now, means keep CPU until thread blocks

e Example: Process Burst Time
P, 24
P, 3

— Suppose processes arrive in the order: P;, P,, P,
The Gantt Chart for the schedule is:

P, P, Ps

0 24 27 30
— Waiting time for P, =0; P, =24; P;=27
— Average waiting time: (0+ 24 +27)/3 =17
— Average completion time: (24 + 27 + 30)/3 = 27

e Head-of-line blocking: short process stuck behind long process

Recap: Round Robin (RR) Scheduling

e FCFS Scheme: Potentially bad for short jobs!

— Depends on submit order

— If you are first in line at supermarket with milk, you don’t care
who is behind you, on the other hand...

e Round Robin Scheme: Preemption!

— Each process gets a small unit of CPU time
(time quantum), usually 10-100 milliseconds

— After guantum expires, the process is preempted
and added to the end of the ready queue.

— n processes in ready queue and time quantum is g =
» Each process gets 1/n of the CPU time
» In chunks of at most g time units
» No process waits more than (n-1)g time units

Recap: Handling Differences in Importance: Strict Priority Scheduling
Priority 3 —> Job | = Job 2 |—> Job 3

Priority 2 === |ob 4
Priority |

Priority 0 [==>{Job5 f={job6 = Job 7

e Execution Plan

— Always execute highest-priority runable jobs to completion

— Each queue can be processed in RR with some time-quantum
e Problems:

— Starvation:
» Lower priority jobs don’t get to run because higher priority jobs
— Deadlock: Priority Inversion
» Happens when low priority task has lock needed by high-priority task
» Usually involves third, intermediate priority task preventing high-priority task from running
e How to fix problems?

— Dynamic priorities: adjust base-level priority up or down based on heuristics about
interactivity, locking, burst behavior, etc...

Recap: What if we Knew the Future?

Could we always mirror best FCFS? 7@

Shortest Job First (SJF): Al @)
— Run whatever job has least amount of /ﬂ@
computation to do A\,‘\/\
— Sometimes called “Shortest Time to Completion First” (STCF)
Shortest Remaining Time First (SRTF):
— Preemptive version of SJF: if job arrives and has a shorter time to

completion than the remaining time on the current job, immediately
preempt CPU

— Sometimes called “Shortest Remaining Time to Completion First”
(SRTCF)

These can be applied to whole program or current CPU burst
— Idea is to get short jobs out of the system
— Big effect on short jobs, only small effect on long ones
— Result is better average completion time

Recap: Lottery Scheduling

e Yet another alternative: Lottery Scheduling
— Give each job some number of lottery tickets
— On each time slice, randomly pick a winning ticket

— On average, CPU time is proportional to number of tickets
given to each job

e How to assign tickets?
— To approximate SRTF, short running jobs get more, long running jobs get fewer
— To avoid starvation, every job gets at least one ticket (everyone makes progress)
e Advantage over strict priority scheduling: behaves gracefully as load changes

— Adding or deleting a job affects all jobs proportionally, independent of how many
tickets each job possesses

Recap: Multi-Level Feedback Scheduling

i

>
=

quantum = 8

Long-Running Compute

LH‘ quantum = 16

%

L’,‘ ECES

Tasks Demoted to
~ Low Priority

e Another method for exploiting past behavior (first use in CTSS)

— Multiple queues, each with different priority

» Higher priority queues often considered “foreground” tasks

— Each queue has its own scheduling algorithm

» e.g. foreground — RR, background — FCFS

» Sometimes multiple RR priorities with quantum increasing exponentially
(highest:1ms, next: 2ms, next: 4ms, etc)

e Adjust each job’s priority as follows (details vary)

— Job starts in highest priority queue

— If timeout expires, drop one level
— If timeout doesn’t expire, push up one level (or to top)

Scheduling Details

i

> quantum = 8

Long-Running Compute

‘ _ Tasks Demoted to
quantum = 16 ——V LOW Pr'IOI"It)'

L"‘ ECES

— CPU bound jobs drop like a rock

e Result approximates SRTF:

