Operating Systems
(Honor Track)

Memory 5: Memory Management in
Modern Computer Systems
Xin Jin
Spring 2024

Acknowledgments: lon Stoica, Berkeley CS 162

Memory Management in Modern Computer Systems

e Memory Abstraction
— NSDI’14 FaRM

e Demand paging: remote memory over RDMA

— NSDI’17 InfiniSwap
— OSDI'20 AIFM

e Demand paging: memory swapping between GPU memory and host memory
— OSDI’20 PipeSwitch
— NSDI'23 TGS

~aRM: Fast Remote Memory

Aleksandar Dragojevi¢, Dushyanth Narayanan,
Orion Hodson, Miguel Castro

Hardware trends

- Main memory is cheap

- 100 GB — 1 TB per server
- 10— 100 TBs in a small cluster

- New data centre networks

- 40 Gbps throughput (100 this year)
- 1-3 s latency
- RDMA primitives

Remote direct memory access

- Read / write remote memory
- NIC performs DMA requests

- FaRM uses RDMA extensively

- Reads to directly read data
- Writes into remote buffers for messaging

- Great performance

- Bypasses the kernel
- Bypasses the remote CPU

Machine A
DMA

RAM

CPU

NIC

Network

RAM

CPU

K

1]

Machine B D

MA

Requests / us / server

oO—_L N WhAuitOhON00OWOO

--RDMA #RDMA msg - TCP

32 64 128 256 512 1024 2048
Transfer bytes (log)

6

- RDMA #®RDMA msg <-TCP

[e)

O s o
~ <>____<> <> ‘~~<>____<>—___<>__— <>_ <>
(V)]

-

N

&

g 0 g---m--—-m----m----W----m----m--- -8
©

o ° — o ° — o o—*
©

o

>

< 1

16 32 64 128 256 512 1024 2048
Transfer bytes (log)

7

Applications

- Data centre applications

- Irreqular access patterns
- Latency sensitive

- Data serving

- Key-value store
- Graph store

- Enabling new applications

How to program a modern cluster?

We have: Desirable:

* TBs of DRAM » Keep data in memory

* 100s of CPU cores Access data using RDMA
 RDMA network * Collocate data and computation

(ay/f

b ;
x

Traditional model

Servers: store data

\&y
</// o///>

Clients: execute application

o

Symmetric model

Access to local N N

memory Is N N N N

much faster))~ p-)~
&~ Y &~ &

Server CPUs

are mostly idle

with RDMA

Machines store data and execute application

11

Shared address space

Supports direct
RDMA of objects

Programmability
a welcome bonus

O1

Oe6

@F:

O9

</// ° //@

</// o//@ 0

Shared address space

General primitive | Shared address space

. O7
Strong consistency: 02 O4 Os

serializability = " - t — [o @
Transparent: t Write t Write t t O10

e location
Read "
. concurrency Read Read Free

. failures Alloc

13

Optimizations: locality awareness

Optimizations: locality awareness
4

Collocate data
accessed together a a

Ship computation

to target data L ocal ﬁ e

Optimized (\ RPC (\

single server NS < S

transactions 0 0
N N

Transactions

Buffer writes
mmm | Llock Validate Update and unlock

RNAYVRYA
]| o o

Executioni Commit

16

TAQ [Bronson “13, Armstrong "13]

- Facebook’s in-memory graph store

- Workload
- Read-dominated (99.8%) 6 MOpS/S/SI‘V
- 10 operation types (10x improvement)
- FaRM implementation
- Nodes and edges are FaRM objects 42 ps average latency
- Lock-free reads for lookups (40 — 50x iImprovement)

- Transactions for updates

17

FaRM

- Platform for distributed computing

- Data is In memory
- RDMA

- Shared memory abstraction

- Transactions
- Lock-free reads

- Order-of-magnitude performance improvements

- Enables new applications

18

Memory Management in Modern Computer Systems

e Memory Abstraction
— NSDI’14 FaRM

e Demand paging: remote memory over RDMA

— NSDI’17 InfiniSwap
— OSDI'20 AIFM

e Demand paging: memory swapping between GPU memory and host memory
— OSDI’20 PipeSwitch
— NSDI'23 TGS

19

Efficient Memory Disaggregation with
Infiniswap

Juncheng Gu, Youngmoon Lee, Yiwen Zhang,
Mosharaf Chowdhury, Kang G. Shin

UNIVERSITY OF
MICHIGAN

Agenda

 Motivation and related work

3/30/17

Memory-intensive applications

YO L'r%g iFI emCached

©

powergraph Gr Clph/l/

Memory-intensive applications

A Your computer is low on memory

To restore enough memory for programs to work
correctly, save your files and then close or restart all
open programs.

