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Recap: First-Come, First-Served (FCFS) Scheduling

e First-Come, First-Served (FCFS)

— Also “First In, First Out” (FIFO) or “Run until done”

» In early systems, FCFS meant one program
scheduled until done (including 1/0)

» Now, means keep CPU until thread blocks

e Example: Process Burst Time
P, 24
P, 3

— Suppose processes arrive in the order: P;, P,, P,
The Gantt Chart for the schedule is:

P, P, Ps

0 24 27 30
— Waiting time for P, =0; P, =24; P;=27
— Average waiting time: (0+ 24 +27)/3 =17
— Average completion time: (24 + 27 + 30)/3 = 27

e Head-of-line blocking: short process stuck behind long process



Recap: Round Robin (RR) Scheduling

e FCFS Scheme: Potentially bad for short jobs!

— Depends on submit order

— If you are first in line at supermarket with milk, you don’t care
who is behind you, on the other hand...

e Round Robin Scheme: Preemption!

— Each process gets a small unit of CPU time
(time quantum), usually 10-100 milliseconds

— After guantum expires, the process is preempted
and added to the end of the ready queue.

— n processes in ready queue and time quantum is g =
» Each process gets 1/n of the CPU time
» In chunks of at most g time units
» No process waits more than (n-1)g time units



Recap: Handling Differences in Importance: Strict Priority Scheduling
Priority 3 —> Job | = Job 2 |—> Job 3

Priority 2 === |ob 4
Priority |

Priority 0 [==>{Job5 f={job6 = Job 7

e Execution Plan

— Always execute highest-priority runable jobs to completion

— Each queue can be processed in RR with some time-quantum
e Problems:

— Starvation:
» Lower priority jobs don’t get to run because higher priority jobs
— Deadlock: Priority Inversion
» Happens when low priority task has lock needed by high-priority task
» Usually involves third, intermediate priority task preventing high-priority task from running
e How to fix problems?

— Dynamic priorities: adjust base-level priority up or down based on heuristics about
interactivity, locking, burst behavior, etc...



Recap: What if we Knew the Future?

Could we always mirror best FCFS? 7@

Shortest Job First (SJF): Al @)
— Run whatever job has least amount of /ﬂ@
computation to do A\,‘\/\
— Sometimes called “Shortest Time to Completion First” (STCF)
Shortest Remaining Time First (SRTF):
— Preemptive version of SJF: if job arrives and has a shorter time to

completion than the remaining time on the current job, immediately
preempt CPU

— Sometimes called “Shortest Remaining Time to Completion First”
(SRTCF)

These can be applied to whole program or current CPU burst
— Idea is to get short jobs out of the system
— Big effect on short jobs, only small effect on long ones
— Result is better average completion time



Recap: Lottery Scheduling

e Yet another alternative: Lottery Scheduling
— Give each job some number of lottery tickets
— On each time slice, randomly pick a winning ticket

— On average, CPU time is proportional to number of tickets
given to each job

e How to assign tickets?
— To approximate SRTF, short running jobs get more, long running jobs get fewer
— To avoid starvation, every job gets at least one ticket (everyone makes progress)
e Advantage over strict priority scheduling: behaves gracefully as load changes

— Adding or deleting a job affects all jobs proportionally, independent of how many
tickets each job possesses



Recap: Multi-Level Feedback Scheduling
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e Another method for exploiting past behavior (first use in CTSS)

— Multiple queues, each with different priority

» Higher priority queues often considered “foreground” tasks

— Each queue has its own scheduling algorithm

» e.g. foreground — RR, background — FCFS

» Sometimes multiple RR priorities with quantum increasing exponentially
(highest:1ms, next: 2ms, next: 4ms, etc)

e Adjust each job’s priority as follows (details vary)

— Job starts in highest priority queue

— If timeout expires, drop one level
— If timeout doesn’t expire, push up one level (or to top)



Scheduling Details

i

> quantum = 8

Long-Running Compute

‘ _ Tasks Demoted to
quantum = 16 ——V LOW Pr'IOI"It)'