— Short-running 1/O bound jobs stay near top

e Scheduling must be done between the queues
— Fixed priority scheduling:
» serve all from highest priority, then next priority, etc.
— Time slice:

» each queue gets a certain amount of CPU time
» e.g., 70% to highest, 20% next, 10% lowest

Scheduling Details

]

>
>

quantum = 8

Long-Running Compute

LH‘ quantum = 16

%

L’f ECES

Tasks Demoted to
~ Low Priority

e Countermeasure: user action that can foil intent of the OS designers

— For multilevel feedback, put in a bunch of meaningless /O to keep job’s priority high

— Of course, if everyone did this, wouldn’t work!

e Example of Othello program:

— Playing against competitor, so key was to do computing at higher priority than the

competitors.

» Putin printf’s, run much faster!

How to Handle Simultaneous Mix of Diff Types of Apps?

Consider mix of interactive and high throughput apps:
— How to best schedule them?

— How to recognize one from the other?
» Do you trust app to say that it is “interactive”?

— Should you schedule the set of apps identically on servers, workstations,
pads, and cellphones?

For instance, is Burst Time (observed) useful to decide which application gets CPU
time?

— Short Bursts = Interactivity = High Priority?
Assumptions encoded into many schedulers:

— Apps that sleep a lot and have short bursts must be interactive apps —
they should get high priority

— Apps that compute a lot should get low(er?) priority, since they won’t notice
intermittent bursts from interactive apps

Hard to characterize apps:

— What about apps that sleep for a long time, but then compute for a long time?
— Or, what about apps that must run under all circumstances (say periodically)

10

Multi-Core Scheduling

e Algorithmically, not a huge difference from single-core scheduling

e Implementation-wise, helpful to have per-core scheduling data structures
— Cache coherence

e Affinity scheduling: once a thread is scheduled on a CPU, OS tries to reschedule it
on the same CPU

— Cache reuse

11

Spinlocks for multiprocessing

Spinlock implementation:

int value = @; // Free
Acquire() {
while (test&set(&value)) {}; // spin while busy

}
Release() {

value = 0; // atomic store
}

Spinlock doesn’t put the calling thread to sleep—it just busy waits
— When might this be preferable?
» Waiting for limited number of threads at a barrier in a multiprocessing (multicore) program
» Wait time at barrier would be greatly increased if threads must be woken inside kernel

Every test&set () isa write, which makes value ping-pong around between core-local caches
— So —really want to use test&test&set() !

The extra read eliminates the ping-ponging issues:

// Implementation of test&test&set():
Acquire() {
do {
while(value); // wait until might be free
} while (test&set(&value)); // exit if acquire lock

}

12

Gang Scheduling and Parallel Applications

e When multiple threads work together on a multi-core system, try to schedule
them together

— Makes spin-waiting more efficient (inefficient to spin-wait for a thread that’s
suspended)

e Alternative: OS informs a parallel program how many processors its threads are
scheduled on (Scheduler Activations)

— Application adapts to number of cores that it has scheduled

— “Space sharing” with other parallel programs can be more efficient, because parallel
speedup is often sublinear with the number of cores

13

So, Does the OS Schedule Processes or Threads?

e Many textbooks use the “old model”—one thread per process

e Usually it's really: threads (e.g., in Linux)

e One point to notice: switching threads vs. switching processes incurs different
costs:

— Switch threads: Save/restore registers
— Switch processes: Change active address space too!

» Expensive
» Disrupts caching

14

Real-Time Scheduling

e Goal: Predictability of Performance!
— We need to predict with confidence worst case response times for systems!
— In RTS, performance guarantees are:
» Task- and/or class centric and often ensured a priori

— In conventional systems, performance is:
» System/throughput oriented with post-processing (... wait and see ...)