3/30/17

Performance degradation

1 0.94 0.97
Q
e
o 0.8
S
1 S
O
‘t 0.6
2 0.47
o
- 0.4
F- 0.18
E 0.2 - 0.12
S 0.06
2 0.04 . . 0.04
0 —] —
VoltDB Memcached PowerGraph GraphX
(TPC-C) (Facebook/FB SYS) (TunkRank) (PageRank)

M 100% working sets inmemory ¥ 75% working sets inmemory M 50% working sets in memory

Memory underutilization

* Google Cluster Analysis.,

Allocated Used

o H
00 O

Portion of Memory
o
(92

o

7 14 21 28 7 14 21 28
. Time (days) .

[1] Reiss, Charles, et al. "Heterogeneity and dynamicity of clouds at scale: Google trace analysis." SoCC’12.

Memory underutilization

* Google Cluster Analysis.,

Allocated Used

FR AR R PR | IRRERRY! (NR] "N (R ERR frrrererrrrererrrrrrerrrrerrrrrrrerrrrrrrrrrrrrrrrrly

T G/ } :30% 0 Z

o+
00 O

e 0.5

On of Memory
=
o

|r'l

Can we utilize this memory?
Ime (day

3/30/17 18

[1] Reiss, Charles, et al. "Heterogeneity and dynamicity of clouds at scale: Google trace analysis." SoCC’12.

Disaggregate free memory

MacTne 1

|

Memory Disaggregation Layer

|

!

! I

o

Machine 2

Machine 3 Machine 4

!

Machine N

What are the challenges?

* Minimize deployment overhead
* No hardware design

* No application modification

* Tolerate failures
* e.g. network disconnection, machine crash

* Manage remote memory at scale

Recent work on memory disaggregation

No app Fault-

Memory Blade([IscA’09]

HPBD[CLUSTER’05] / NBDXx

O X

RDMA key-value service
(e.g. HERD[SIGCOMM’14], FaRM[NSDI'14])

(RSA):;

e xe

CoOx 00
cCee xC

Intel Rack Scale Architecture x

Infiniswap

1 https://github.com/accelio/NBDX

3/30/17
/30/ 2 http://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html

http://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html

Agenda

* Design and system overview

3/30/17

24

System Overview

User f g .
Sloace{Appllcatlonl Jg\[AppllcatlonZ J .
Kernel A\

[Virtual Memory Manager (VMM)]

s

Space

~

Async \DQEC
—
B (]
Machine 1

()
J {Application J User
¢ Space
{ RNIC J
N _J

Machine 2

3/30/17

System Overview

User {Applicationl J

Space [Appllcatlonz J .

Kernel - A\
Space[Virtual Memory Manager (VMM)]

Machine 1

~

Infiniswap Block Device
* Swap space
* Request router

~

J {Application JUSGF
Space

Machine 2

26

System Overview

~

szzie{/*pp“cationl J [Applicationz J Local disk
g\\ * [ASYNC] backup swapped-out
g;rzl[Virtual Memory Manager (VMM)] data
@ * Tolerate remote memory
failure

B
; \Dﬂfc T
W [RNIC J L { RNIC J

Machine 1 Machine 2
3/30/17 27

System Overview

~

g;gge[ApplicationlJ [ApplicationZJ Infiniswap Deamon
9\\ Local memory region
gg;r;l[Virtual Memory Manager (VMM)] * Remote memory service

s

Async \DQEC

~N
{ J Application J User
Space
e

N T 2 S T

Machine 1 Machine 2

System Overview

[Applicationz J ".\ RDMA

g\\ * One-sided operations
g;;rg[Virtual Memory Manager (VMM)] ° Bypass remote CPU

User ...
Sloace[Apphcatlonl J

o)
Infiniswap
Daemon [Application J User
Space
J

Machine 1 Machine 2
3/30/17

How to meet the design objectives?

No hardware design
Remote paging
No application modification

Fault-tolerance Local backup disk

3/30/17 30

3/30/17

One-to-many

User [Applicationl J

Space [Apphcatlonz J .

X\

~

N\
[Virtual Memory Manager (VMM)]

Kernel
Space

-

Machine 1

\
Infiniswap
Daemon [Application } User
Space
[RNIC]
- - J
Machine 3
o ~N
Infiniswap
Daemon [Application JUser
Space
{ RNIC]
~ J

Machine 2

31

Many-to-many

~

User
Space

{Applicationl }

{Applicationz }

QA

Kernel
Space

N
[Virtual Memory Manager (VMM)]

| Application |

\

User
Space

RNIC }

J

-
(

Machine 3

| Application |

\

User
Space

|
[
|

Machine 1

)
RNIC }

-

[

Machine 2

Applicationl {Applicationz }

QA

}\

~

User
Space

[Virtual Memory Manager (VMM)]

Sync Async

)

o]

Kernel
Space

Machine 4

3/30/17

Many-to-many

How to scale remote memory?

e How to find remote memory in the cluster?
e Which remote mapping should be evicted?