L"‘ ECES

— CPU bound jobs drop like a rock

e Result approximates SRTF:

— Short-running 1/O bound jobs stay near top

e Scheduling must be done between the queues
— Fixed priority scheduling:
» serve all from highest priority, then next priority, etc.
— Time slice:

» each queue gets a certain amount of CPU time
» e.g., 70% to highest, 20% next, 10% lowest
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e Countermeasure: user action that can foil intent of the OS designers

— For multilevel feedback, put in a bunch of meaningless /O to keep job’s priority high

— Of course, if everyone did this, wouldn’t work!

e Example of Othello program:

— Playing against competitor, so key was to do computing at higher priority than the

competitors.

» Putin printf’s, run much faster!



How to Handle Simultaneous Mix of Diff Types of Apps?

Consider mix of interactive and high throughput apps:
— How to best schedule them?

— How to recognize one from the other?
» Do you trust app to say that it is “interactive”?

— Should you schedule the set of apps identically on servers, workstations,
pads, and cellphones?

For instance, is Burst Time (observed) useful to decide which application gets CPU
time?

— Short Bursts = Interactivity = High Priority?
Assumptions encoded into many schedulers:

— Apps that sleep a lot and have short bursts must be interactive apps —
they should get high priority

— Apps that compute a lot should get low(er?) priority, since they won’t notice
intermittent bursts from interactive apps

Hard to characterize apps:

— What about apps that sleep for a long time, but then compute for a long time?
— Or, what about apps that must run under all circumstances (say periodically)
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Multi-Core Scheduling

e Algorithmically, not a huge difference from single-core scheduling

e Implementation-wise, helpful to have per-core scheduling data structures
— Cache coherence

e Affinity scheduling: once a thread is scheduled on a CPU, OS tries to reschedule it
on the same CPU

— Cache reuse
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Spinlocks for multiprocessing

Spinlock implementation:

int value = @; // Free
Acquire() {
while (test&set(&value)) {}; // spin while busy

}
Release() {

value = 0; // atomic store
}

Spinlock doesn’t put the calling thread to sleep—it just busy waits
— When might this be preferable?
» Waiting for limited number of threads at a barrier in a multiprocessing (multicore) program
» Wait time at barrier would be greatly increased if threads must be woken inside kernel

Every test&set () isa write, which makes value ping-pong around between core-local caches
— So —really want to use test&test&set() !

The extra read eliminates the ping-ponging issues:

// Implementation of test&test&set():
Acquire() {
do {
while(value); // wait until might be free
} while (test&set(&value)); // exit if acquire lock

}
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Gang Scheduling and Parallel Applications

e When multiple threads work together on a multi-core system, try to schedule
them together

— Makes spin-waiting more efficient (inefficient to spin-wait for a thread that’s
suspended)

e Alternative: OS informs a parallel program how many processors its threads are
scheduled on (Scheduler Activations)

— Application adapts to number of cores that it has scheduled

— “Space sharing” with other parallel programs can be more efficient, because parallel
speedup is often sublinear with the number of cores
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So, Does the OS Schedule Processes or Threads?

e Many textbooks use the “old model”—one thread per process

e Usually it's really: threads (e.g., in Linux)

e One point to notice: switching threads vs. switching processes incurs different
costs:

— Switch threads: Save/restore registers
— Switch processes: Change active address space too!

» Expensive
» Disrupts caching
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Real-Time Scheduling

e Goal: Predictability of Performance!
— We need to predict with confidence worst case response times for systems!
— In RTS, performance guarantees are:
» Task- and/or class centric and often ensured a priori

— In conventional systems, performance is:
» System/throughput oriented with post-processing (... wait and see ...)

