Operating Systems (Honor Track)

Memory 5: Memory Management in Modern Computer Systems

Xin Jin Spring 2024

Memory Management in Modern Computer Systems

- Memory Abstraction
 - NSDI'14 FaRM
- Demand paging: remote memory over RDMA
 - NSDI'17 InfiniSwap
 - OSDI'20 AIFM
- Demand paging: memory swapping between GPU memory and host memory
 - OSDI'20 PipeSwitch
 - NSDI'23 TGS

FaRM: Fast Remote Memory

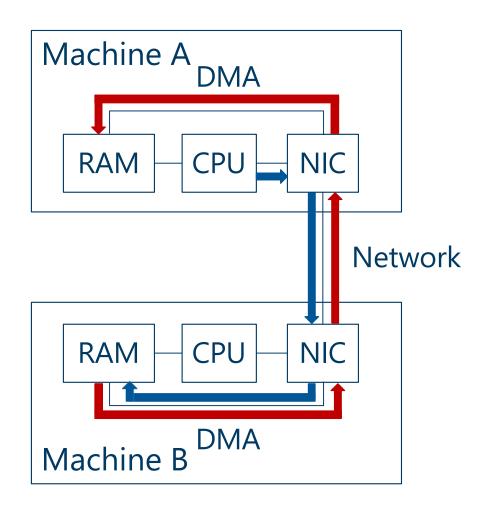
Aleksandar Dragojević, Dushyanth Narayanan, Orion Hodson, Miguel Castro

Hardware trends

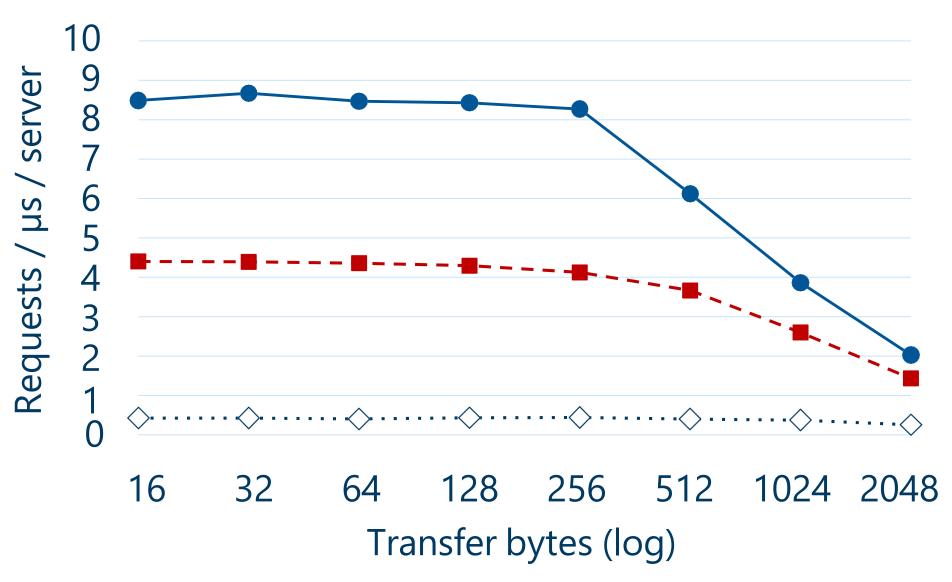
- Main memory is cheap
 - · 100 GB 1 TB per server
 - · 10 100 TBs in a small cluster
- New data centre networks
 - 40 Gbps throughput (100 this year)
 - · 1-3 µs latency
 - RDMA primitives

Remote direct memory access

- Read / write remote memory
 - NIC performs DMA requests
- FaRM uses RDMA extensively
 - · Reads to directly read data
 - · Writes into remote buffers for messaging
- Great performance
 - · Bypasses the kernel
 - · Bypasses the remote CPU



→RDMA →RDMA msg ◇ TCP



◆RDMA →RDMA msg <>TCP 100 (log) hS Average latency 16 32 128 256 512 1024 2048 Transfer bytes (log)

Applications

- Data centre applications
 - · Irregular access patterns
 - Latency sensitive
- Data serving
 - · Key-value store
 - Graph store
- Enabling new applications

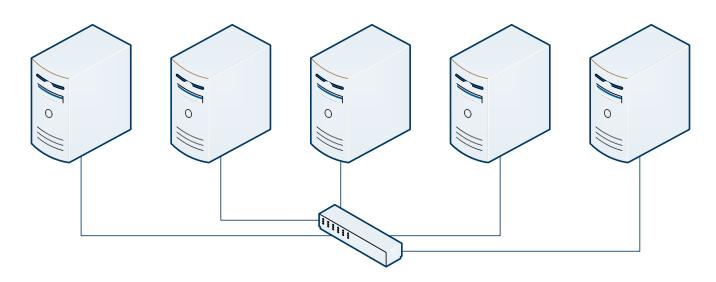
How to program a modern cluster?

We have:

- TBs of DRAM
- 100s of CPU cores
- RDMA network

Desirable:

- Keep data in memory
- Access data using RDMA
- Collocate data and computation



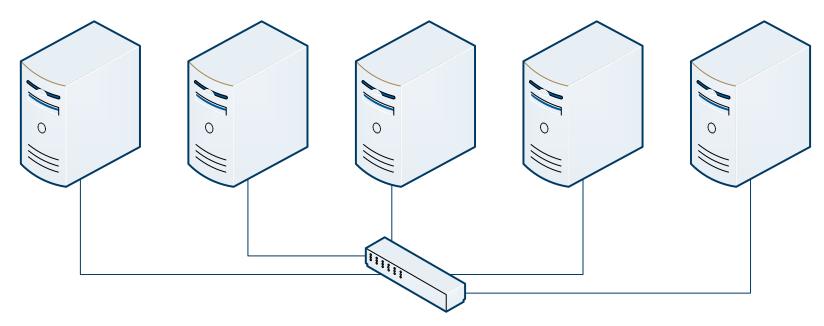
Traditional model

Servers: store data Clients: execute application

Symmetric model

Access to local memory is much faster

Server CPUs are mostly idle with RDMA

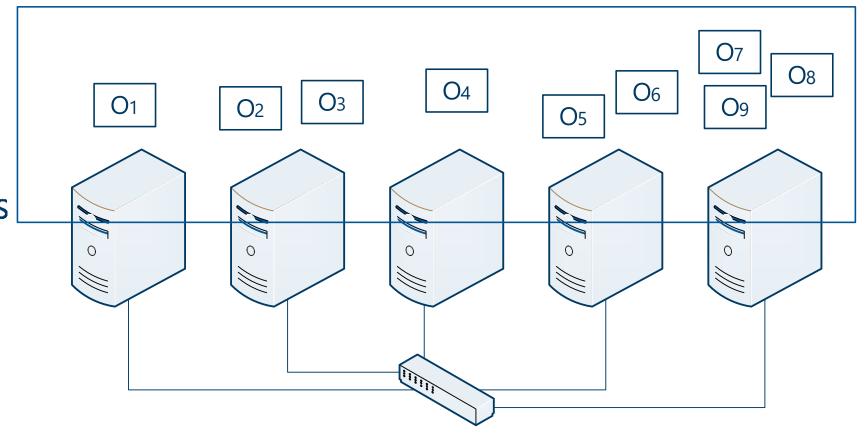


Machines store data and execute application

Shared address space

Supports direct RDMA of objects

Programmability a welcome bonus



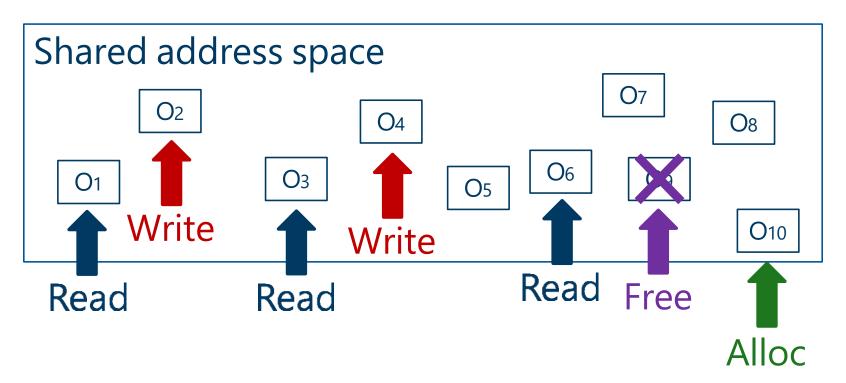
Shared address space

General primitive

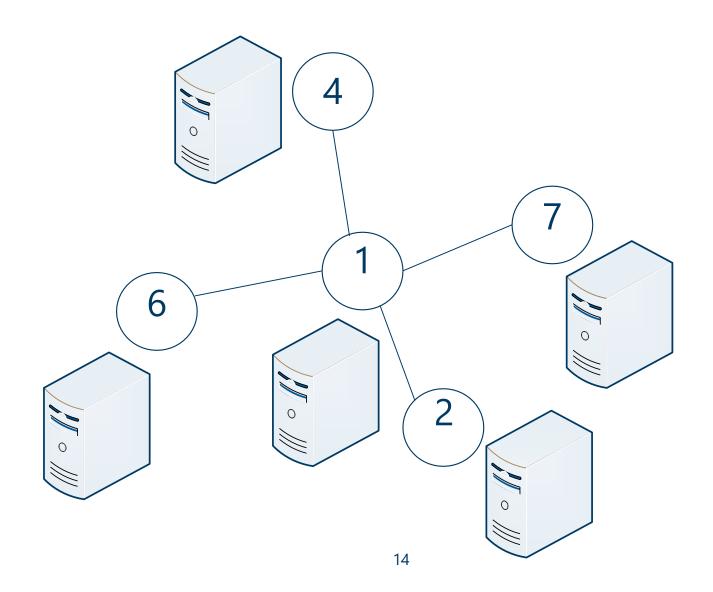
Strong consistency: serializability

Transparent:

- location
- concurrency
- failures



Optimizations: locality awareness

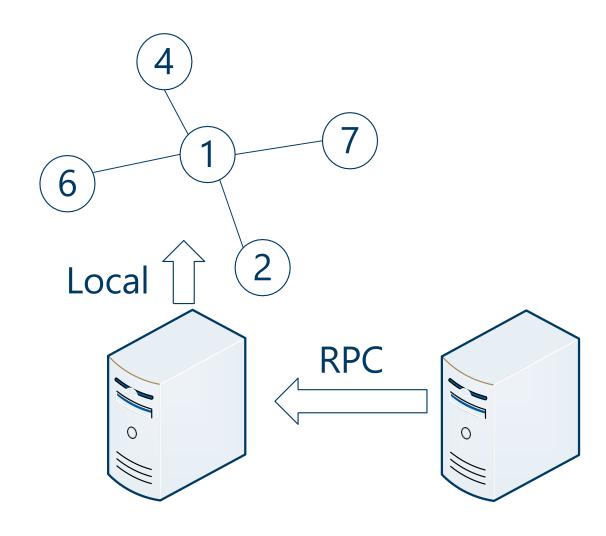


Optimizations: locality awareness

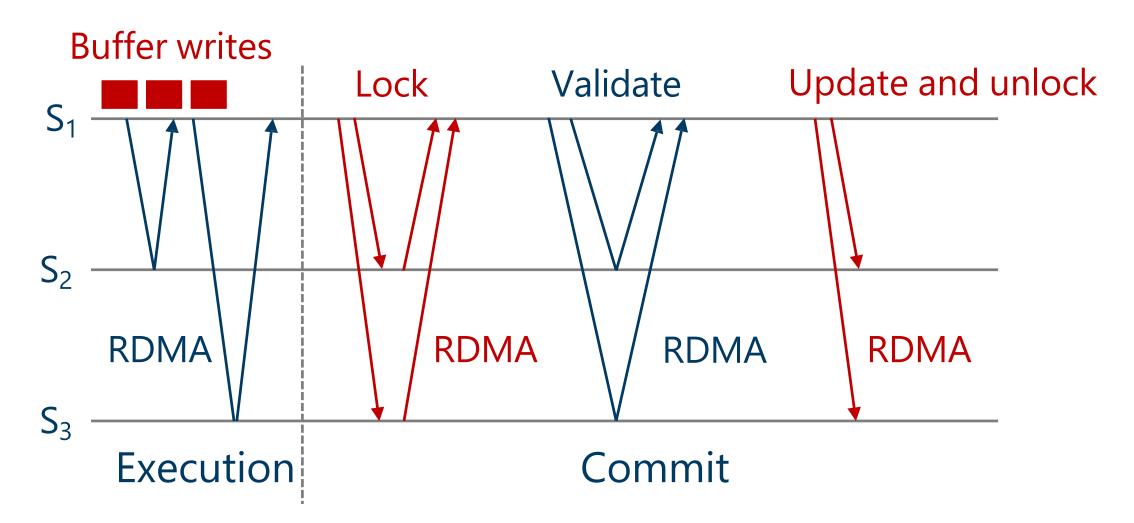
Collocate data accessed together

Ship computation to target data

Optimized single server transactions



Transactions



TAO [Bronson '13, Armstrong '13]

- Facebook's in-memory graph store
- Workload
 - · Read-dominated (99.8%)
 - 10 operation types
- FaRM implementation
 - Nodes and edges are FaRM objects
 - Lock-free reads for lookups
 - Transactions for updates

6 Mops/s/srv (10x improvement)

42 μs average latency (40 – 50x improvement)

FaRM

- Platform for distributed computing
 - · Data is in memory
 - RDMA
- Shared memory abstraction
 - Transactions
 - · Lock-free reads
- Order-of-magnitude performance improvements
 - Enables new applications

Memory Management in Modern Computer Systems

- Memory Abstraction
 - NSDI'14 FaRM
- Demand paging: remote memory over RDMA
 - NSDI'17 InfiniSwap
 - OSDI'20 AIFM
- Demand paging: memory swapping between GPU memory and host memory
 - OSDI'20 PipeSwitch
 - NSDI'23 TGS