33

How to meet the design objectives?

Objectives _ ldeas

Decentralized remote memory

Scalability management

3/30/17 34

Management unit: memory page?

g Infiniswap
Daemon
4 .- . .)
Infiniswap Block Device Infiniswap
Daemon
_ .
:
p100 <sl, pl1>
. [Infiniswap]
. _ Daemon
1GB = 256K entries

3/30/17

1GB = 256K RTTs ”

Management unit: memory slab!

| Infiniswap
{ Daemon
g Infiniswap Block Device h Infiniswap
Daemon
- W,

Infiniswap
Daemon

3/30/17 37

Management unit: memory slab!

Infiniswap
Daemon
g Infiniswap Block Device h Infiniswap
Daemon
_ W,

Infiniswap
Daemon

3/30/17 38

Which remote machine should be selected?

NN Infiniswap
[§ \\ Daemon
g Infiniswap Block Device h Infiniswap
Daemon

- W,
N Infiniswap
\\\\ Daemon

3/30/17 39

Which remote machine should be selected?

Infiniswap Block Device

N Infiniswap
§ \\ Daemon

J

Infiniswap
Daemon

J

memory utilization

Which remote machine should be selected?

NN Infiniswap
[§ \\ Daemon
g Infiniswap Block Device A Infiniswap
Daemon

- W,

» Central controller —

N Infiniswap
\\\\ Daemon

3/30/17 41

Which remote machine should be selected?

N R Infiniswap

[§ \\ Daemon

g Infiniswap Block Device) Infiniswap

Daemon
- Y,
—>—Centralcontroter

[§ Infiniswap]

» Decentralized approach (& Daemon

3/30/17 -

Power offwo)choices,

-

Infiniswap Block Device h \

|

777

\

N

Infiniswap
Daemon

3/30/17

[1] Mitzenmacher, Michael. "The power of two choices in randomized load balancing.”, Ph.D. thesis, U.C. Berkeley, 1996

{

Infiniswap
Daemon

0

Infiniswap
Daemon

43

Power offwo)choices,

NN Infiniswap
[§ § Daemon]

4 . . .)
Infiniswap Block DEYICE %§ Infiniswap
\ &\\ Daemon

. N
§ Infiniswap
N Daemon
3/30/17 44

[1] Mitzenmacher, Michael. "The power of two choices in randomized load balancing.”, Ph.D. thesis, U.C. Berkeley, 1996

Agenda

* Implementation and evaluation

3/30/17

53

Implementation

Kernel Space User Space
Infiniswap
m Daemon

e Connection Management
* One RDMA connection per active block device - daemon pair
* Control Plane
* SEND, RECV
..» Data Plane
* One-sided RDMA READ, WRITE

54

3/30/17

What are we expecting from Infiniswap?

m Application performance
m Cluster memory utilization
m Network usage

m Eviction overhead

m Fault-tolerance overhead

m Performance as a block device

55

Evaluation

InfiniBand
Network

=

2 x 8 cores (32 vcores)
- 64GB DRAM

56Gbps InfiniBand NIC

Ay
&y

32-node cluster

R ©

e
VQLTDB HE' emCached powergraph Gl‘dph/\/

56

Application performance

* 50% working sets in memory

1
@
=
S 0s 0.77
£ 0.66
o 0.61
‘t 06
[
a
-
g 0.4
©
EOZ 012 Illllolasll‘.
2 0.04 0.06 - 004 =
0 — . = — .
VoltDB Memcached PowerGraph ‘Graphx" """
(TPC-C) (Facebook/FB SYS) (TunkRank) (PageRank)

M 100% working sets in memory M Disk + 50% working sets in memory

Infiniswap + 50% working sets in memory

* Application performance is improved by 2-16x

Cluster memory utilization

* 90 containers (applications), mixing all applications and memory constraints.