— Real-time is about enforcing predictability; does not equal fast computing!!!
e Hard real-time: for time-critical safety-oriented systems

— Meet all deadlines (if at all possible)

— Ideally: determine in advance if this is possible (admission control)

— Earliest Deadline First (EDF), Rate-Monotonic Scheduling (RMS), Deadline Monotonic
Scheduling (DM)

e Soft real-time: for multimedia
— Attempt to meet deadlines with high probability
— Constant Bandwidth Server (CBS)

15

Example: Workload Characteristics

e Tasks are preemptable, independent with arbitrary arrival (=release) times
e Tasks have deadlines (D) and known computation times (C)
e Example Setup:

e
Tl o |

T2 = DZl

Example: Round-Robin Scheduling Doesn’t Work

Missed
- L deadline!!
A " lLs

Tl ; >

- A | ! '“.' l_l)

O T=R = R
A i P 1

T4 | l ,

Time

Earliest Deadline First (EDF)

e Tasks iis periodic with period P; and computation C, in each period: (P;, C;) for each
task i

e Preemptive priority-based dynamic scheduling:

— Each task is assigned a (current) priority based on how close the absolute deadline is (i.e.
DI*! = D} + P; for each task!)

— The scheduler always schedules the active task with the closest absolute deadline

AAICH) RN N B

18

EDF Feasibility Testing

e Even EDF won’t work if you have too many tasks

e For n tasks with computation time C; and deadline D,, a feasible schedule exists
if:

19

Ensuring Progress

e Starvation: thread fails to make progress for an indefinite period of time

e Starvation # Deadlock
— Deadlock: cyclic requests for resources

e |et’s explore what sorts of problems we might encounter and how to avoid them...

20

Strawman: Non-Work-Conserving Scheduler

e A work-conserving scheduler is one that does not leave the CPU idle when there
is work to do

e A non-work-conserving scheduler could trivially lead to starvation

e In this class, we’ll assume that the scheduler is work-conserving (unless stated
otherwise)

21

Strawman: Last-Come, First-Served (LCFS)

e Stack (LIFO) as a scheduling data structure
— Late arrivals get fast service
— Early ones wait — extremely unfair
— In the worst case — starvation
e \When would this occur?
— When arrival rate (offered load) exceeds service rate (delivered load)

— Queue builds up faster than it drains

e Queue can build in FIFO too, but “serviced in the order received”...

22

Is FCFS Prone to Starvation?

Scheduled Task (process, thread)

I I . time

Scheduling Queue

* |f a task never yields (e.g,, goes into an infinite loop), then other tasks
don’t get to run

* Problem with all non-preemptive schedulers...
* And early personal OSes such as original MacOS, Windows 3.1, etc.

23

Is Round Robin (RR) Prone to Starvation?

e Each of N processes gets ~1/N of CPU (in window)

— With quantum length Q ms, process waits at most
(N-1)*Q ms to run again

— So a process can’t be kept waiting indefinitely

e So RRis fair in terms of waiting time
— Not necessarily in terms of throughput...

24

Is Priority Scheduling Prone to Starvation?

e Recall: Priority Scheduler always runs the Priority 3 [==b{Job | [=#{ job 2 [=>1{ Job 3
thread with highest priority Priority 2 f=={ Job 4
— Low priority thread might never run! Priority |
— Starvation... Priority 0 [==%{Job 5 |—>|Job 6 |—> Job 7

e But there are more serious problems as well...

— Priority inversion: even high priority threads might become starved

25

Priority Inversion

Priority 3

Priority 2

Priority |

Acquire()

« At this point, which job does the scheduler choose?
* Job 3 (Highest priority)

26

Priority Inversion

Priority 3

Priority 2

~__ Acquire()

.~
.h.
»

—

Priority |

* Job 3 attempts to acquire lock held by Job |

27

Priority Inversion

Priority 2 Job 2

Blocked on Acquire
Priority 3

Priority | Job |

« At this point, which job does the scheduler choose?
* Job 2 (Medium Priority)

* Priority Inversion

‘o

28

Where high priority task is blocked waiting on low priority task

Priority Inversion

Low priority one must run for high priority to make progress

Medium priority task can starve a high priority one

When else might priority lead to starvation or “live lock”?

High Priority

while (try_lock) {

}

Low Priority

lock.acquire(...)

lock.release(...)