— Real-time is about enforcing predictability; does not equal fast computing!!!
e Hard real-time: for time-critical safety-oriented systems

— Meet all deadlines (if at all possible)

— Ideally: determine in advance if this is possible (admission control)

— Earliest Deadline First (EDF), Rate-Monotonic Scheduling (RMS), Deadline Monotonic
Scheduling (DM)

e Soft real-time: for multimedia
— Attempt to meet deadlines with high probability
— Constant Bandwidth Server (CBS)
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Example: Workload Characteristics

e Tasks are preemptable, independent with arbitrary arrival (=release) times
e Tasks have deadlines (D) and known computation times (C)
e Example Setup:

e
Tl o |

T2 = DZl




Example: Round-Robin Scheduling Doesn’t Work

Missed
- L deadline!!
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Earliest Deadline First (EDF)

e Tasks iis periodic with period P; and computation C, in each period: (P;, C;) for each
task i

e Preemptive priority-based dynamic scheduling:

— Each task is assigned a (current) priority based on how close the absolute deadline is (i.e.
DI*! = D} + P; for each task!)

— The scheduler always schedules the active task with the closest absolute deadline

AAICH) RN N B
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EDF Feasibility Testing

e Even EDF won’t work if you have too many tasks

e For n tasks with computation time C; and deadline D,, a feasible schedule exists
if:
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Ensuring Progress

e Starvation: thread fails to make progress for an indefinite period of time

e Starvation # Deadlock
— Deadlock: cyclic requests for resources

e |et’s explore what sorts of problems we might encounter and how to avoid them...
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Strawman: Non-Work-Conserving Scheduler

e A work-conserving scheduler is one that does not leave the CPU idle when there
is work to do

e A non-work-conserving scheduler could trivially lead to starvation

e In this class, we’ll assume that the scheduler is work-conserving (unless stated
otherwise)
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Strawman: Last-Come, First-Served (LCFS)

e Stack (LIFO) as a scheduling data structure
— Late arrivals get fast service
— Early ones wait — extremely unfair
— In the worst case — starvation
e \When would this occur?
— When arrival rate (offered load) exceeds service rate (delivered load)

— Queue builds up faster than it drains

e Queue can build in FIFO too, but “serviced in the order received”...
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Is FCFS Prone to Starvation?

Scheduled Task (process, thread)

I I . time

Scheduling Queue

* |f a task never yields (e.g,, goes into an infinite loop), then other tasks
don’t get to run

* Problem with all non-preemptive schedulers...
* And early personal OSes such as original MacOS, Windows 3.1, etc.
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Is Round Robin (RR) Prone to Starvation?

e Each of N processes gets ~1/N of CPU (in window)

— With quantum length Q ms, process waits at most
(N-1)*Q ms to run again

— So a process can’t be kept waiting indefinitely

e So RRis fair in terms of waiting time
— Not necessarily in terms of throughput...
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Is Priority Scheduling Prone to Starvation?

e Recall: Priority Scheduler always runs the Priority 3 [==b{Job | [=#{ job 2 [=>1{ Job 3
thread with highest priority Priority 2 f=={ Job 4
— Low priority thread might never run! Priority |
— Starvation... Priority 0 [==%{Job 5 |—>|Job 6 |—> Job 7

e But there are more serious problems as well...

— Priority inversion: even high priority threads might become starved

25




Priority Inversion

Priority 3

Priority 2

Priority |

Acquire()

« At this point, which job does the scheduler choose?
* Job 3 (Highest priority)
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Priority Inversion

Priority 3

Priority 2

~__ Acquire()

.~
.h.
»

—

Priority |

* Job 3 attempts to acquire lock held by Job |

27



Priority Inversion

Priority 2 Job 2

Blocked on Acquire
Priority 3

Priority | Job |

« At this point, which job does the scheduler choose?
* Job 2 (Medium Priority)

* Priority Inversion

‘o
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Where high priority task is blocked waiting on low priority task

Priority Inversion

Low priority one must run for high priority to make progress

Medium priority task can starve a high priority one

When else might priority lead to starvation or “live lock”?

High Priority

while (try_lock) {

}

Low Priority

lock.acquire(...)

lock.release(...)