100
< —Infiniswap
o
g 30 ---w/o Infiniswap
-
T 60 T
- 40
S
£
S 20
=
0

1 3 | 5 ; 9 | 11 ll3 15 | 17 119 21 | 23 215 27 | 29
Rank of Machines

3/30/17 60

» Cluster memory utilization is improved from 40.8% to 60% (1.47x)

Agenda

 Future work and conclusion

3/30/17

61

Limitations and future work

e Trade-off in fault-tolerance
e Local diskis the bottleneck

* Multiple remote replicas

e Fault-tolerance vs. space-efficiency

e Performance isolation among applications

Conclusion
* Infiniswap: remote paging over RDMA
* Application performance
* Cluster memory utilization

e Efficient, practical memory disaggregation

* No hardware design

* No application modification
* Fault-tolerance

* Scalability

https://github.com/Infiniswap/infiniswap.git

Memory Management in Modern Computer Systems

e Memory Abstraction
— NSDI’14 FaRM

e Demand paging: remote memory over RDMA

— NSDI’17 InfiniSwap
— OSDI'20 AIFM

e Demand paging: memory swapping between GPU memory and host memory
— OSDI’20 PipeSwitch
— NSDI'23 TGS

59

AlF

Applicati

Zain (Zhenyuan) Ruan®

"MIT CSAIL

il

MITCSAIL

M: High-Perfor

on-Integrated

Malte Schwarzkopf”

"Brown University

mance,

Marcos K. Aguilera *

-ar Memory

Adam Belay”

fVMware Research

vmware

60

In-Memory Applications

!l pandas

Data Analytics

vy %Y

v V
yoLrbs

Database

& redis

Web Caching

©

powergraph

Graph Processing

61

Memory Is Inelastic

* Limited by the server physical boundary.

* Applications cannot overcommit memory.

Opening a 20GB file for analysis with pandas

Asked 2 years, 8 months ago Active 1 year, 4 months ago Viewed 81k times

| am currently trying to open a file with pandas and python for machine learning purposes it would

be ideal for me to have them all in a DataFrame. My RAM is 32 GB. | keep getting memory errors.
20

» Expensive solution: overprovision memory for peak usage.

62

Trending Solution: Far Memory

» Leverage the idle memory of remote servers (with fast network).

r N (~ Fast Network ~——r \
Local Memory NIC < NIC | Far Memory
I " I
| o
- J L J —_— — J \\ J
e r- __________]
Local Server : Remote Server |
l

e —————— — — — — —

Existing Far-Memory Systems Perform Poorly

e Real-world Data Analytics from Kaggle.
* Provision 25% of working set in local mem.

» Goal: reclaim the wasted performance.

0 1 aN ideal

c

& 0.8 70% of

S 06 performance

E_’ wasted P state-of-the-art
< 0.4 .

Q M AIFM (this work)
< 0.2

-

2 0

64

Why Do Existing Systems Waste Performance?

* Problem: based on OS paging.
— Semantic gap.
— High kernel overheads.

Challenge 1: Semantic Gap

* Page granularity = R/W amplification.

OS ——

App —

» 0S lacks app know

App

Page

—>®

—»

—>

edge =» hard to prefetch, etc.

——»

—>

0S

A sequence of rangom Memory aCCesses.

Challenge 2: High Kernel Overheads

* Expensive page faults.

» Busy Polling for in-kernel net |/O =2 burn CPU cycles.

APP

@

N

Remote Object

@ Swap in page

Page Fault

Handler (8 us)

Net
(6 us)

;
(% @ Busy poll

67

Design Space

Manually manage
objects with RDMA

AIFM (this work)

Perf.

Existing OS
@ npagingsystems

Transparency

AIFM’s Design Overview

» Key idea: swap memory using a userspace runtime.

1. Semantic gap Remoteable Data structure library
(Amplification, Hard to prefetch)

2. Kernel overheads Userspace runtime
(page faults, busy poll for net 1/0)
3. Impact of Memory Reclamation Pauseless evacuator
(pause app threads)
4. network BW < DRAM BW Remote Agent

69

1. Remoteable Data Structure Library

» Solved challenge: semantic gap.

Remoteable
»| Data Structure

App User- 1 library API
Level Thread O |

App Semantics

v

Prefetcher

Local Memory

Far Memory

2. Userspace Runtime

» Solved challenge: kernel overheads.

App User- 1 library API
Level Thread O |

Local Memory

Far Memory

>

Remoteable
Data Structure

App Semantics

v

Prefetcher

Ptr O

e

2. Userspace Runtime

» Solved challenge: kernel overheads.

library API Remoteable < Ptr O

»| Data Structure

Ptr 1

App Semantics

v

Prefetcher

Local Memory

Far Memory i G

2. Userspace Runtime

» Solved challenge: kernel overheads.

library API

vield T

Local Memory

Far Memory

>

Remoteable
Data Structure

App Semantics

v

Prefetcher

Ptr O

<

Ptr 1

3. Pauseless Evacuator

» Solved challenge: impact of memory reclamation.

[App User-)IibraryAPI Remoteable Ptr O —@

Data Structure
Level Thread O | g

vield T App Semantics Ptr 1 m‘w@

v Pauseless
Prefetcher see
Evacuator

Ptr N Me

Local Memory

Far Memory

74

3. Pauseless Evacuator

» Solved challenge: impact of memory reclamation.