Efficient Memory Disaggregation with Infiniswap

Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury, Kang G. Shin

Agenda

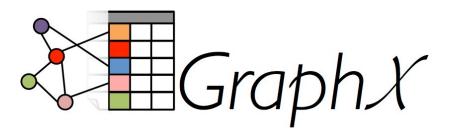
Motivation and related work

Design and system overview

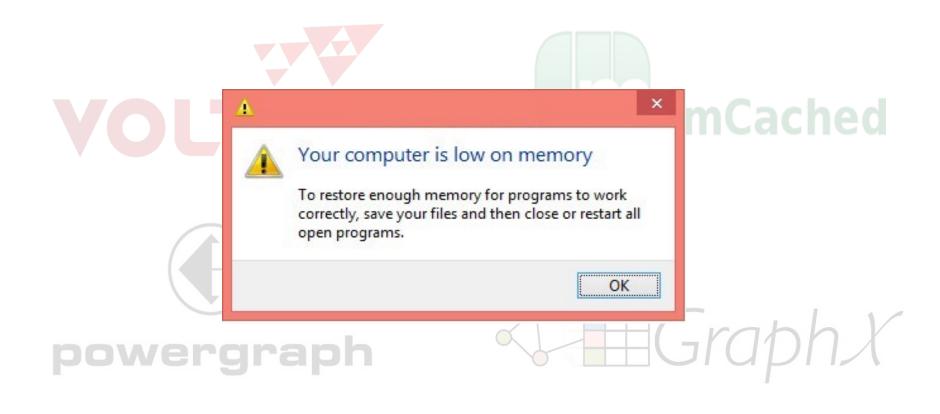
Implementation and evaluation

Future work and conclusion

Memory-intensive applications

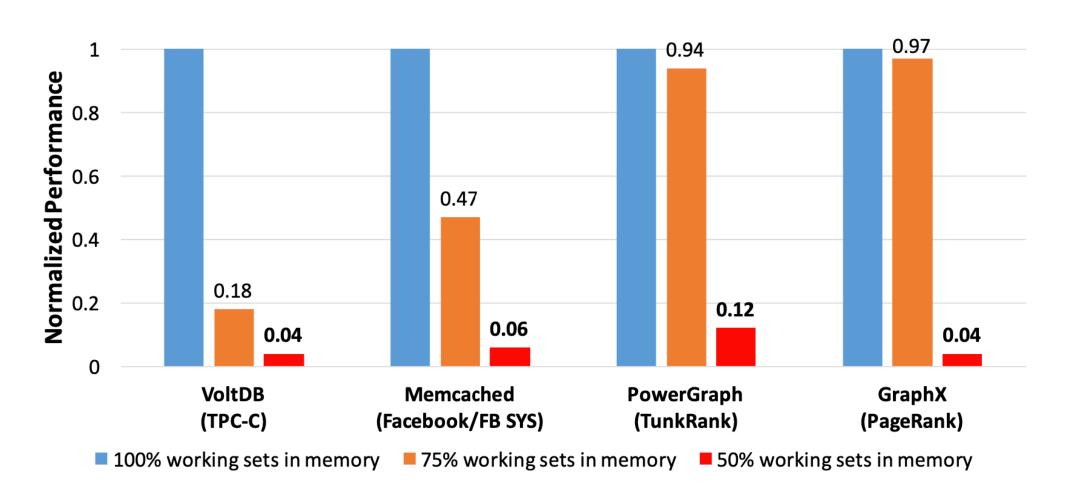


Memory-intensive applications



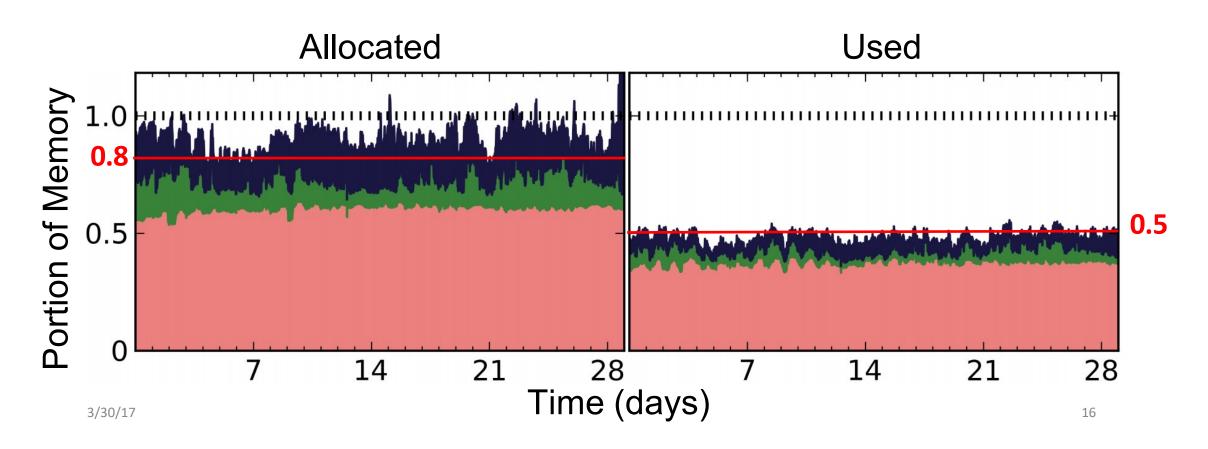
3/30/17

Performance degradation



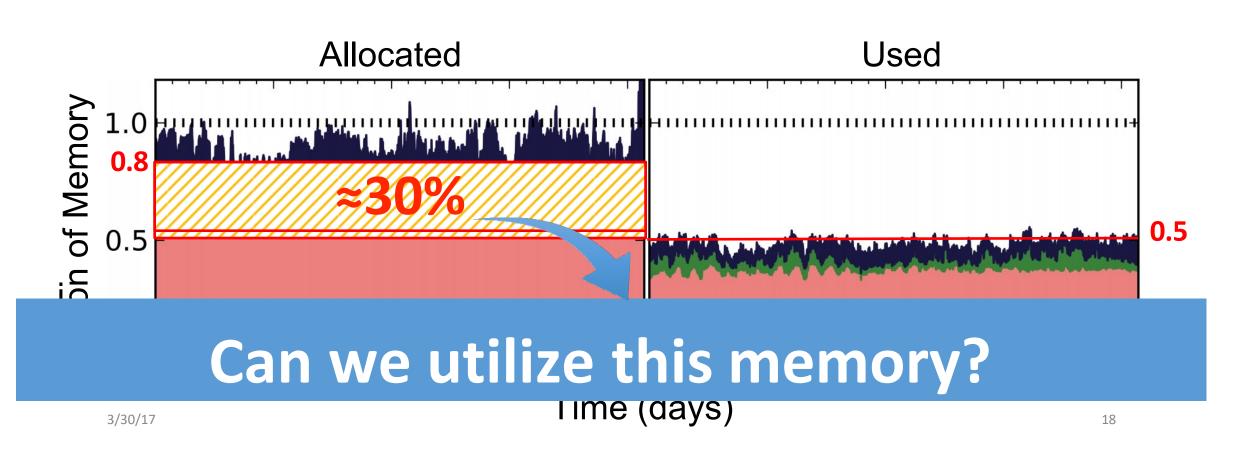
Memory underutilization

• Google Cluster Analysis_[1]

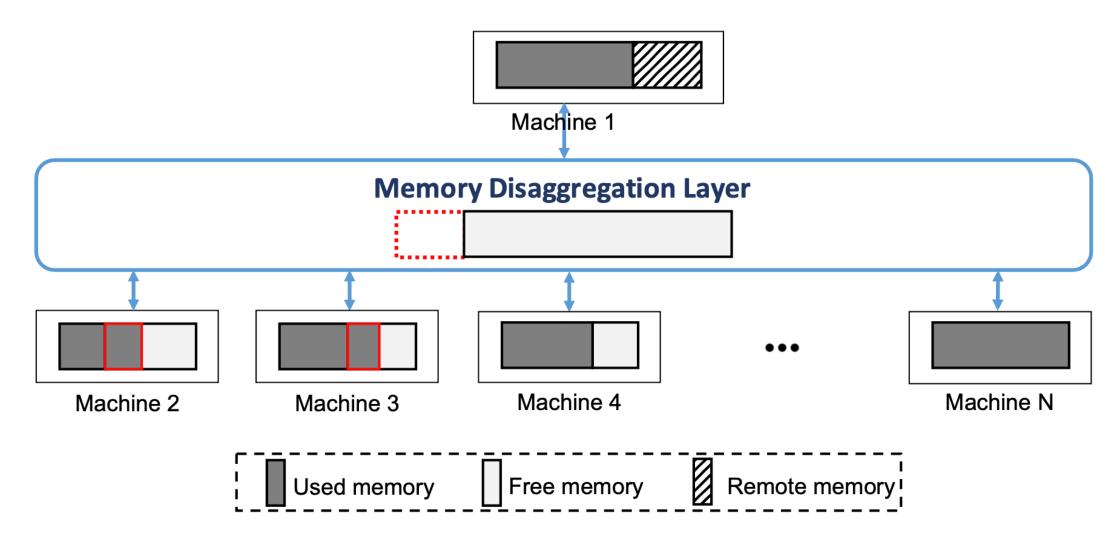


Memory underutilization

Google Cluster Analysis_[1]



Disaggregate free memory



What are the challenges?

- Minimize deployment overhead
 - No hardware design
 - No application modification
- Tolerate failures
 - e.g. network disconnection, machine crash
- Manage remote memory at scale

Recent work on memory disaggregation

	No HW design	No app modification	Fault- tolerance	Scalability
Memory Blade[ISCA'09]	×			
HPBD[CLUSTER'05] / NBDX[1]			X	×
RDMA key-value service (e.g. HERD[SIGCOMM'14], FaRM[NSDI'14])		×		
Intel Rack Scale Architecture (RSA)[2]	×			
Infiniswap				