—
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One Solution: Priority Donation/Inheritance

Priority 3 ~— Acquire()

Priority 2

.~
.~~
‘

—

Priority |

* Job 3 temporarily grants Job | its “high priority” to run on its behalf
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One Solution: Priority Donation/Inheritance

Priority 3

Priority 2

Priority |

* Job 3 temporarily grants Job | its “high priority” to run on its behalf
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One Solution: Priority Donation/Inheritance

Priority 3 Acquire()

Priority 2

Priority |

* Job | completes critical section and releases lock
* Job 3 acquires lock, runs again
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Case Study: Martian Pathfinder Rover

July 4, 1997 — Pathfinder lands on Mars

— First US Mars landing since Vikings in 1976; first rover

— Novel delivery mechanism: inside air-filled balloons
bounced to stop on the surface from orbit!

And then...a few days into mission...:
— Multiple system resets occur to realtime OS (VxWorks)
— System would reboot randomly, losing valuable time and progress

Problem? Priority Inversion! Priority 2 _

— Low priority task grabs mutex trying to Priority | == Lots of random medium stuff
communicate with high priority task Priority O fe=p ASI/MET collector: grab lock

— Realtime watchdog detected lack of forward progress and invoked reset to safe state
» High-priority data distribution task was supposed to complete with regular deadline

Solution: Turn priority donation back on and upload fixes!

Original developers turned off priority donation (also called priority inheritance)

— Worried about performance costs of donating priority!
33



Are SRTF and MLFQ Prone to Starvation?

Y

quantum = 8

Long-Running Compute

quantum = 16

T

—Pf? FCFS

Tasks Demoted to
~ Low Priority

e In SRTF, long jobs are starved in favor of short ones

— Same fundamental problem as priority scheduling

e MLFQ s an approximation of SRTF, so it suffers from the same problem
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Cause for Starvation: Priorities?

e Most of policies we’ve studied so far:
— Always prefer to give the CPU to a prioritized job
— Non-prioritized jobs may never get to run

e But priorities were a means, not an end
e Our end goal was to serve a mix of CPU-bound, I/O bound, and Interactive jobs
effectively on common hardware

— Give the |/O bound ones enough CPU to issue their next file operation and wait (on
those slow discs)

— Give the interactive ones enough CPU to respond to an input and wait (on those slow
humans)

— Let the CPU bound ones grind away without too much disturbance
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Computers

Recall: Changing Landscape...

Per Person

Bell's Law: New
computer class every
10 years

|:10%

|:103

103:

Number
crunching, Data
Storage, Massive

— Inet Services,

ML, ...

Productivity,
[ Interactive

Streaming

— from/to the

physical world

years

Things!

The Internet of
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Changing Landscape of Scheduling

e Priority-based scheduling rooted in “time-sharing”

— Allocating precious, limited resources across a diverse workload
» CPU bound vs. interactive vs. |/O bound

e 80’s brought about personal computers, workstations, and servers on networks
— Different machines of different types for different purposes
— Shift to fairness and avoiding extremes (starvation)

e 90’s emergence of the web, rise of internet-based services, the data-center-is-
the-computer

— Server consolidation, massive clustered services, huge flashcrowds
— It’s about predictability, 95t percentile performance guarantees
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Priority in Unix — Being Nice

e The industrial operating systems of the 60s and 70s provided priority to enforce
desired usage policies.

— When it was being developed at Berkeley, instead it provided ways to “be nice”.
e nice values range from -20 to 19

— Negative values are “not nice”

— If you wanted to let your friends get more time, you would nice up your job
e Scheduler puts higher nice-value tasks (lower priority) to sleep more ...