[App User-)IibraryAPI Remoteable Ptr O —@

Data Structure
Level Thread O | g

Vield T App Semantics Ptr1
v Pauseless
Prefetcher oee Evacuator

Ptr N

Local Memory

Far Memory

75

4. Remote Agent

» Solved challenge: network BW < DRAM BW.

[

App User- 1 library API

Level Thread O |

Yield T

Local Memory

Far Memory

>

Remoteable
Data Structure

App Semantics

v

Prefetcher

Ptr0

Ptr 1

Pauseless
Evacuator

Ptr N

J

4. Remote Agent

» Solved challenge: network BW < DRAM BW.

[

App User- 1 library API

Level Thread O |

Yield T

Local Memory

Far Memory

>

Remoteable

Data Structure

App Semantics

v

Prefetcher

Ptr0

Ptr 1

[

Remote
Agent

J

Pauseless
Evacuator

Ptr N

J

4. Remote Agent

» Solved challenge: network BW < DRAM BW.

[

App User- 1 library API

Level Thread O |

Yield T

Local Memory

Far Memory

Remoteable

»| Data Structure

App Semantics

v

Prefetcher

Ptr0

Ptr 1

e.g., Copy Obj 1

A 4

[

Remote
Agent

J

Pauseless
Evacuator

Ptr N

J

Sample Code

std::unordered_map<key t, int> hashtable;
std::array<LargeData> arr;

LargeData foo(std::list<key t> &keys list){
int sum = 0;
for (auto key : keys_list) {

sum += hashtable.at(key);

}

LargeData ret = arr.at(sum);
return ret;

}

79

Sample Code

RemHashTable<key t, int> hashtable;
RemArray<LargeData> arr;

LargeData foo(RemlList<key t> &keys list) {

int sum = 0;
for (auto key : keys_list) { Prefetch list data.
DerefScope scope;
sum += hashtable.at(key, scope); Cache hot objects.
}

DerefScope scope;

LargeData ret = arr.at</*don’t cache*/ true>(sum, scope); Avoid polluting local mem.
return ret;

30

Implementation

* Implemented 6 data structures.
* Array, List, Hashtable, Vector, Stack, and Queue.

* Runtime is built on top of Shenango [NSDI’ 19].
e TCP far-memory backend.
»LoC: 6.5K (runtime) + 5.5K (data structures) + 0.8K (Shenango)

Performance on Different Compute Intensities

Normalized Performance

1

0.8

0.6

0.4

0.2

0

<B-Fastswap “®-AlFM
ideal

0 2 4 6 8 10 12
Microseconds of compute per far memory access

AIFM hides far memory latency with moderate compute.

82

NYC Taxi Analysis (C++ DataFrame)

<-Fastswap ®-AlIFM

o 1 ideal
-
(U ||
c 08 (e (x=23%, y=0.95)
E “ J
L 06 (x=3%,y=0.77)
(T
T 04
Q
N
© 0.2
-
S 0
Z

0 20 40 60 80 100

Local Memory Ratio (%)

AIFM achieves near-ideal performance with small local memory.

83

Other Experiments

* Synthetic web frontend: up to 13X end-to-end speedup.
e Data structures microbenchmarks: up to 61X speedup.

* Design Drill-Down.

Read our paper for details.

Related Work

* OS-paging systemes.
e Fastswap [EuroSys’ 20], Leap [ATC 20]

* Distributed shared memory.
* Treadmarks [IEEE Computer’ 96]

e Garbage collection (GC).

Conclusion

* AIFM: Application-Integrated Far Memory.

* Key idea: swap memory using a userspace runtime.

e Data Structure Library: captures application semantics.
* Userspace Runtime: efficiently manages objects and memory.

* Achieves 13X end-to-end speedup over Fastswap.
» Code released at https://github.com/AIFM-sys/AIFM

Please send your questions to us

zainruan@csail.mit.edu

https://github.com/AIFM-sys/AIFM
mailto:zainruan@csail.mit.edu

Memory Management in Modern Computer Systems

e Memory Abstraction
— NSDI’14 FaRM

e Demand paging: remote memory over RDMA

— NSDI’17 InfiniSwap
— OSDI'20 AIFM

e Demand paging: memory swapping between GPU memory and host memory
— OSDI’20 PipeSwitch
— NSDI'23 TGS