l https://github.com/accelio/NBDX

² http://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html

Agenda

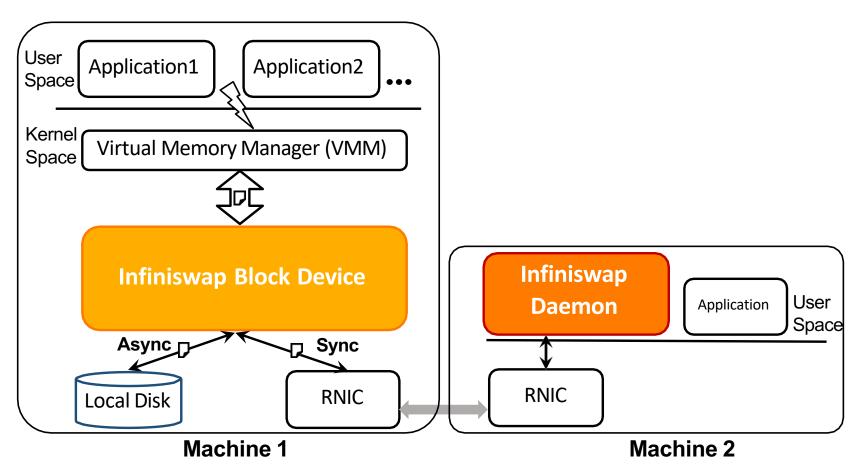
Motivation and related work

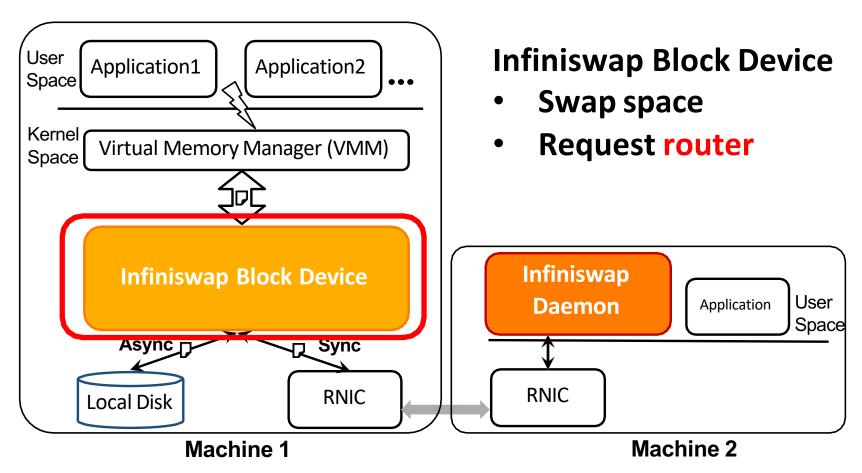
Design and system overview

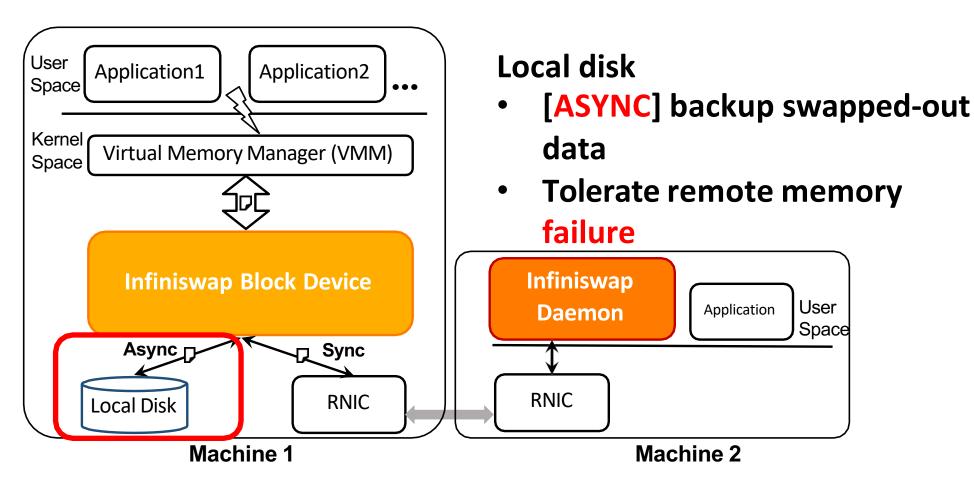
Implementation and evaluation

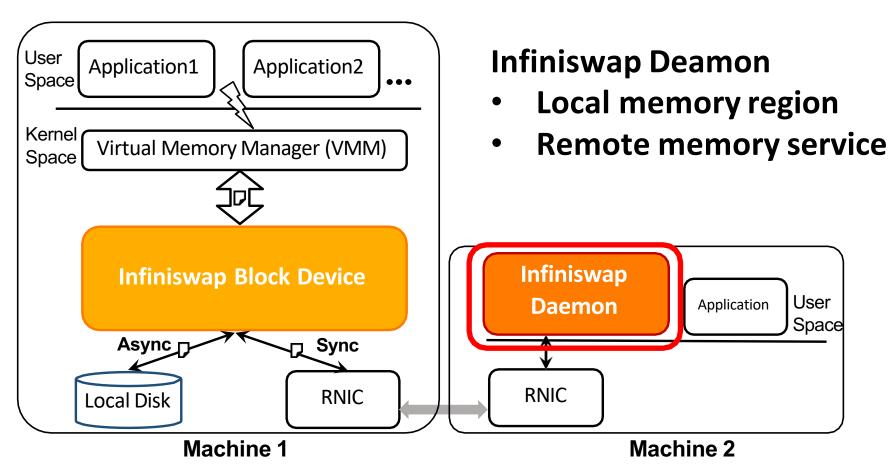
Future work and conclusion

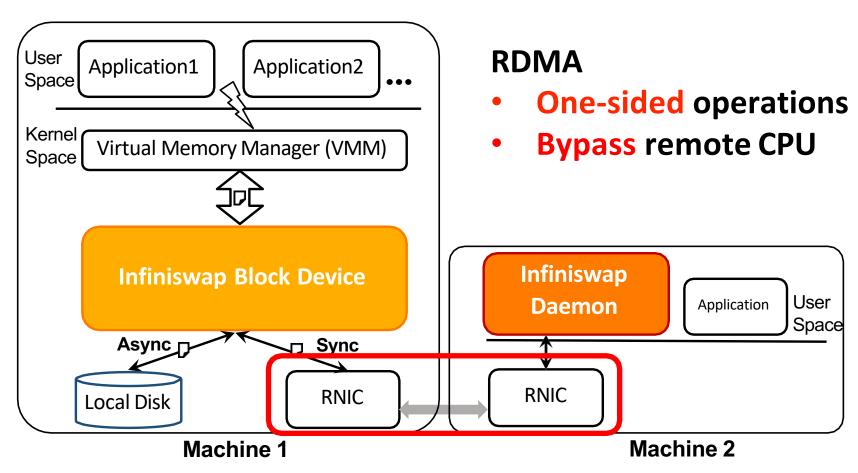
3/30/17







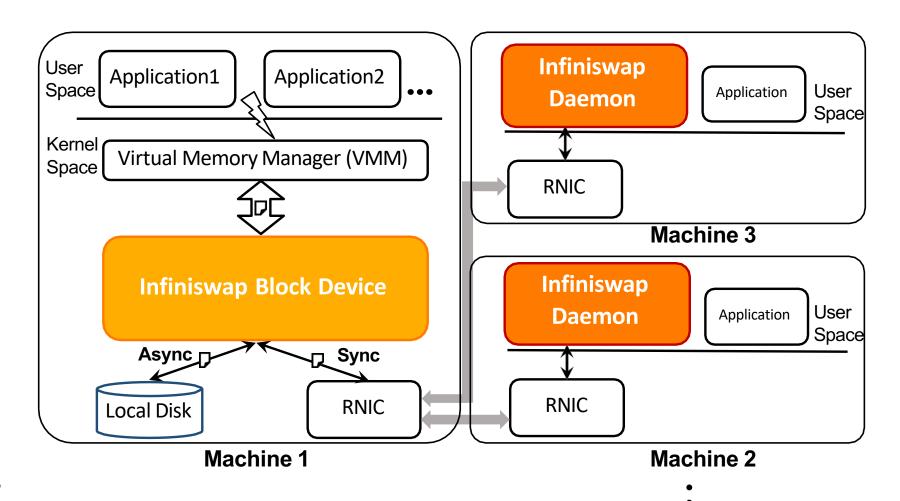




How to meet the design objectives?

Objectives	Ideas	
No hardware design	Remote paging	
No application modification		
Fault-tolerance	Local backup disk	

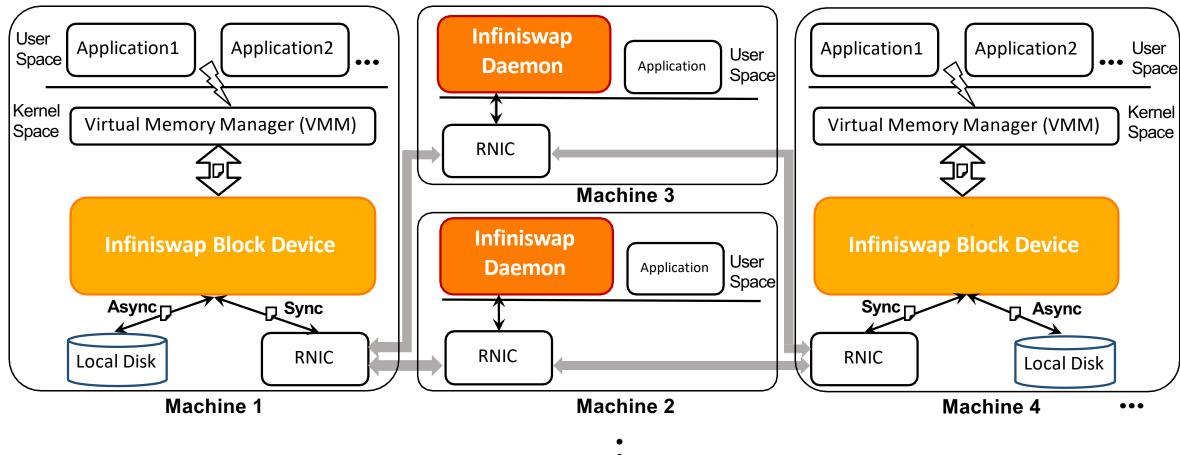
One-to-many



3/30/17

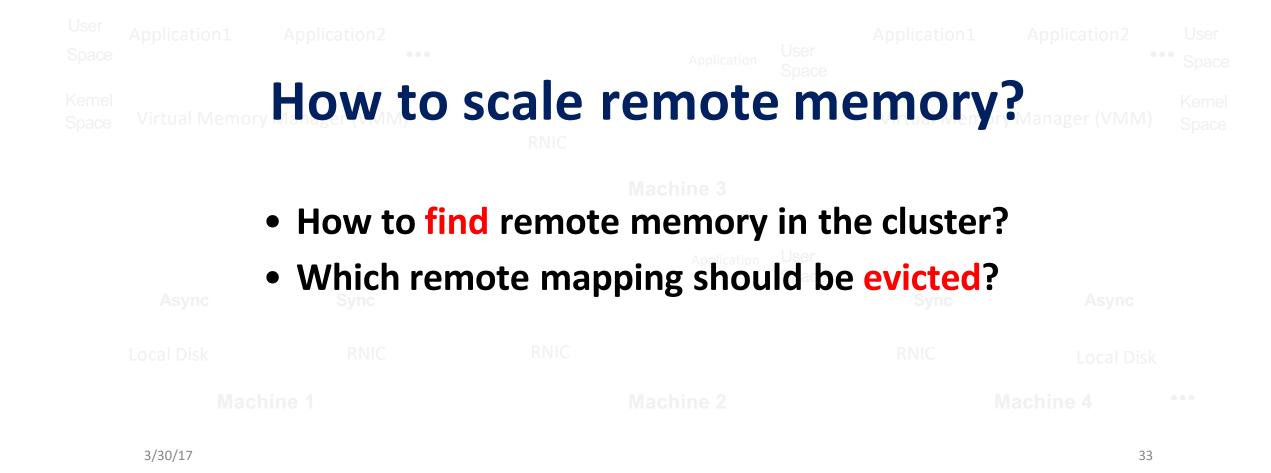
31

Many-to-many



3/30/17

Many-to-many

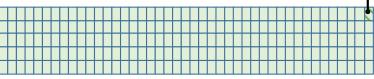


How to meet the design objectives?

Objectives	Ideas
Scalability	Decentralized remote memory management

3/30/17 34

Management unit: memory page?



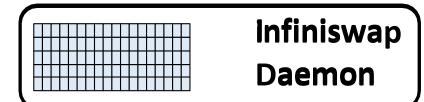
Local Page	Remote Page
p100	<s1, p1=""></s1,>

•

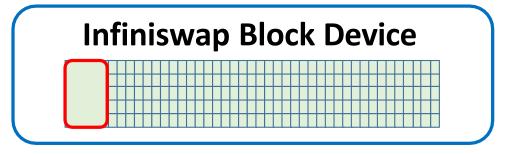
1GB = 256K entries

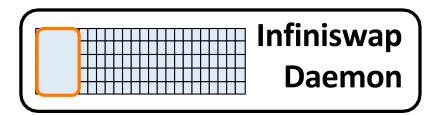
 $^{3/30/17}$ **1GB = 256K RTTs**

•

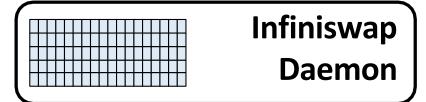


Management unit: memory slab!



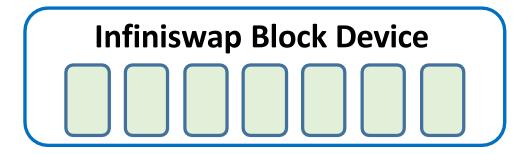


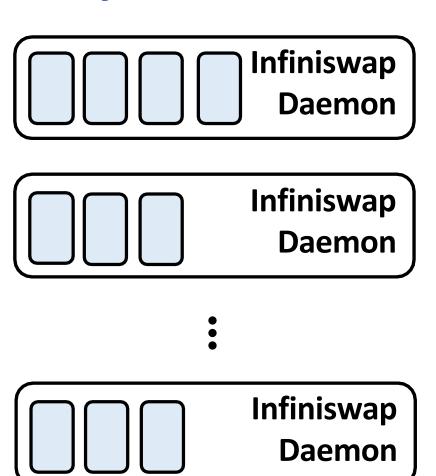
•



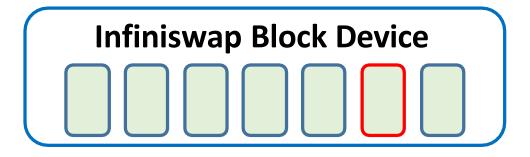
3/30/17 37

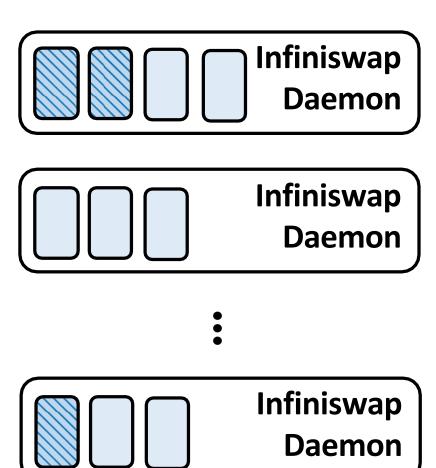
Management unit: memory slab!