—

29

One Solution: Priority Donation/Inheritance

Priority 3 ~— Acquire()

Priority 2

.~
.~~
‘

—

Priority |

* Job 3 temporarily grants Job | its “high priority” to run on its behalf

30

One Solution: Priority Donation/Inheritance

Priority 3

Priority 2

Priority |

* Job 3 temporarily grants Job | its “high priority” to run on its behalf

31

One Solution: Priority Donation/Inheritance

Priority 3 Acquire()

Priority 2

Priority |

* Job | completes critical section and releases lock
* Job 3 acquires lock, runs again

32

Case Study: Martian Pathfinder Rover

July 4, 1997 — Pathfinder lands on Mars

— First US Mars landing since Vikings in 1976; first rover

— Novel delivery mechanism: inside air-filled balloons
bounced to stop on the surface from orbit!

And then...a few days into mission...:
— Multiple system resets occur to realtime OS (VxWorks)
— System would reboot randomly, losing valuable time and progress

Problem? Priority Inversion! Priority 2 _

— Low priority task grabs mutex trying to Priority | == Lots of random medium stuff
communicate with high priority task Priority O fe=p ASI/MET collector: grab lock

— Realtime watchdog detected lack of forward progress and invoked reset to safe state
» High-priority data distribution task was supposed to complete with regular deadline

Solution: Turn priority donation back on and upload fixes!

Original developers turned off priority donation (also called priority inheritance)

— Worried about performance costs of donating priority!
33

Are SRTF and MLFQ Prone to Starvation?

Y

quantum = 8

Long-Running Compute

quantum = 16

T

—Pf? FCFS

Tasks Demoted to
~ Low Priority

e In SRTF, long jobs are starved in favor of short ones

— Same fundamental problem as priority scheduling

e MLFQ s an approximation of SRTF, so it suffers from the same problem

34

Cause for Starvation: Priorities?

e Most of policies we’ve studied so far:
— Always prefer to give the CPU to a prioritized job
— Non-prioritized jobs may never get to run

e But priorities were a means, not an end
e Our end goal was to serve a mix of CPU-bound, I/O bound, and Interactive jobs
effectively on common hardware

— Give the |/O bound ones enough CPU to issue their next file operation and wait (on
those slow discs)

— Give the interactive ones enough CPU to respond to an input and wait (on those slow
humans)

— Let the CPU bound ones grind away without too much disturbance

35

Computers

Recall: Changing Landscape...

Per Person

Bell's Law: New
computer class every
10 years

|:10%

|:103

103:

Number
crunching, Data
Storage, Massive

— Inet Services,

ML, ...

Productivity,
[Interactive

Streaming

— from/to the

physical world

years

Things!

The Internet of

36

Changing Landscape of Scheduling

e Priority-based scheduling rooted in “time-sharing”

— Allocating precious, limited resources across a diverse workload
» CPU bound vs. interactive vs. |/O bound

e 80’s brought about personal computers, workstations, and servers on networks
— Different machines of different types for different purposes
— Shift to fairness and avoiding extremes (starvation)

e 90’s emergence of the web, rise of internet-based services, the data-center-is-
the-computer

— Server consolidation, massive clustered services, huge flashcrowds
— It’s about predictability, 95t percentile performance guarantees

37

Priority in Unix — Being Nice

e The industrial operating systems of the 60s and 70s provided priority to enforce
desired usage policies.

— When it was being developed at Berkeley, instead it provided ways to “be nice”.
e nice values range from -20 to 19

— Negative values are “not nice”

— If you wanted to let your friends get more time, you would nice up your job
e Scheduler puts higher nice-value tasks (lower priority) to sleep more ...