— In O(1) scheduler, this translated fairly directly to priority (and time slice)
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Case Study: Linux O(1) Scheduler

Kernel/Realtime Tasks User Tasks

0 100 139
e Priority-based scheduler: 140 priorities
— 40 for “user tasks” (set by “nice”), 100 for “Realtime/Kernel”
— Lower nice value = higher priority

— Higher nice value = lower priority
— All algorithms O(1)
» Timeslices/priorities/interactivity credits all compute when job finishes time slice
» 140-bit bit mask indicates presence or absence of job at given priority level
e Two separate priority queues: “active” and “expired”

— All tasks in the active queue use up their timeslices and get placed on the expired queue,
after which queues swapped

e Timeslice depends on priority — linearly mapped onto timeslice range
— Like a multi-level queue (one queue per priority) with different timeslice at each level
— Execution split into “Timeslice Granularity” chunks — round robin through priority



Linux O(1) Scheduler

Task priority FIFO lists

CPU-X Expired CPU-X Active
runqueue rungueue

-1 —r—> Priority 1

— —t+—> Priority 2

— . e

—— ~—+—» Priority 100

—> Prionty 101

—> Prionty 140

Task priority FIFO lists

—t—> Priority 101

—> Priority 140

Real-time task priorities

\ .
> User task pnorities

e Lots of ad-hoc
heuristics

—Try to boost priority
of I/O-bound tasks

—Try to boost priority
of starved tasks
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O(1) Scheduler Continued

e Heuristics
— User-task priority adjusted £5 based on heuristics
» P>sleep_avg = (sleep_time —run_time) x coefficient
» Higher sleep_avg = more I/O bound the task, more reward (and vice versa)
— Interactive Credit
» Earned when a task sleeps for a “long” time
» Spend when a task runs for a “long” time
» ICis used to provide hysteresis to avoid changing interactivity for temporary changes in behavior
— However, “interactive tasks” get special dispensation
» To try to maintain interactivity
» Placed back into active queue, unless some other task has been starved for too long...

e Real-Time Tasks
— Always preempt non-RT tasks
— No dynamic adjustment of priorities
— Scheduling schemes:

» SCHED_ FIFO: preempts other tasks, no timeslice limit
» SCHED RR: preempts normal tasks, RR scheduling amongst tasks of same priority
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Proportional-Share Scheduling

e Instead using priorities, share the CPU proportionally
— Give each job a share of the CPU according to its priority
— Low-priority jobs get to run less often
— But all jobs can at least make progress (no starvation)
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Recall: Lottery Scheduling

tQ i |Q i+ | . tlme

* Given a set of jobs (the mix), provide each with a share of a resource
—e.g, 50% of the CPU for Job A, 30% for , and 20% for Job C

* |dea: Give out tickets according to the proportion each should receive,

* Every quantum (tick): draw one at random, schedule that job (thread) to run
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Lottery Scheduling: Simple Mechanism

10 ° tlcket Z N

e Pickanumberdinl .. N, asthe
random “dart”

e Jobs record their N; of allocated tickets
e Order them by N;

e Select the first j such that ), N, up to j exceeds
d.
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Linux Completely Fair Scheduler (CFS)

Basic Idea: track CPU time per thread and schedule threads
to match up average rate of execution

Scheduling Decision:
— "Repair’ illusion of complete fairness
— Choose thread with minimum CPU time

— Closely related to Fair Queueing

Use a heap-like scheduling queue for this...

— O(log N) to add/remove threads, where N is number
of threads

Sleeping threads don't advance their CPU time, so they get
a boost when they wake up again...

— Get interactivity automatically!

CFS: Average rate of

. 1
execution = —;
N

ﬁ

Swi] NdD
=| =
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Linux CFS: Responsiveness/Starvation Freedom

In addition to fairness, we want low waiting time and starvation freedom
— Make sure that everyone gets to run at least a bit!
Constraint 1: Target Latency

— Period of time over which every process gets service
— Quanta = Target_Latency / n (n: number of processes)

Target Latency: 20 ms, 4 Processes
— Each process gets 5ms time slice

Target Latency: 20 ms, 200 Processes

— Each process gets 0.1ms time slice (!!!)
— Recall Round-Robin: large context switching overhead if slice gets to small
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Linux CFS: Throughput

e Goal: Throughput
— Avoid excessive overhead

e Constraint 2: Minimum Granularity
— Minimum length of any time slice

e Target Latency 20 ms, Minimum Granularity 1 ms, 100 processes
— Each process gets 1 ms time slice
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Linux CFS: Proportional Shares
e What if we want to give more CPU to some and less to others in CFS (proportional
share) ?
— Allow different threads to have different rates of execution (cycles/time)
e Use weights: assignh a weight w;to each process i to compute the switching quanta