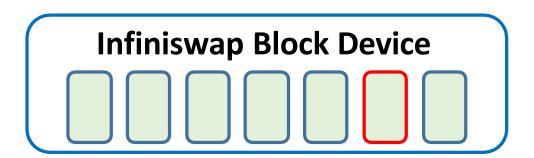


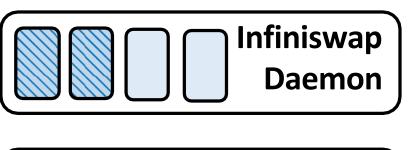
3/30/17 38





3/30/17

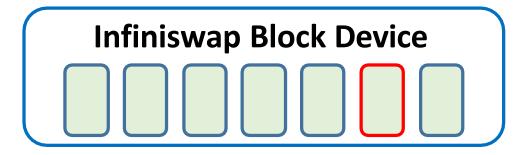




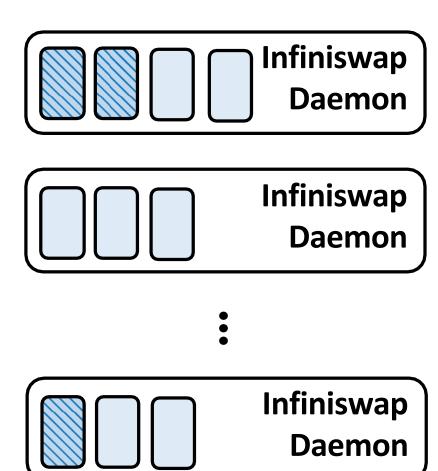
•

Goal: balance memory utilization

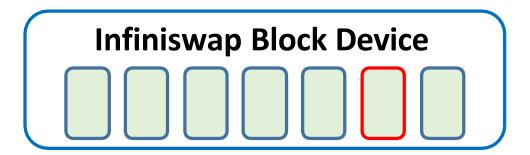
3/30/17



► Central controller



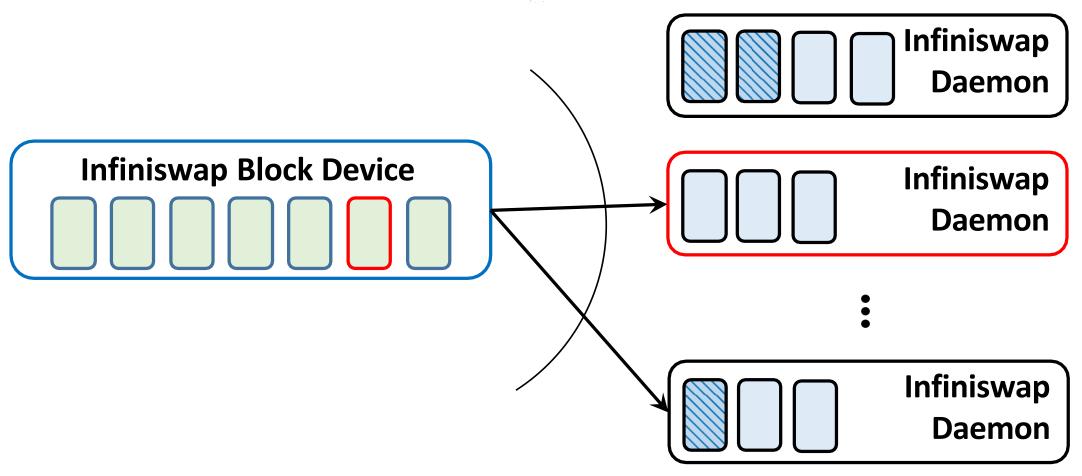
3/30/17 41



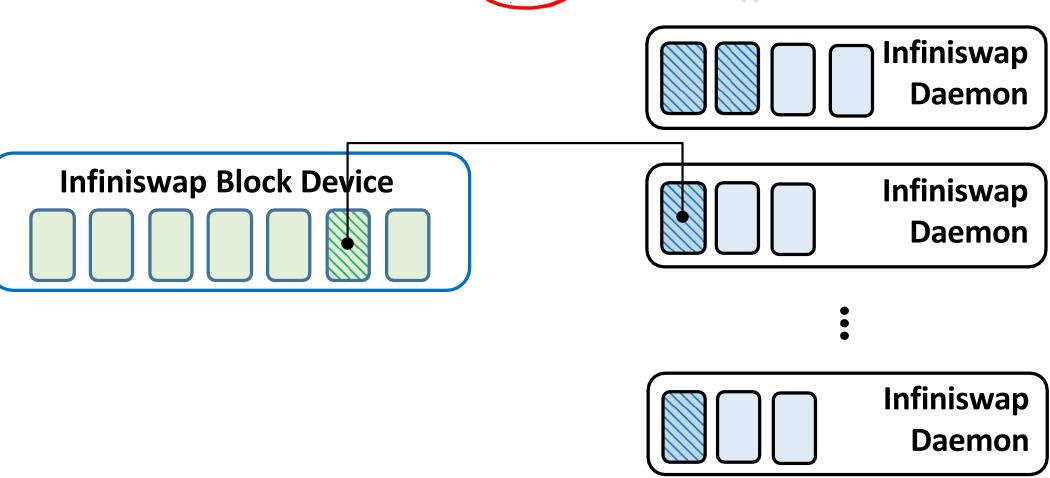
- Central controller
- **▶** Decentralized approach



3/30/17



3/30/17 43



3/30/17

44

Agenda

Motivation and related work

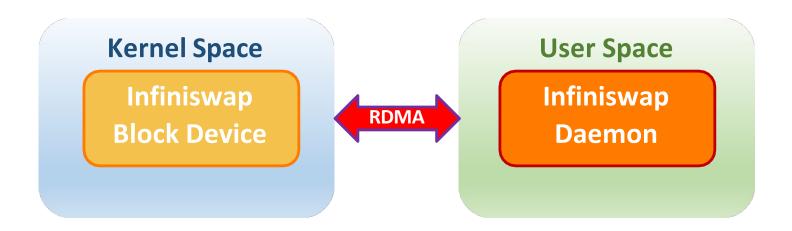
Design and system overview

Implementation and evaluation

Future work and conclusion

3/30/17

Implementation



- Connection Management
 - One RDMA connection per active block device daemon pair
- Control Plane
 - SEND, RECV
- Data Plane
 - One-sided RDMA READ, WRITE

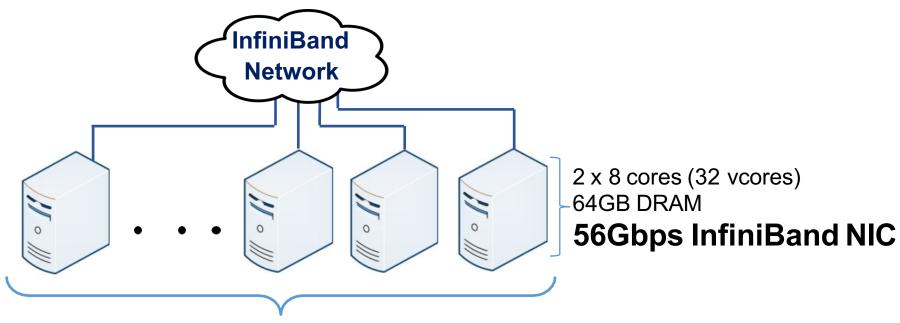
What are we expecting from Infiniswap?

- Application performance
- Cluster memory utilization
- Network usage
- **■** Eviction overhead
- Fault-tolerance overhead
- Performance as a block device

•

3/30/17

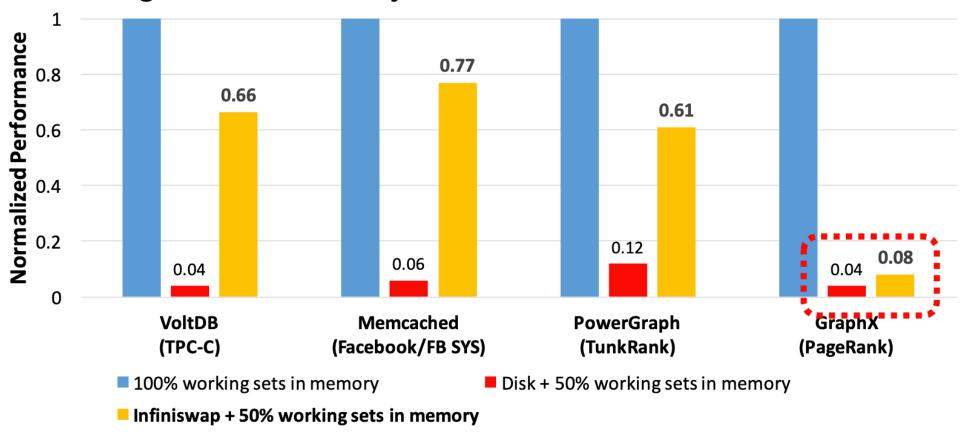
Evaluation



32-node cluster

Application performance

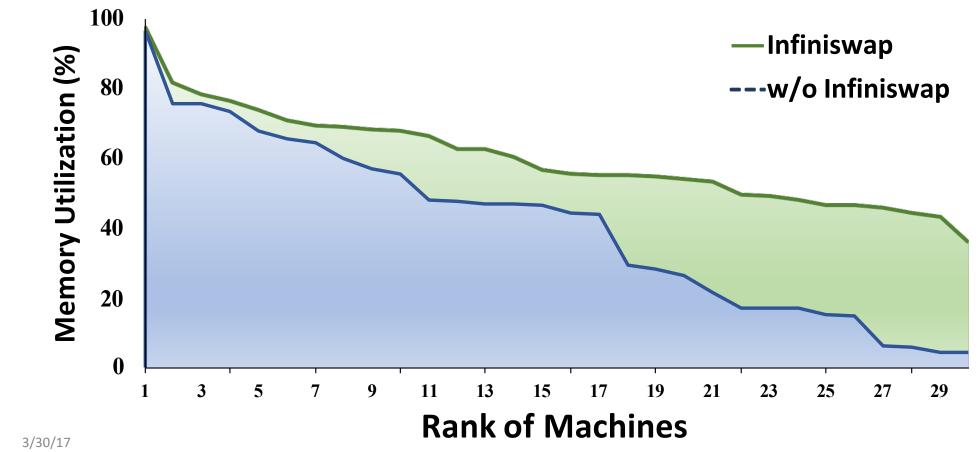
50% working sets in memory



Application performance is improved by 2-16x

Cluster memory utilization

• 90 containers (applications), mixing all applications and memory constraints.



Cluster memory utilization is improved from 40.8% to 60% (1.47x)

60

Agenda

Motivation and related work

Design and system overview

Implementation and evaluation

Future work and conclusion

3/30/17

Limitations and future work

- Trade-off in fault-tolerance
 - Local disk is the bottleneck
 - Multiple remote replicas
 - Fault-tolerance vs. space-efficiency

Performance isolation among applications

3/30/17 62

Conclusion

- Infiniswap: remote paging over RDMA
 - Application performance
 - Cluster memory utilization
- Efficient, practical memory disaggregation
 - No hardware design
 - No application modification
 - Fault-tolerance
 - Scalability

https://github.com/Infiniswap/infiniswap.git

3/30/17 63

Memory Management in Modern Computer Systems

- Memory Abstraction
 - NSDI'14 FaRM
- Demand paging: remote memory over RDMA
 - NSDI'17 InfiniSwap
 - OSDI'20 AIFM
- Demand paging: memory swapping between GPU memory and host memory
 - OSDI'20 PipeSwitch
 - NSDI'23 TGS

AIFM: High-Performance, Application-Integrated Far Memory

Zain (Zhenyuan) Ruan* Malte Schwarzkopf † Marcos K. Aguilera ‡ Adam Belay*

*MIT CSAIL

[†]Brown University

[‡]VMware Research

In-Memory Applications

Data Analytics

Database

Web Caching

Graph Processing

Memory Is Inelastic

- Limited by the server physical boundary.
- Applications cannot overcommit memory.

Opening a 20GB file for analysis with pandas

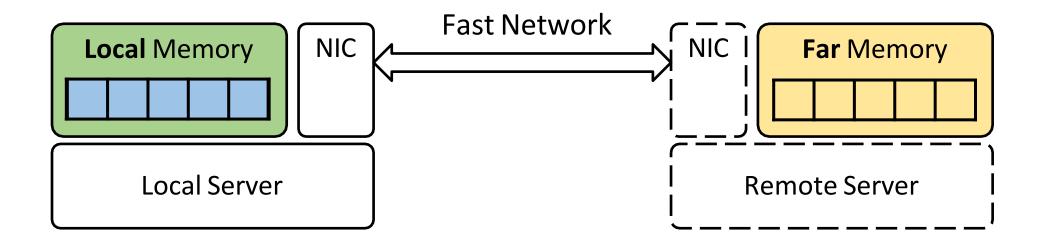
Asked 2 years, 8 months ago Active 1 year, 4 months ago Viewed 81k times

I am currently trying to open a file with pandas and python for machine learning purposes it would be ideal for me to have them all in a DataFrame. My RAM is 32 GB. I keep getting memory errors.

> Expensive solution: overprovision memory for peak usage.

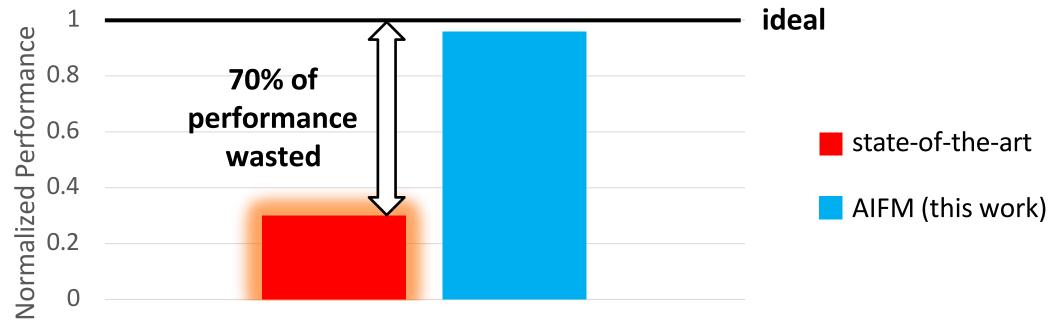
Trending Solution: Far Memory

> Leverage the idle memory of remote servers (with fast network).



Existing Far-Memory Systems Perform Poorly

- Real-world Data Analytics from Kaggle.
 - Provision 25% of working set in local mem.
- ➤ Goal: reclaim the wasted performance.

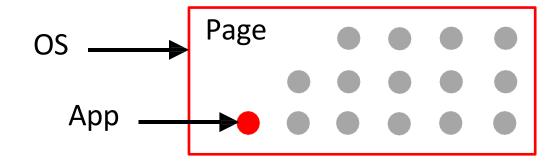


Why Do Existing Systems Waste Performance?

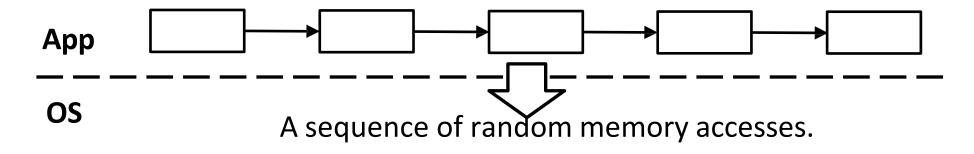
- Problem: based on OS paging.
 - Semantic gap.
 - High kernel overheads.

Challenge 1: Semantic Gap

Page granularity → R/W amplification.

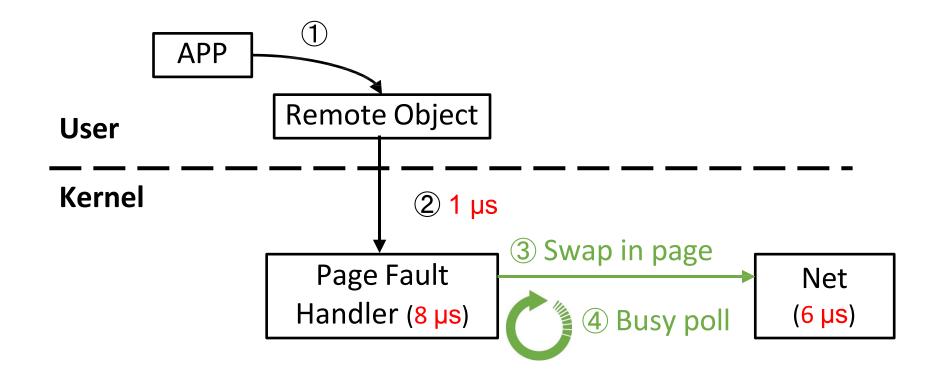


➤ OS lacks app knowledge → hard to prefetch, etc.