87

PipeSwitch: Fast Pipelined Context
Switching for Deep Learning Applications

Zhihao Bai, Zhen Zhang, Yibo Zhu, Xin Jin

QY JOHNS HOPKINS |4/ Byte Dance

Deep learning powers intelligent
applications in many domains

Google €) amazon | |ber

o® Microsoft

.|II

Training and inference

High throughput

Low latency

90

GPUs clusters for DL workloads

91

Separate clusters for training and inference

Cluster for
training
I f

Inference

92

Utilization of GPU clusters is low

Today: separate clusters ldeal: shared clusters

50%
100%

Training 25%
75%

Daytime Midnight » 5 0%

25%

50%

Inference 25%

Daytime Midnight Daytime Midnight

Context switching overhead is high

, _____
[
New model \
————— - 4

94

Context switching overhead is high

Infer f
ResNet I
- 4

o -

NVIDIA T4

Latency: 6s

95

Drawbacks of existing solutions

* NVIDIA MPS
* High overhead due to contention

e Salus[MLSys’20]
* Requires all the models to be preloaded into the GPU memory

Latency: 6s

96

Goal: fast context switching

Enable GPU-efficient multiplexing of multiple DL apps
with fine-grained time-sharing

Achieve millisecond-scale context switching latencies
and high throughput

Latency: 6s

97

PipeSwitch overview: architecture

New
A‘ Task

PipeSwitch overview: execution

New
Task
 Stop the current task and
prepare for the next task. Controller
* Execute the task with pipelined r | Standby Standby Memory
model transmission. L---i----l WO‘rker ESNS | Daemon
* Clean the environment for the Active
previous task. Worker

Sources of context switching overhead

Model transmission
Memory allocation
Task initialization

Task cleaning

100

How to reduce the overhead?

. Pipelined
model transmission

101

DL models have layered structures

Forward
Propagation

Backward
Propagation

102

Sequential model transmission and execution

Transmit layer O Execute layer O

To | To| Ty [*ec | To1 | Ep E, E, oo E.4
N\ LN
Y Y
model transmission task execution

over PCle on GPU

Pipelined model transmission and execution

PCle T, T, T, | eee | T .

GPU EO E1 Ez o0e¢ En-l

Pipelined model transmission and execution

Transmit layer O

PCle T, T, T, | eee | T .

GPU EO E1 Ez o0e¢ En-l

Pipelined model transmission and execution

Transmit layer 1

PCle T, T, T, | eee | T .

GPU E, E, E, eoe | E_ .

Execute layer O

Pipelined model transmission and execution

Transmit layer 2

PCle T, T, T, | eee | T .

GPU E, E, E, eoe | E_ .

Execute layer 1

Pipelined model transmission and execution

1.Multiple calls to PCle;

2.Synchronize transmission and execution.

108

Pipelined model transmission and execution

PCle

GPU

Group Group cee Group
(O) I) (i+1) J) (k) n_l)
Group Group

(0, i)

(i+1, j)

Group
(k, n-1)

Pipelined model transmission and execution

 Exponential time to find the optimal strategy

* Two heuristics for pruning

110

How to reduce the overhead?

Model transmission

. Unified
memory management

Task initialization

Task cleaning

111

Unified memory management

Manage model parameters.
Allocate GPU memory.

Memor Pointer >
Daemon Offset
% GPU memory

112

How to reduce the overhead?

Model transmission
Memory allocation
Task initialization

Active-standby
worker switching
Task cleaning

113

Active-standby worker switching

Time
|
|
New Task | Init. | Execute | Clean
|

New Task Starts

114

Active-standby worker switching

Time

|
|

New Task | Init. | Init. | Execute | Clean
| 1 2

L

New Task Starts

115

Active-standby worker switching

Time

New Task

|
|
| Init. | Execute | Clean
I 2
Launch the process. t Allocate GPU memory.
Create CUDA context. New Task Starts

116

Active-standby worker switching

Time

1 2

New Task Starts

117

Implementation

* Testbed: AWS EC2
* p3.2xlarge: PCle 3.0x16, NVIDIA Tesla V100 GPU
e gddn.2xlarge: PCle 3.0x8, NVIDIA Tesla T4 GPU

e Software
 CUDA 10.1
* PyTorch 1.3.0

* Models
* ResNet-152
* Inception-v3
 BERT-base

118

Evaluation

* Can PipeSwitch satisfy SLOs?
* Can PipeSwitch provide high utilization?

* How well do the design choices of PipeSwitch work?

Evaluation

* Can PipeSwitch satisfy SLOs?

* Can PipeSwitch provide high utilization?

PipeSwitch satisfies SLOs

NVIDIA Tesla V100 NVIDIA Tesla T4
10000, HEE Ready model B MPS 100001 pumm Ready Model B MPS
8000 B PipeSwitch [Stop-and-start 2500 HEE PipeSwitch I Stop-and-start
#H000-+ o . = 000+ = . ==
€ 4001 £ 600+
5 5
§ 300 5 400
3 200 3
200 -
100 -

0- 0-
ResNet152 Inception_v3 Bert _base ResNet152 Inception_v3 Bert _base

PipeSwitch achieves low context switching latency.