Qi

— Basic equal share: Q; = Target Latency - %

— Weighted Share: Q; = (W"/Zp Wp) - Target Latency

e Reuse nice value to reflect share, rather than priority
— Remember that lower nice value = higher priority

— CFS uses nice values to scale weights exponentially: Weight=1024/(1.25)nice

» Two CPU tasks separated by nice value of 5 =
Task with lower nice value has 3 times the weight, since (1.25)°~ 3
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Choosing the Right Scheduler

| Care About: Then Choose:

CPU Throughput

Avg. Completion Time
/O Throughput

Fairness (CPU Time)

Fairness
(Wart Time to Get CPU)

Meeting Deadlines

Favoring Important Tasks
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Choosing the Right Scheduler

| Care About: Then Choose:

CPU Throughput FCFS
Avg. Completion Time SRTF Approximation
/O Throughput SRTF Approximation
Fairness (CPU Time) Linux CFS
Fairness Round Robin
(Wart Time to Get CPU)
Meeting Deadlines EDF

Favoring Important Tasks Priority



How to Evaluate a Scheduling algorithm?

e Deterministic modeling

— takes a predetermined workload and compute the performance of each algorithm

for that workload

e Queueing models

— Mathematical approach for handling stochastic workloads

e Implementation/Simulation:

— Build system which allows actual algorithms
to be run against actual data

— Most flexible/general

simulation

FCES

performance
statistics
for FCFS

—>

CPU 10

actual
process
execution

VOR2AI3
CRUE2

L ORI
CPU 2

o G4y
CPU 173

simulation

SJE

performance
statistics
for SJF

=

trace tape

e
~

simulation

RR (q = 14)

—

performance
statistics
for RR (g = 14)
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A Final Word On Scheduling

e When do the details of the scheduling policy and fairness really matter?

— When there aren’t enough resources to go around

e When should you simply buy a faster computer?
— (Or network link, or expanded highway, or ...)

— One approach: Buy it when it will pay for itself in improved response time

» Perhaps you’re paying for worse response time in reduced
productivity, customer angst, etc...

» Might think that you should buy a faster X when Xis utilized 100%,
but usually, response time goes to infinity as utilization=100%

e An interesting implication of this curve:

— Most scheduling algorithms work fine in the “linear” portion of
the load curve, fail otherwise

— Argues for buying a faster X when hit “knee” of curve

auwin
asuodsd

Utilization

%001
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Summary (1 of 2)

Scheduling Goals:
— Minimize Completion Time (e.g. for human interaction)
— Maximize Throughput (e.g. for large computations)
— Fairness (e.g. Proper Sharing of Resources)
— Predictability (e.g. Hard/Soft Realtime)
Round-Robin Scheduling:

— Give each thread a small amount of CPU time when it executes; cycle between all ready
threads

— Pros: Better for short jobs
Shortest Job First (SJF)/Shortest Remaining Time First (SRTF):

— Run whatever job has the least amount of computation to do/least remaining amount of
computation to do

Multi-Level Feedback Scheduling:
— Multiple queues of different priorities and scheduling algorithms
— Automatic promotion/demotion of process priority in order to approximate SJF/SRTF
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Summary (2 of 2)

e Realtime Schedulers such as EDF
— Guaranteed behavior by meeting deadlines
— Realtime tasks defined by tuple of compute time and period

— Schedulability test: is it possible to meet deadlines with proposed set of processes?

e |ottery Scheduling:

— Give each thread a priority-dependent number of tokens (short tasks=more tokens)
e Linux CFS Scheduler: Fair fraction of CPU

— Approximates an “ideal” multitasking processor

— Practical example of “Fair Queueing”
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