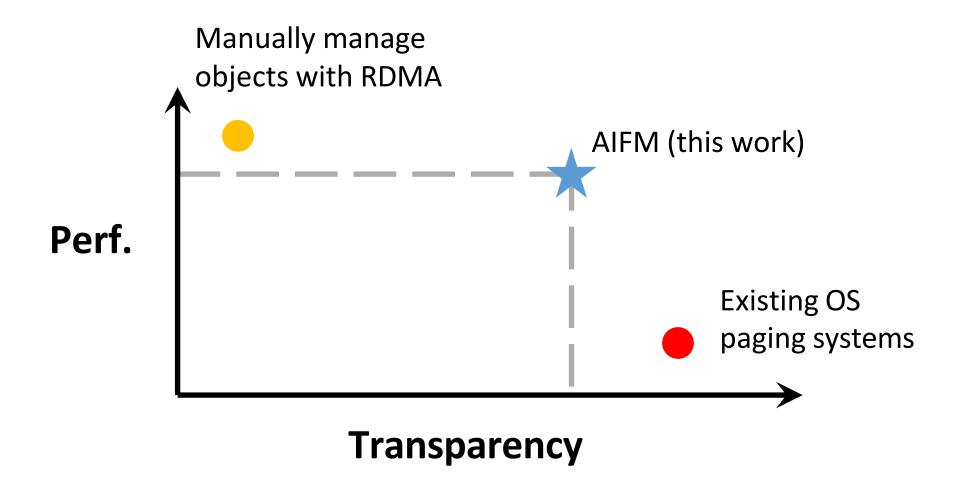


Challenge 2: High Kernel Overheads

- Expensive page faults.
- ➤ Busy Polling for in-kernel net I/O → burn CPU cycles.



Design Space



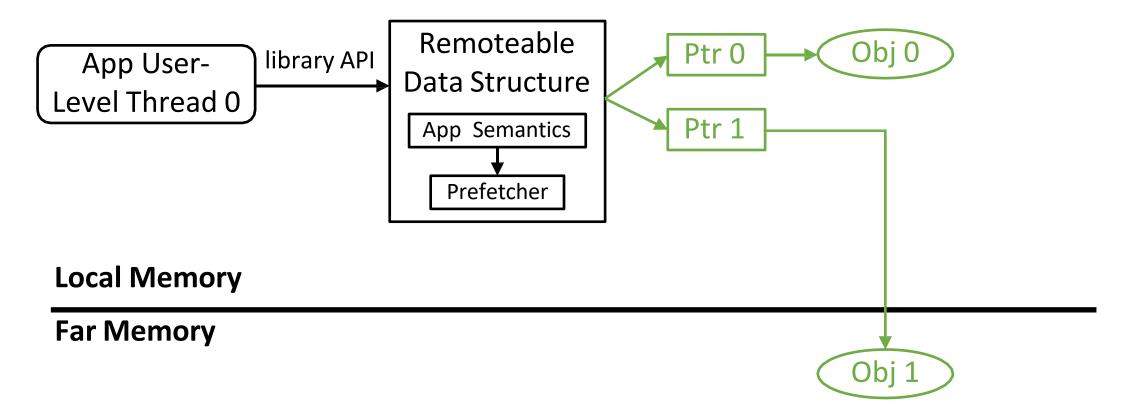
AIFM's Design Overview

> Key idea: swap memory using a userspace runtime.

Challenge	Solution
1. Semantic gap (Amplification, Hard to prefetch)	Remoteable Data structure library
2. Kernel overheads (page faults, busy poll for net I/O)	Userspace runtime
3. Impact of Memory Reclamation (pause app threads)	Pauseless evacuator
4. network BW < DRAM BW	Remote Agent

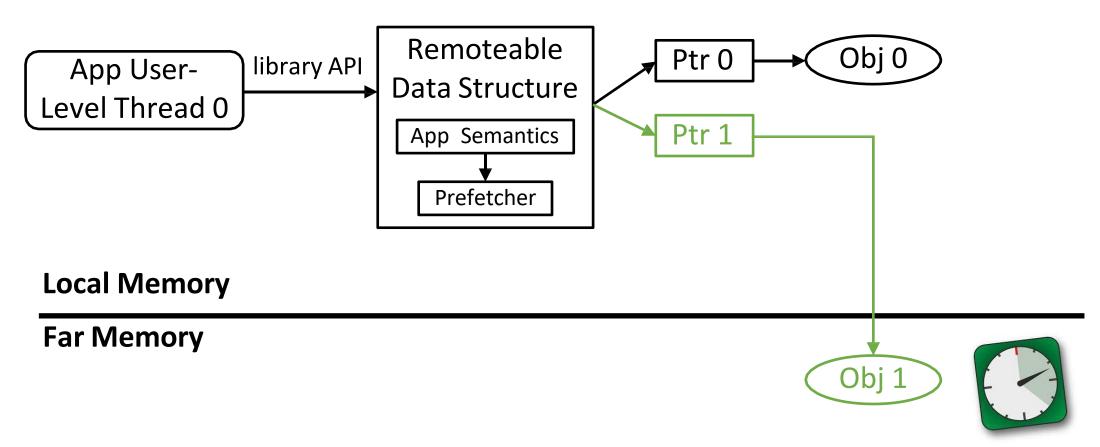
1. Remoteable Data Structure Library

➤ Solved challenge: semantic gap.



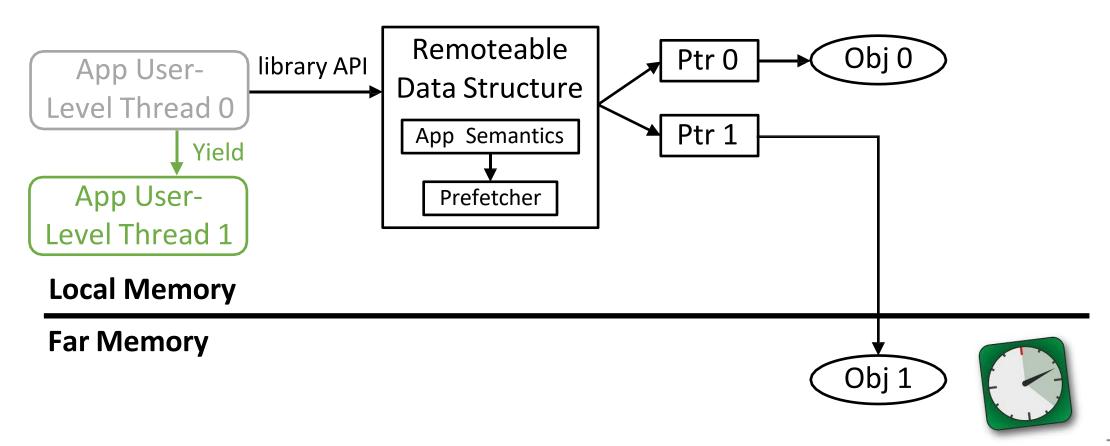
2. Userspace Runtime

➤ Solved challenge: kernel overheads.



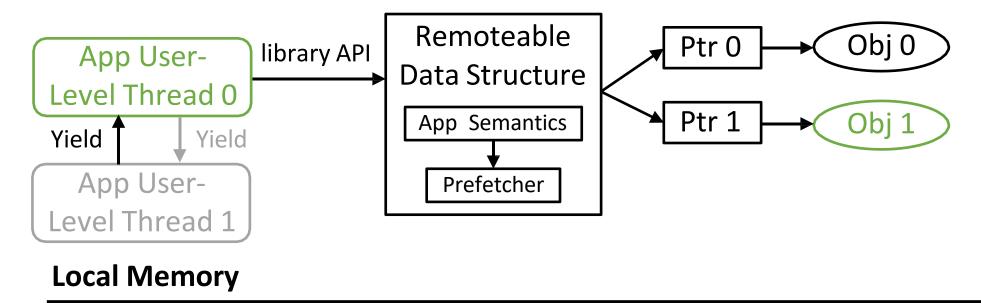
2. Userspace Runtime

➤ Solved challenge: kernel overheads.



2. Userspace Runtime

➤ Solved challenge: kernel overheads.

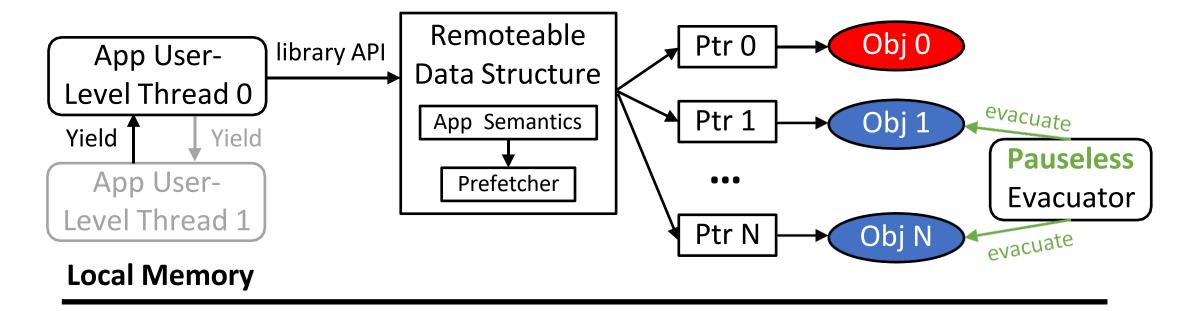


Far Memory

3. Pauseless Evacuator

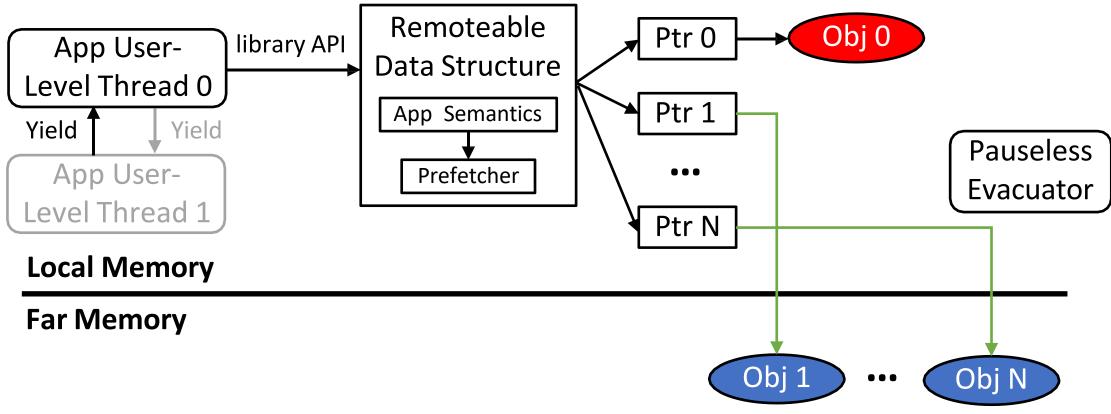
Far Memory

➤ Solved challenge: impact of memory reclamation.



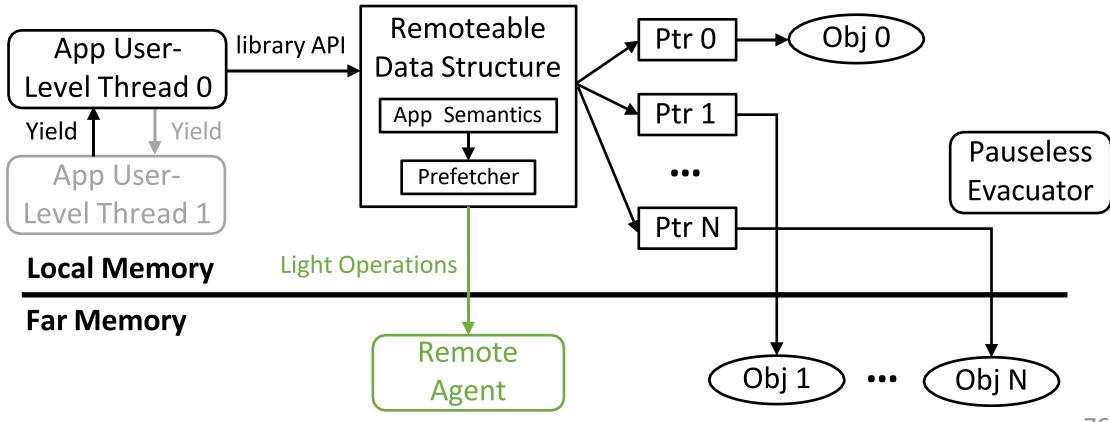
3. Pauseless Evacuator

➤ Solved challenge: impact of memory reclamation.



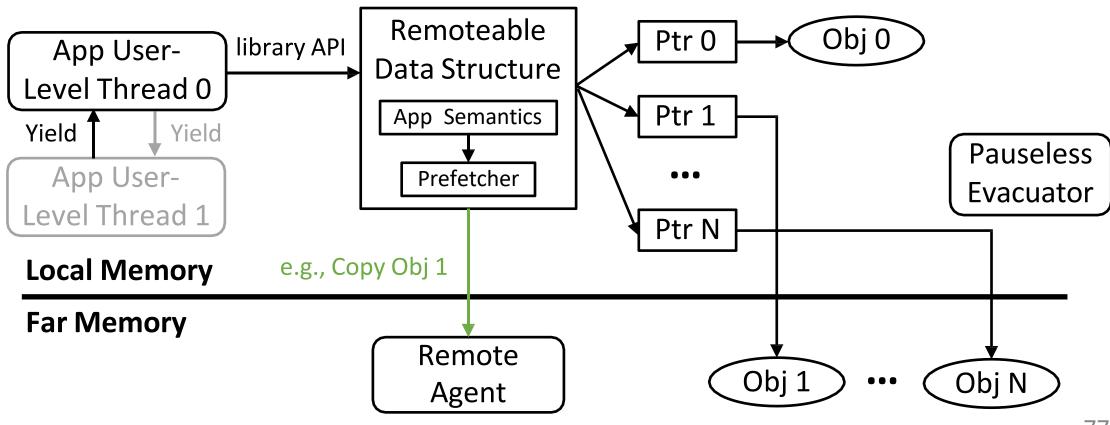
4. Remote Agent

➤ Solved challenge: network BW < DRAM BW.