PipeSwitch provide high utilization

)

N
o
o

| o PipeSwitch [Stop-and-start

300 MPS Upper bound

N
o
o

N
o
o

Throughput (batches/sec

o

1s 2s 5s 10s 30s

Scheduling cycles

PipeSwitch achieves near 100% utilization.

122

Summary

 GPU clusters for DL applications suffer from low utilization
* Limited share between training and inference workloads

e PipeSwitch introduces pipelined context switching
* Enable GPU-efficient multiplexing of DL apps with fine-grained time-sharing
* Achieve millisecond-scale context switching latencies and high throughput

123

Memory Management in Modern Computer Systems

e Memory Abstraction
— NSDI’14 FaRM

e Demand paging: remote memory over RDMA

— NSDI’17 InfiniSwap
— OSDI'20 AIFM

e Demand paging: memory swapping between GPU memory and host memory
— OSDI’20 PipeSwitch
— NSDI'23 TGS

124

Transparent GPU Sharing in Container Clouds
for Deep Learning Workloads

Bingyang Wu, Zili Zhang, Zhihao Bai, Xuanzhe Liu, Xin Jin

ANEL 7.5 JOHNS HOPKINS

PEKING UNIVERSITY UNIVERSITY

Deep learning training jobs: important workloads in datacenters

* Deep learning is widely used in many applications
« Recommendation
 Machine Translation
» Voice Assistant

* Deep learning models are often trained in shared GPU clusters

‘ Shared GPU Clusters
- Submit DL training jobs E E

Deep learning training jobs in container clouds

Container 1 Container 2
ResNet Job Inception Job
1 TensorFlow O PyTorch

Host Operating System

Low GPU utilization in production

* Microsoft [1]: the average GPU utilization is only 52%
* Alibaba [2]: the median GPU utilization is no more than 10%

 Low GPU utilization is bad

« Container clouds: idle GPUs are a huge waste
» Users: longer queueing delay, longer job completion time

* Root cause: Each GPU is statically assigned to a single container

[1] M. Jeon, et al., “Analysis of large-scale multitenant GPU clusters for DNN training workloads,” in USENIX ATC 2019.
[2] W. Xiao, et al., “Antman: Dynamic scaling on GPU clusters for deep learning,” in USENIX OSDI 2020.

Existing GPU sharing solutions

» Key idea: Share GPUs to improve GPU utilization

* Classify DLT jobs into two classes
* Production job: Run without performance degradation
* Opportunistic job: Utilize spare GPU resources to execute

« SOTA solutions:
« Application-layer solution: AntMan [OSDI’ 20]

» OS-layer solution: NVIDIA MPS, NVIDIA MIG

Application-layer solution: AntMan

* Custom DL framework
* Modify TensorFlow (~4000 LoC) or PyTorch (~2000 LoC)

« Support GPU compute sharing and GPU memory oversubscription

 Limitations: Lack of Transparency

» Limited use cases: restricts users to use particular frameworks
 Huge operation overhead: need to maintain custom frameworks

OS-layer solution: NVIDIA MPS

* A software solution for GPU sharing provided by NVIDIA

 Limitations:
* Low GPU utilization
e Does not support GPU memory oversubscription
* Requires application knowledge to properly set the resource limit
« Weak fault isolation
* When a job fails, other jobs may be affected and even fails

OS-layer solution: NVIDIA MIG

* Arecent hardware solution for GPU sharing provided by NVIDIA
 Limitations:
» Performance isolation
« Cannot arbitrarily partition a GPU
« Cannot dynamically change GPU resources
« Compatibility
* Only available on a few high-end GPUs
* Does not support GPU sharing for the multi-GPU instance

A more practical solution: TGS

Transparency
High utilization v v
Performance v v v v
Isolation

Fault isolation v v v

TGS architecture

Container 1 Container 2
ResNet Job Inception Job
TensorFlow O PyTorch
Rate Rate Unified
Monitor Control Memory
TGS

Host Operating System

Hardware

Sharing GPU compute resources

« Strawman solution: priority scheduling
« Control the opportunistic job based on the GPU kernel queues

* Low GPU utilization:
* The state of queues do not reflect the remaining GPU resources

Adaptive rate control of TGS

GPU kernels from GPU kernels from
production jobs opportunistic jobs

l din l ,Bin

Monitor __Report %in__ Queue kernels
i And adapt S,

Tout —Nm Bin
GPU ‘IE%

Sharing GPU memory resources

« Weak Fault isolation: total GPU memory consumption may exceed GPU
memory capacity and cause OOM