— In O(1) scheduler, this translated fairly directly to priority (and time slice)

38

Case Study: Linux O(1) Scheduler

Kernel/Realtime Tasks User Tasks

0 100 139
e Priority-based scheduler: 140 priorities
— 40 for “user tasks” (set by “nice”), 100 for “Realtime/Kernel”
— Lower nice value = higher priority

— Higher nice value = lower priority
— All algorithms O(1)
» Timeslices/priorities/interactivity credits all compute when job finishes time slice
» 140-bit bit mask indicates presence or absence of job at given priority level
e Two separate priority queues: “active” and “expired”

— All tasks in the active queue use up their timeslices and get placed on the expired queue,
after which queues swapped

e Timeslice depends on priority — linearly mapped onto timeslice range
— Like a multi-level queue (one queue per priority) with different timeslice at each level
— Execution split into “Timeslice Granularity” chunks — round robin through priority

Linux O(1) Scheduler

Task priority FIFO lists

CPU-X Expired CPU-X Active
runqueue rungueue

-1 —r—> Priority 1

— —t+—> Priority 2

— . e

—— ~—+—» Priority 100

—> Prionty 101

—> Prionty 140

Task priority FIFO lists

—t—> Priority 101

—> Priority 140

Real-time task priorities

\ .
> User task pnorities

e Lots of ad-hoc
heuristics

—Try to boost priority
of I/O-bound tasks

—Try to boost priority
of starved tasks

40

O(1) Scheduler Continued

e Heuristics
— User-task priority adjusted £5 based on heuristics
» P>sleep_avg = (sleep_time —run_time) x coefficient
» Higher sleep_avg = more I/O bound the task, more reward (and vice versa)
— Interactive Credit
» Earned when a task sleeps for a “long” time
» Spend when a task runs for a “long” time
» ICis used to provide hysteresis to avoid changing interactivity for temporary changes in behavior
— However, “interactive tasks” get special dispensation
» To try to maintain interactivity
» Placed back into active queue, unless some other task has been starved for too long...

e Real-Time Tasks
— Always preempt non-RT tasks
— No dynamic adjustment of priorities
— Scheduling schemes:

» SCHED_ FIFO: preempts other tasks, no timeslice limit
» SCHED RR: preempts normal tasks, RR scheduling amongst tasks of same priority

41

Proportional-Share Scheduling

e Instead using priorities, share the CPU proportionally
— Give each job a share of the CPU according to its priority
— Low-priority jobs get to run less often
— But all jobs can at least make progress (no starvation)

42

Recall: Lottery Scheduling

tQ i |Q i+ | . tlme

* Given a set of jobs (the mix), provide each with a share of a resource
—e.g, 50% of the CPU for Job A, 30% for , and 20% for Job C

* |dea: Give out tickets according to the proportion each should receive,

* Every quantum (tick): draw one at random, schedule that job (thread) to run

43

Lottery Scheduling: Simple Mechanism

10 ° tlcket Z N

e Pickanumberdinl .. N, asthe
random “dart”

e Jobs record their N; of allocated tickets
e Order them by N;

e Select the first j such that), N, up to j exceeds
d.

44

Linux Completely Fair Scheduler (CFS)

Basic Idea: track CPU time per thread and schedule threads
to match up average rate of execution

Scheduling Decision:
— "Repair’ illusion of complete fairness
— Choose thread with minimum CPU time

— Closely related to Fair Queueing

Use a heap-like scheduling queue for this...

— O(log N) to add/remove threads, where N is number
of threads

Sleeping threads don't advance their CPU time, so they get
a boost when they wake up again...

— Get interactivity automatically!

CFS: Average rate of

. 1
execution = —;
N

ﬁ

Swi] NdD
=| =

45

Linux CFS: Responsiveness/Starvation Freedom

In addition to fairness, we want low waiting time and starvation freedom
— Make sure that everyone gets to run at least a bit!
Constraint 1: Target Latency

— Period of time over which every process gets service
— Quanta = Target_Latency / n (n: number of processes)

Target Latency: 20 ms, 4 Processes
— Each process gets 5ms time slice

Target Latency: 20 ms, 200 Processes

— Each process gets 0.1ms time slice (!!!)
— Recall Round-Robin: large context switching overhead if slice gets to small

46

Linux CFS: Throughput

e Goal: Throughput
— Avoid excessive overhead

e Constraint 2: Minimum Granularity
— Minimum length of any time slice

e Target Latency 20 ms, Minimum Granularity 1 ms, 100 processes
— Each process gets 1 ms time slice