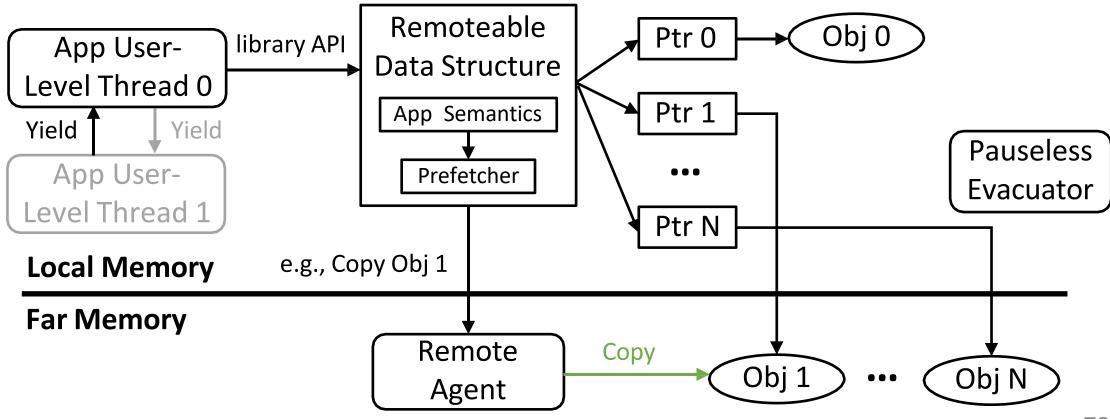
4. Remote Agent

➤ Solved challenge: network BW < DRAM BW.



4. Remote Agent

➤ Solved challenge: network BW < DRAM BW.



Sample Code

```
std::unordered_map<key_t, int> hashtable;
std::array<LargeData> arr;
LargeData foo(std::list<key_t> &keys_list) {
  int sum = 0;
  for (auto key : keys_list) {
    sum += hashtable.at(key);
  LargeData ret = arr.at(sum);
  return ret;
```

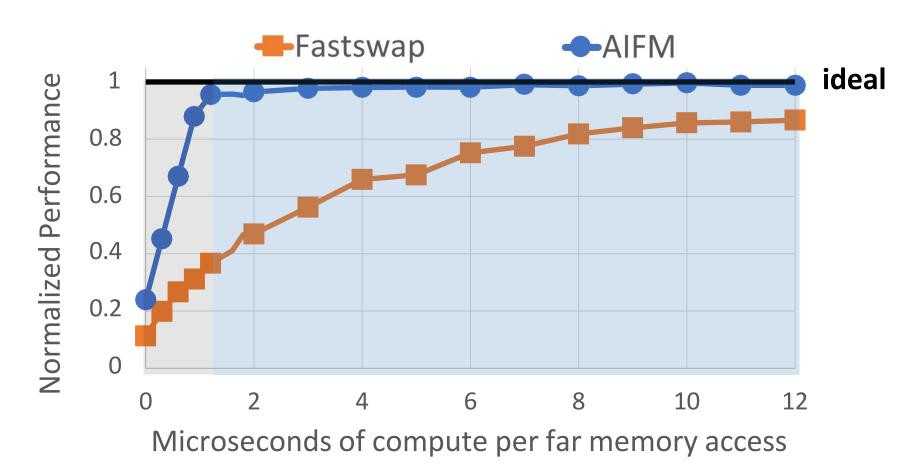
Sample Code

```
RemHashTable<key_t, int> hashtable;
RemArray<br/>
Large<br/>
Data> arr;
LargeData foo(RemList<key_t> &keys_list) {
  int sum = 0;
  for (auto key : keys_list) {
                                                                Prefetch list data.
    DerefScope scope;
    sum += hashtable.at(key, scope);
                                                                Cache hot objects.
  DerefScope scope;
                                                                Avoid polluting local mem.
  LargeData ret = arr.at</*don't cache*/ true>(sum, scope);
  return ret;
```

Implementation

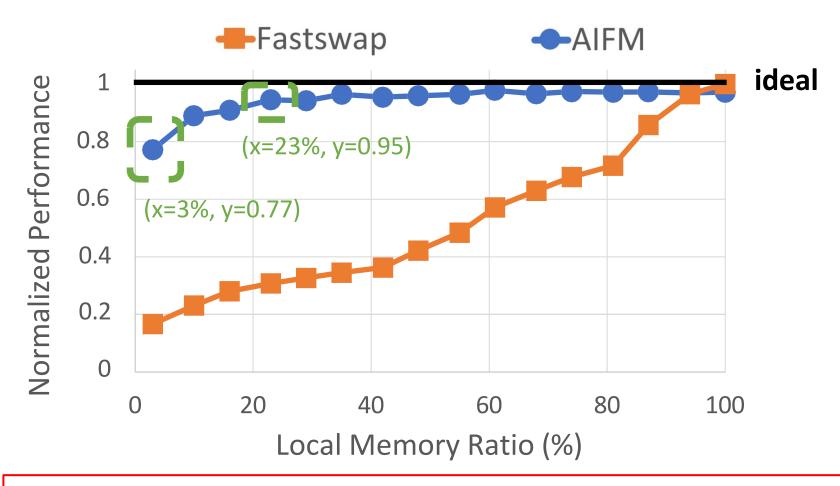
- Implemented 6 data structures.
 - Array, List, Hashtable, Vector, Stack, and Queue.
- Runtime is built on top of Shenango [NSDI' 19].
- TCP far-memory backend.
- > LoC: 6.5K (runtime) + 5.5K (data structures) + 0.8K (Shenango)

Performance on Different Compute Intensities



AIFM hides far memory latency with moderate compute.

NYC Taxi Analysis (C++ DataFrame)



AIFM achieves near-ideal performance with small local memory.

Other Experiments

- Synthetic web frontend: up to 13X end-to-end speedup.
- Data structures microbenchmarks: up to 61X speedup.
- Design Drill-Down.

Read our paper for details.

Related Work

- OS-paging systems.
 - Fastswap [EuroSys' 20], Leap [ATC' 20]
- Distributed shared memory.
 - Treadmarks [IEEE Computer' 96]
- Garbage collection (GC).

Conclusion

- AIFM: Application-Integrated Far Memory.
- Key idea: swap memory using a userspace runtime.
 - Data Structure Library: captures application semantics.
 - Userspace Runtime: efficiently manages objects and memory.
- Achieves 13X end-to-end speedup over Fastswap.
- Code released at https://github.com/AIFM-sys/AIFM

Please send your questions to us zainruan@csail.mit.edu

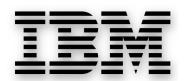
Memory Management in Modern Computer Systems

- Memory Abstraction
 - NSDI'14 FaRM
- Demand paging: remote memory over RDMA
 - NSDI'17 InfiniSwap
 - OSDI'20 AIFM
- Demand paging: memory swapping between GPU memory and host memory
 - OSDI'20 PipeSwitch
 - NSDI'23 TGS

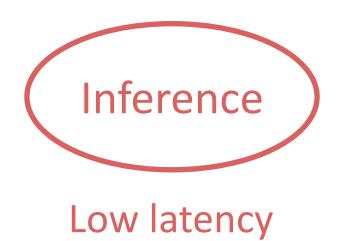
PipeSwitch: Fast Pipelined Context Switching for Deep Learning Applications

Zhihao Bai, Zhen Zhang, Yibo Zhu, Xin Jin

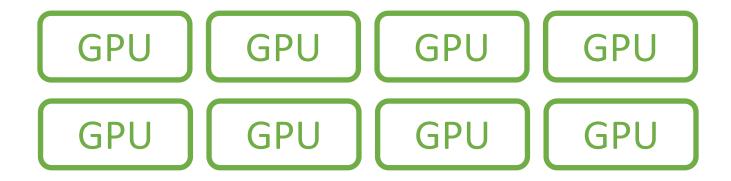
Deep learning powers intelligent applications in many domains



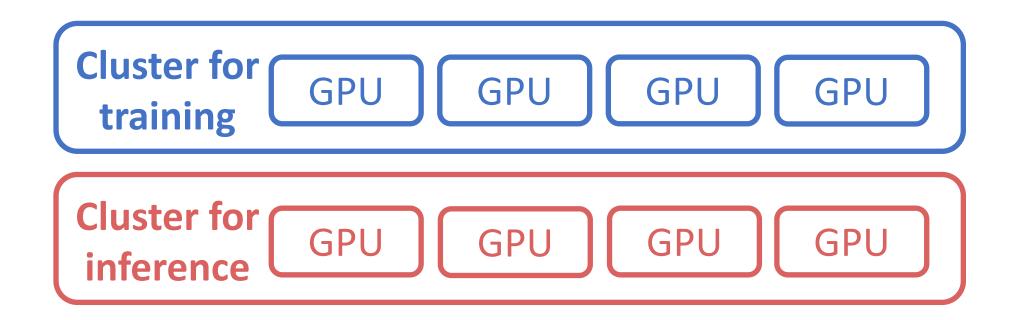
Training and inference



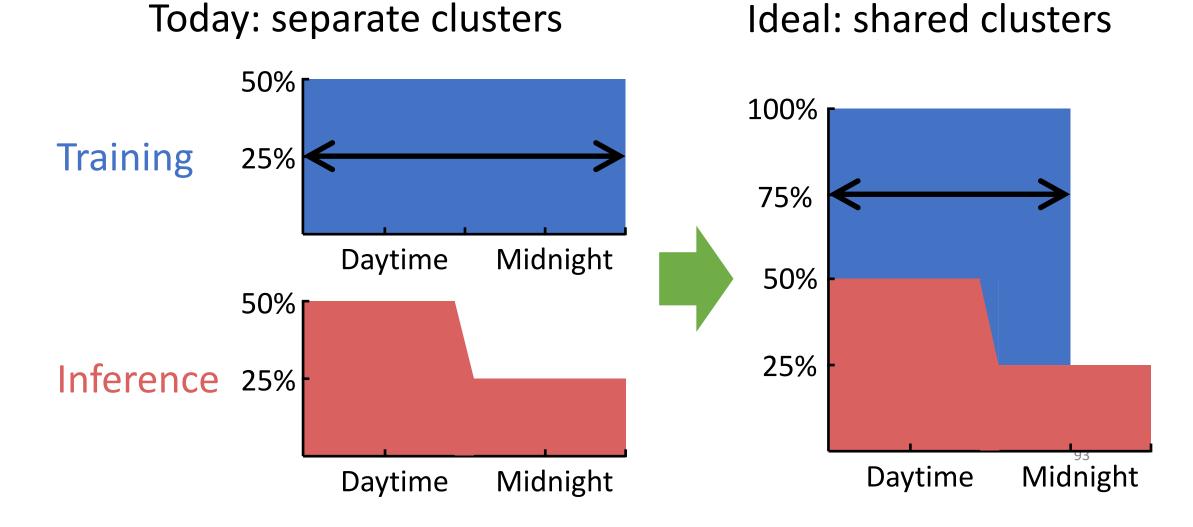
GPUs clusters for DL workloads



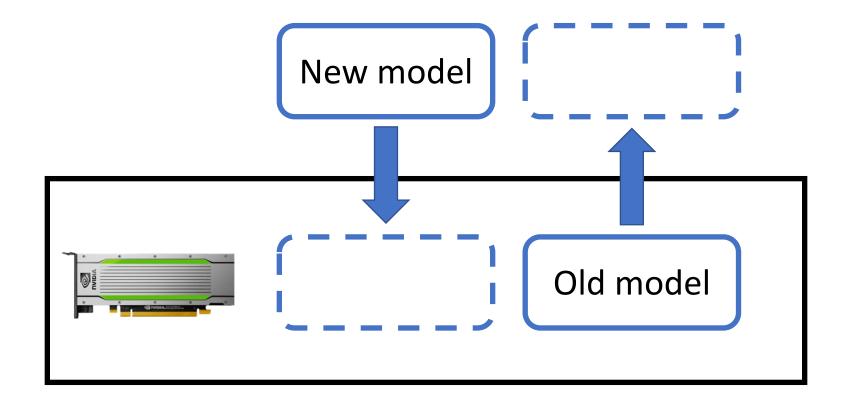
Separate clusters for training and inference



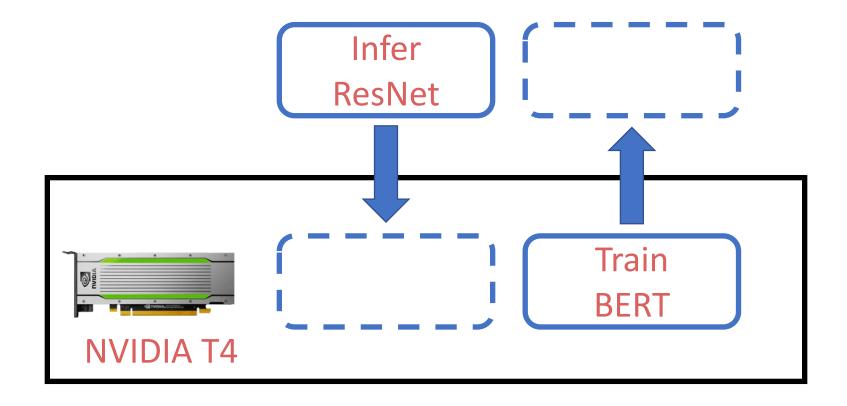
Utilization of GPU clusters is low



Context switching overhead is high



Context switching overhead is high



Latency: 6s

Drawbacks of existing solutions

Infer

- NVIDIA MPS
 - High overhead due to contention
- Salus[MLSys'20]
 - Requires all the models to be preloaded into the GPU memory