* Low GPU utilization: some jobs always claim all GPU memory

 Application-layer technique cannot be used in the OS layer

« Cannot directly ask DL framework to release unused GPU memory
« Cannot directly change pointer address from GPU memory to host memory

Transparent unified memory of TGS

» Key ideas: leverage CUDA unified memory to transparently
unify GPU memory and host memory

» High GPU utilization: The actual physical GPU memory is
allocated when jobs first access to them

* Fault isolation: When GPU memory is oversubscribed, TGS
changes virtual memory mapping to evict GPU memory of
opportunistic job to host memory

Evaluation setup

* Implementation: ~3000 LoC C++ & Python

* Integration with Docker and Kubernetes

» Testbed: NVIDIA A100 GPUs and NVIDIA V100 GPUS
 Trace: Philly Trace from Microsoft [Jeon et al. 2019]

 Models

 CV: ResNet, ShuffleNet, MobileNet
» Graph: GCN
 NLP: Bert, GPT-2

« Recommendation: DLRM

Evaluation baselines

* TGS: our work

- AntMan: the state-of-the-art application-layer solution
 MPS: manually set appropriate limit

« MIG: manually set best configuration

 Exclusive: give exclusive access to a GPU

« Co-execution: share a GPU without any control

Mixed workload job stream

« A job stream contains 50 production jobs and 50 opportunistic jobs
« Opportunistic jobs: 52% JCT reduction compared to Exclusive
* Production jobs: 21% JCT reduction compared to Co-execution

_ _ 100 S 100
BB TGS B8 Exclusive I Co-execution = TGS [o* |
— 80(== = Exclusive | 80 [
0 1.25 === Co-execution | [
o= L 60 ! w 60 [
o 1.0 a a ¢
© o) I O I
= N0.75 40 | 40 — TGS :
© .
Zg 05 20 1K 20 . — = Exclusive I
§ 0.25 [- === Co-execution |
0 : | 0.0 0.5 1.0 1.5 2.0 0.0 0.2 0.4 0.6 0.8 1.0
Production Opportunistic Normalized JCT Normalized JCT

(a) Average JCT. (b) CDF of production jobs. (c) CDF of opportunistic jobs.

Comparison with AntMan

« Achieve comparable performance in different contention scenarios
* Provide transparency without sacrificing performance

B TGS B AntMan E= Exclusive @ TGS B AntMan E= Exclusive

Throughput
Normalized
Throughput

Normalized

ShuffleNet MobileNet ResNet-50 ShuffleNet
(Production, (Opportunistic, (Production, (Opportunistic,
TensorFlow) TensorFlow) TensorFlow) TensorFlow)

(a). Low-contention scenario (b).High-contention scenario

Adaptive rate control of TGS

« TGS protects productions job with little overhead, while providing
remaining GPU resources to opportunistic jobs

ESS Co-execution EEEE MIG @ TGS BN Co-execution EEE MIG
BE= Exclusive Il MPS

@ TGS
BE= Exclusive Il MPS

83 10
S£075
£3 05
2&0.23'
0 ShuffleNet MobileNet ResNet-50 ShuftleNet
(Production, (Opportunistic, (PEO?_UCt'ﬁn' (OpF|)oo_|[tunr|\st|c,
PyTorch) PyTorch) yTorch) yTorch)

(a). Low-contention scenario (b).High-contention scenario

Transparent unified memory of TGS

« TGS protects production jobs under GPU memory oversubscription

* 15 Xthroughput improvement compared to MPS

i TGS

d
put

Normaliz

0

0.25]

ResNet-50
(Production,
PyTorch)

BN Co-execution @@ MIG
BE= Exclusive Il MPS

o 5 1.0;
0.75|

C
S
3 0.5
| -
e
|_

(Opportunistic,

PyTorch)

(a). Low-contention scenario

@ TGS
BE= Exclusive Il MPS

o
O .
Ut

Normalized
Throughput

< -
Ul o

i
N
o ul

MW Co-execution EE MIG

Bert-Base
(Production, (Opportunistic,
PyTorch) PyTorch)

(b).High-contention scenario

More experiments in our paper

« System overhead

» Convergence of TGS in different scenarios

« Convergence of the rate control under dynamic job arrival
« Convergence of the rate control under dynamic resource usage

« Supporting different DL frameworks
» GPU sharing for large model training

Conclusion

* TGS provides transparent GPU sharing to DL training in
container clouds with four important properties:
* Transparency
* Performance isolation
» High GPU utilization
* Fault isolation

* TGS improves the throughput of the opportunistic job by up to
15X compared to the existing OS-layer solution MPS

Q‘ bingyangwu@pku.edu.cn