47

Linux CFS: Proportional Shares
e What if we want to give more CPU to some and less to others in CFS (proportional
share) ?
— Allow different threads to have different rates of execution (cycles/time)
e Use weights: assignh a weight w;to each process i to compute the switching quanta

Qi

— Basic equal share: Q; = Target Latency - %

— Weighted Share: Q; = (W"/Zp Wp) - Target Latency

e Reuse nice value to reflect share, rather than priority
— Remember that lower nice value = higher priority

— CFS uses nice values to scale weights exponentially: Weight=1024/(1.25)nice

» Two CPU tasks separated by nice value of 5 =
Task with lower nice value has 3 times the weight, since (1.25)°~ 3

48

Choosing the Right Scheduler

| Care About: Then Choose:

CPU Throughput

Avg. Completion Time
/O Throughput

Fairness (CPU Time)

Fairness
(Wart Time to Get CPU)

Meeting Deadlines

Favoring Important Tasks

49

Choosing the Right Scheduler

| Care About: Then Choose:

CPU Throughput FCFS
Avg. Completion Time SRTF Approximation
/O Throughput SRTF Approximation
Fairness (CPU Time) Linux CFS
Fairness Round Robin
(Wart Time to Get CPU)
Meeting Deadlines EDF

Favoring Important Tasks Priority

How to Evaluate a Scheduling algorithm?

e Deterministic modeling

— takes a predetermined workload and compute the performance of each algorithm

for that workload

e Queueing models

— Mathematical approach for handling stochastic workloads

e Implementation/Simulation:

— Build system which allows actual algorithms
to be run against actual data

— Most flexible/general

simulation

FCES

performance
statistics
for FCFS

—>

CPU 10

actual
process
execution

VOR2AI3
CRUE2

L ORI
CPU 2

o G4y
CPU 173

simulation

SJE

performance
statistics
for SJF

=

trace tape

e
~

simulation

RR (q = 14)

—

performance
statistics
for RR (g = 14)

51

A Final Word On Scheduling

e When do the details of the scheduling policy and fairness really matter?

— When there aren’t enough resources to go around

e When should you simply buy a faster computer?
— (Or network link, or expanded highway, or ...)

— One approach: Buy it when it will pay for itself in improved response time

» Perhaps you’re paying for worse response time in reduced
productivity, customer angst, etc...

» Might think that you should buy a faster X when Xis utilized 100%,
but usually, response time goes to infinity as utilization=100%

e An interesting implication of this curve:

— Most scheduling algorithms work fine in the “linear” portion of
the load curve, fail otherwise

— Argues for buying a faster X when hit “knee” of curve

auwin
asuodsd

Utilization

%001

52

Summary (1 of 2)

Scheduling Goals:
— Minimize Completion Time (e.g. for human interaction)
— Maximize Throughput (e.g. for large computations)
— Fairness (e.g. Proper Sharing of Resources)
— Predictability (e.g. Hard/Soft Realtime)
Round-Robin Scheduling:

— Give each thread a small amount of CPU time when it executes; cycle between all ready
threads

— Pros: Better for short jobs
Shortest Job First (SJF)/Shortest Remaining Time First (SRTF):

— Run whatever job has the least amount of computation to do/least remaining amount of
computation to do

Multi-Level Feedback Scheduling:
— Multiple queues of different priorities and scheduling algorithms
— Automatic promotion/demotion of process priority in order to approximate SJF/SRTF

53

Summary (2 of 2)

e Realtime Schedulers such as EDF
— Guaranteed behavior by meeting deadlines
— Realtime tasks defined by tuple of compute time and period

— Schedulability test: is it possible to meet deadlines with proposed set of processes?

e |ottery Scheduling:

— Give each thread a priority-dependent number of tokens (short tasks=more tokens)
e Linux CFS Scheduler: Fair fraction of CPU

— Approximates an “ideal” multitasking processor

— Practical example of “Fair Queueing”

54