Latency: 6s

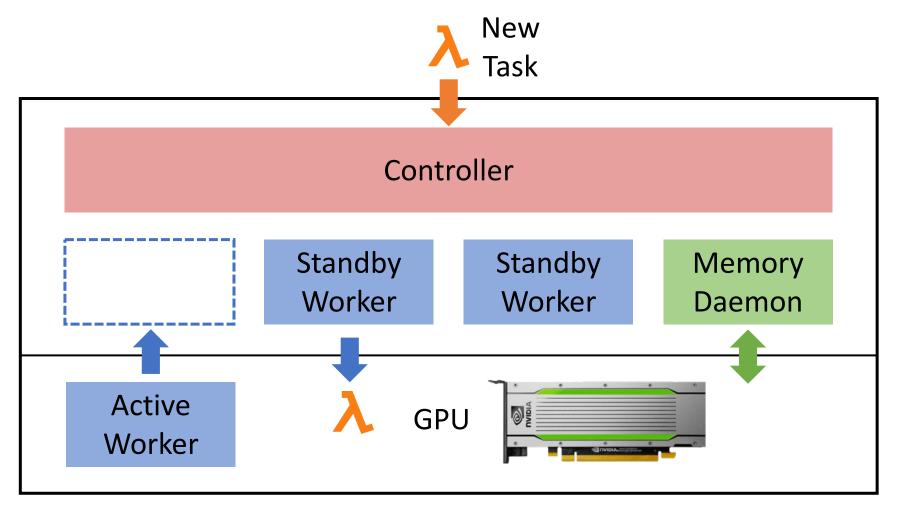
Goal: fast context switching

Infer

- Enable GPU-efficient multiplexing of multiple DL apps with fine-grained time-sharing
- Achieve millisecond-scale context switching latencies and high throughput

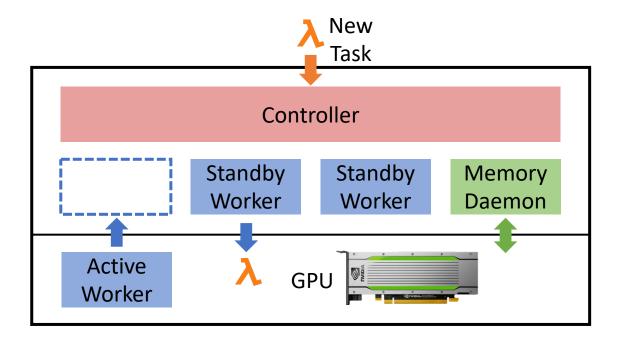
Latency: 6s

PipeSwitch overview: architecture



PipeSwitch overview: execution

- Stop the current task and prepare for the next task.
- Execute the task with pipelined model transmission.
- Clean the environment for the previous task.



Sources of context switching overhead

Model transmission

Memory allocation

Task initialization

Task cleaning

How to reduce the overhead?

Model transmission

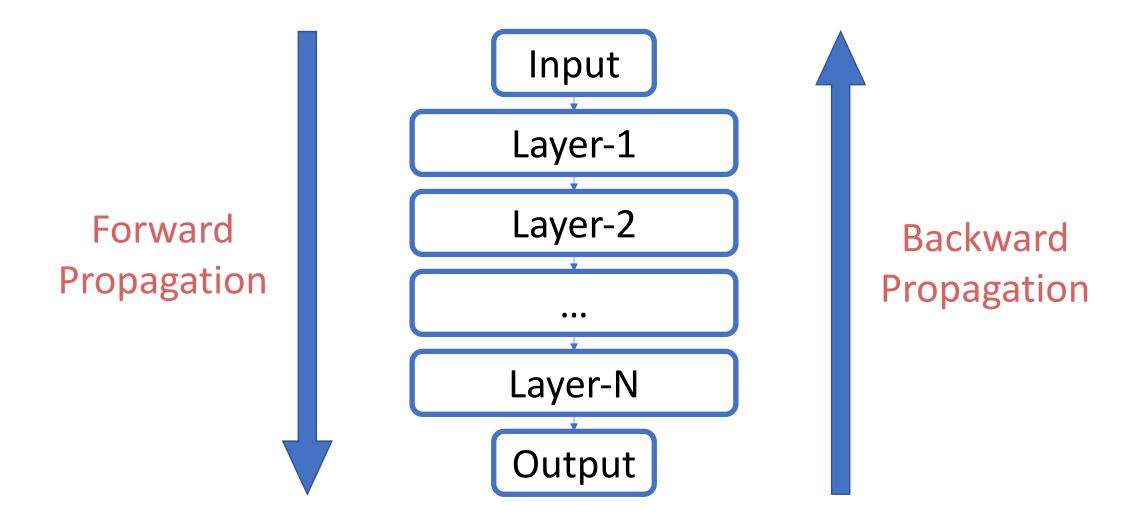
Pipelined model transmission

Memory allocation

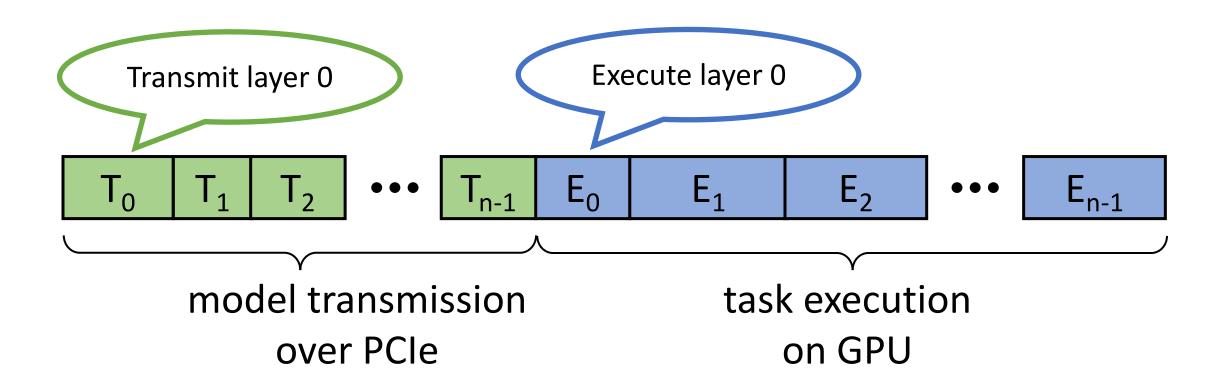
Task initialization

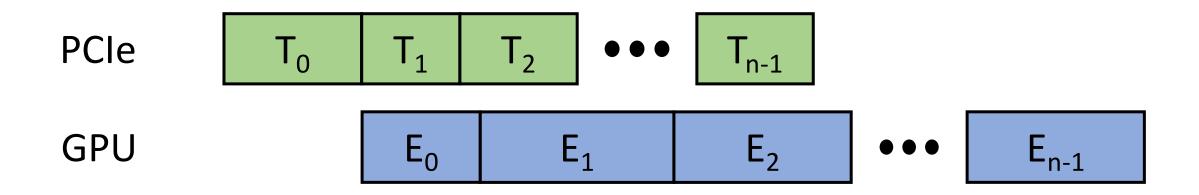
Task cleaning

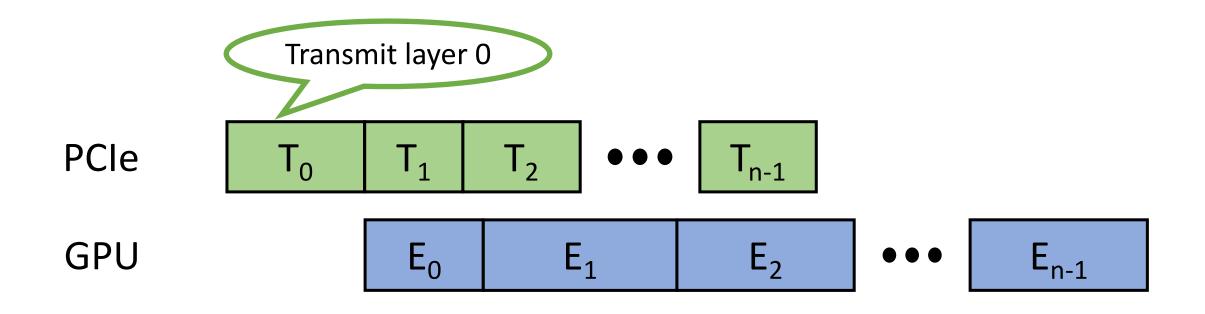
DL models have layered structures

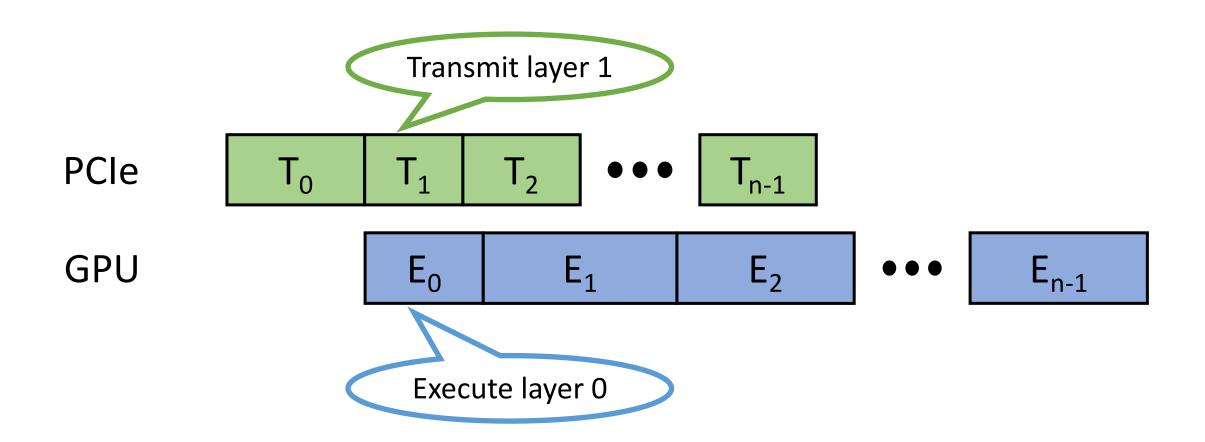


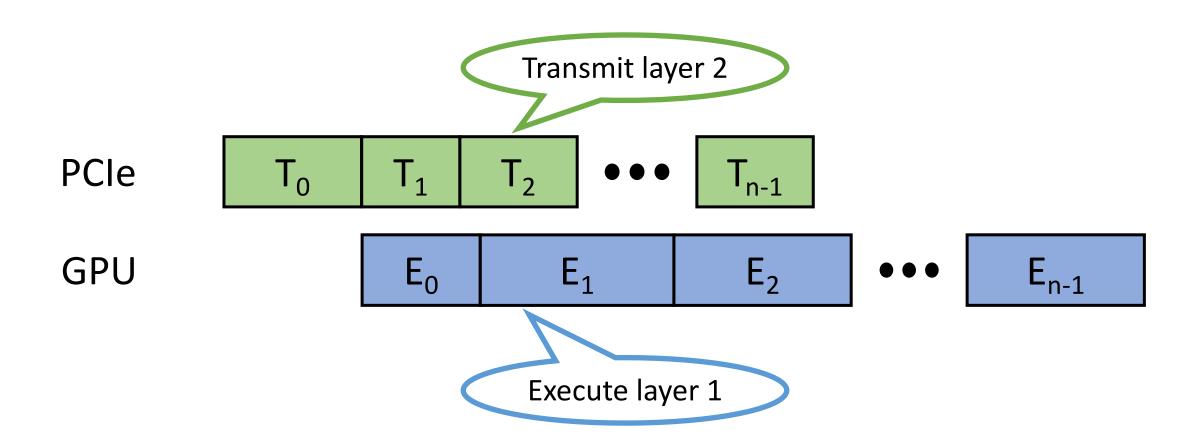
Sequential model transmission and execution





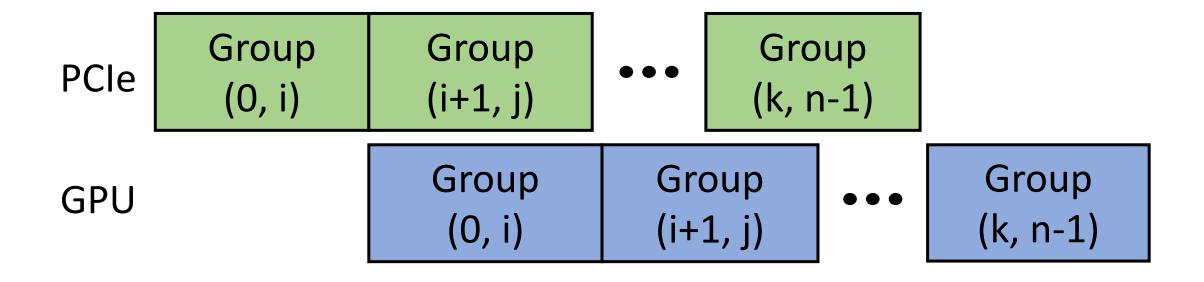




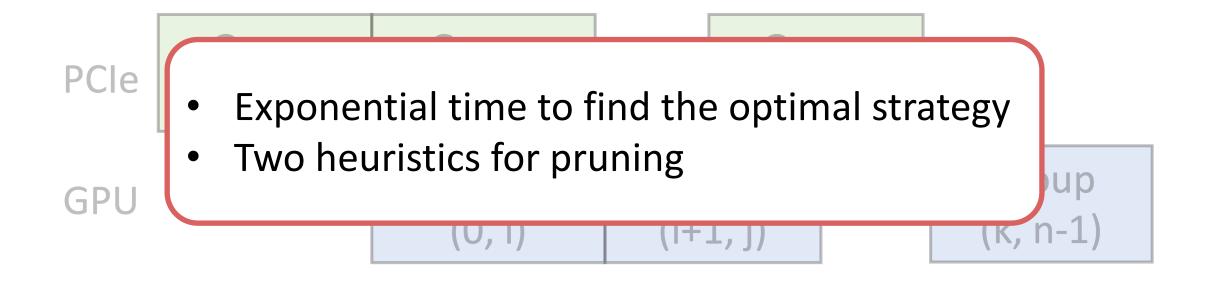


- 1. Multiple calls to PCIe;2. Synchronize transmission and execution.

Pipelined model transmission and execution



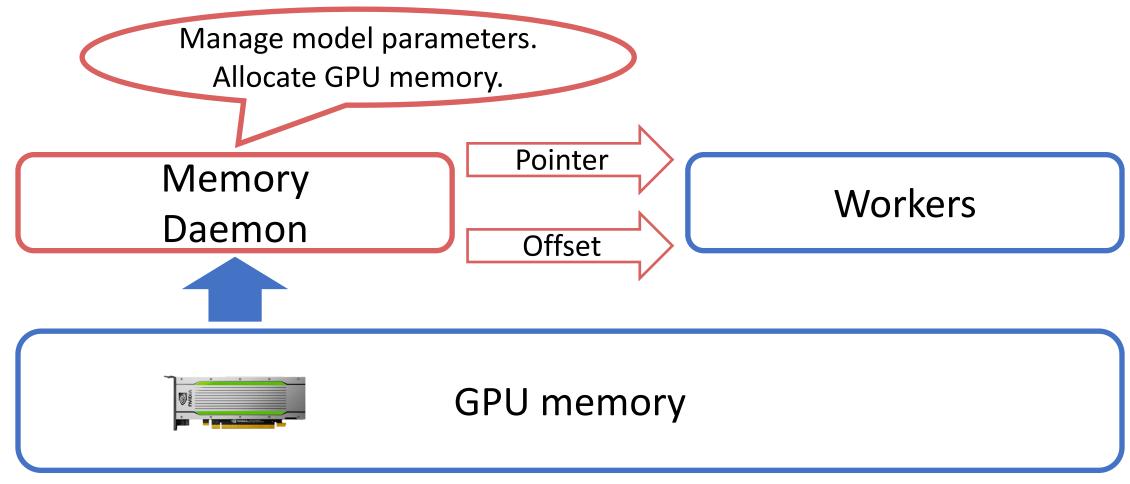
Pipelined model transmission and execution



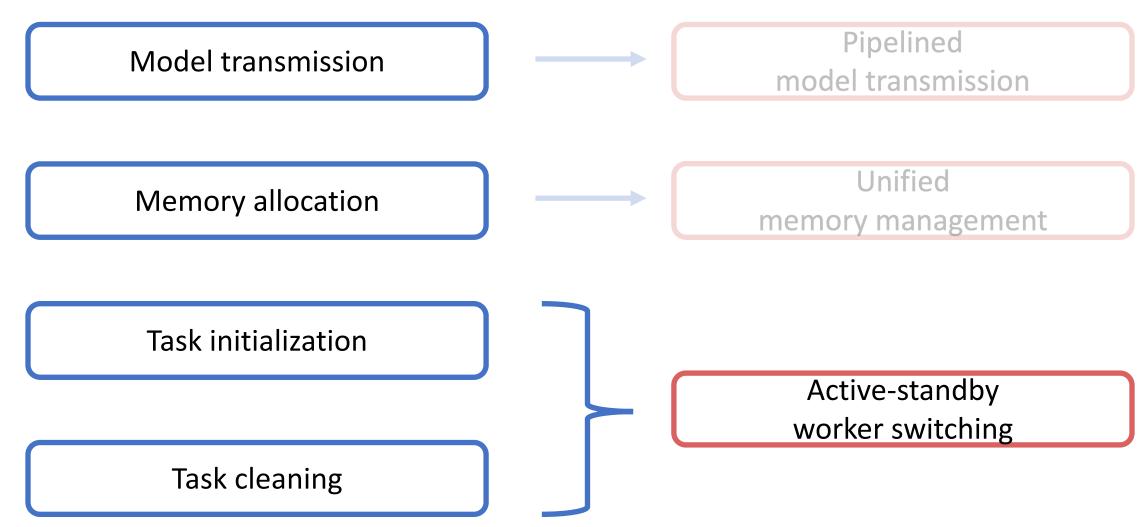
How to reduce the overhead?

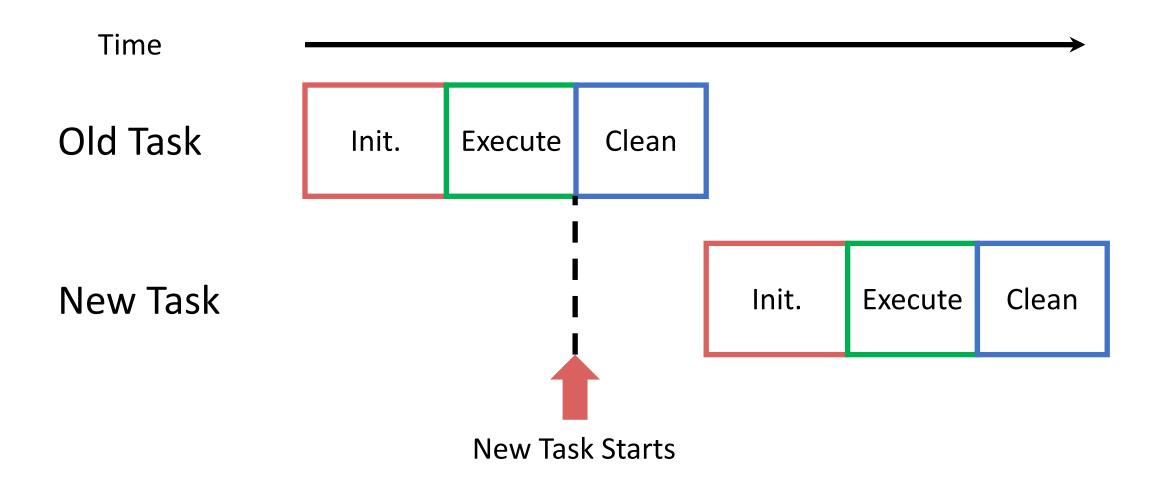
Pipelined Model transmission model transmission Unified Memory allocation memory management Task initialization Task cleaning

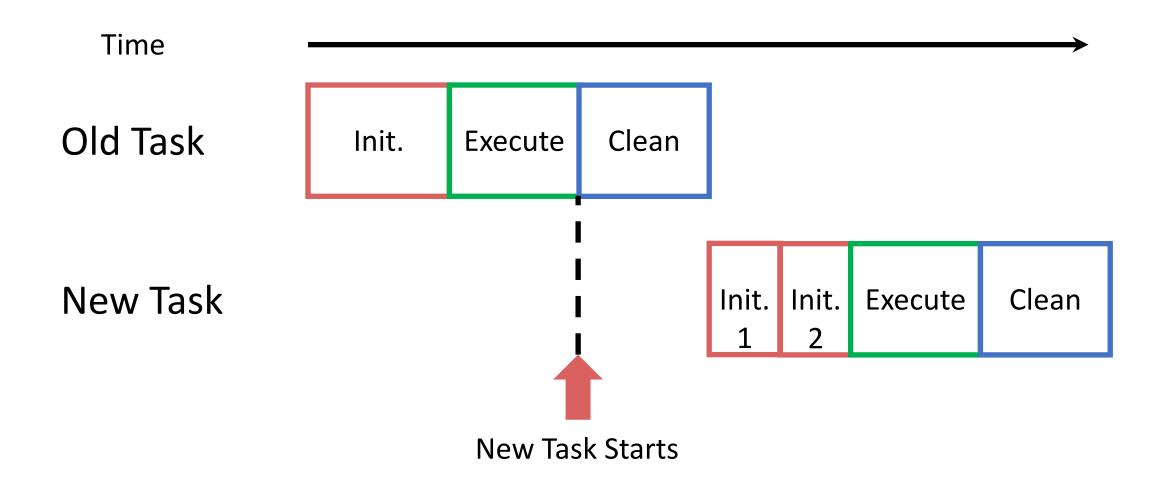
Unified memory management

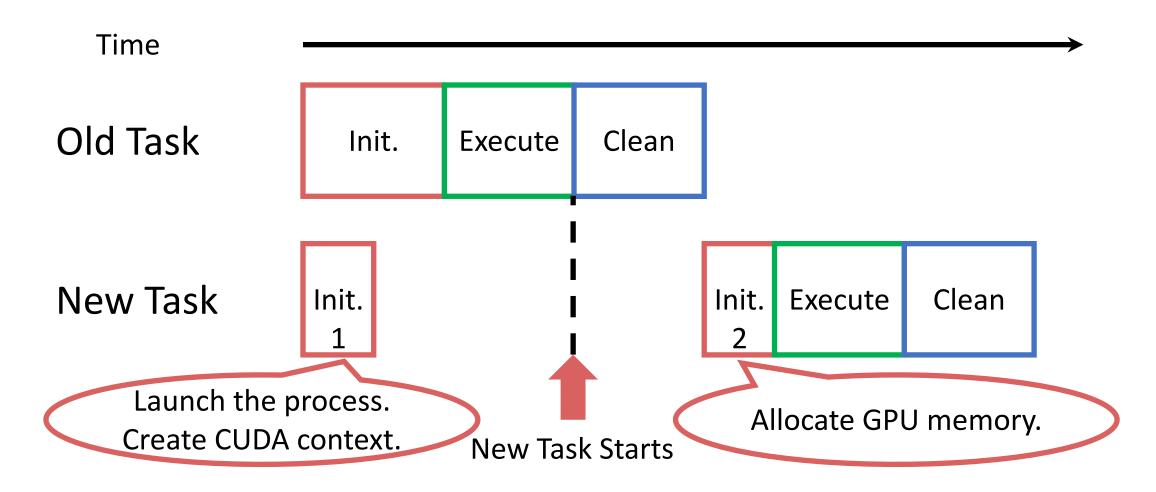


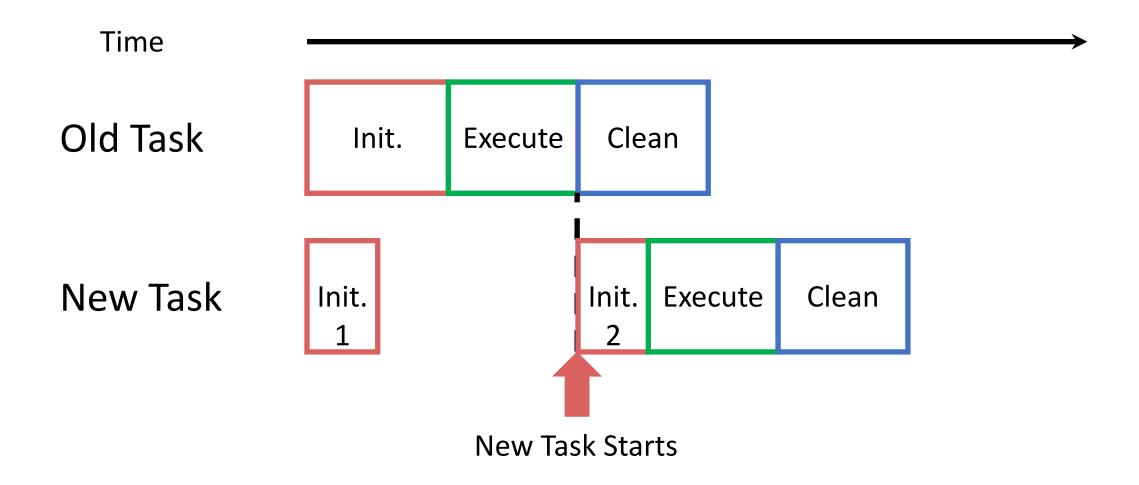
How to reduce the overhead?











Implementation

- Testbed: AWS EC2
 - p3.2xlarge: PCle 3.0x16, NVIDIA Tesla V100 GPU
 - g4dn.2xlarge: PCle 3.0x8, NVIDIA Tesla T4 GPU
- Software
 - CUDA 10.1
 - PyTorch 1.3.0
- Models
 - ResNet-152
 - Inception-v3
 - BERT-base

Evaluation

Can PipeSwitch satisfy SLOs?

Can PipeSwitch provide high utilization?

How well do the design choices of PipeSwitch work?

Evaluation

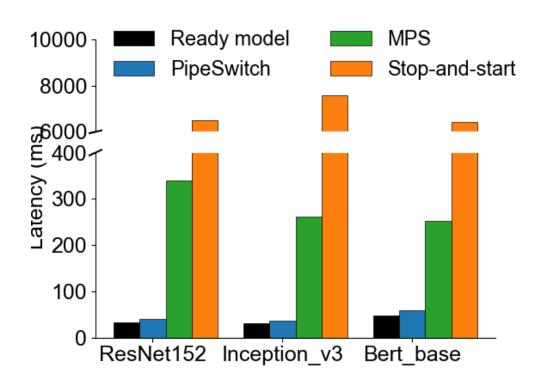
Can PipeSwitch satisfy SLOs?

Can PipeSwitch provide high utilization?

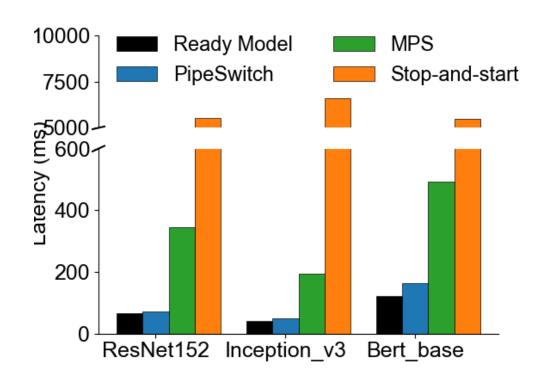
How well do the design choices of PipeSwitch work?

PipeSwitch satisfies SLOs

NVIDIA Tesla V100

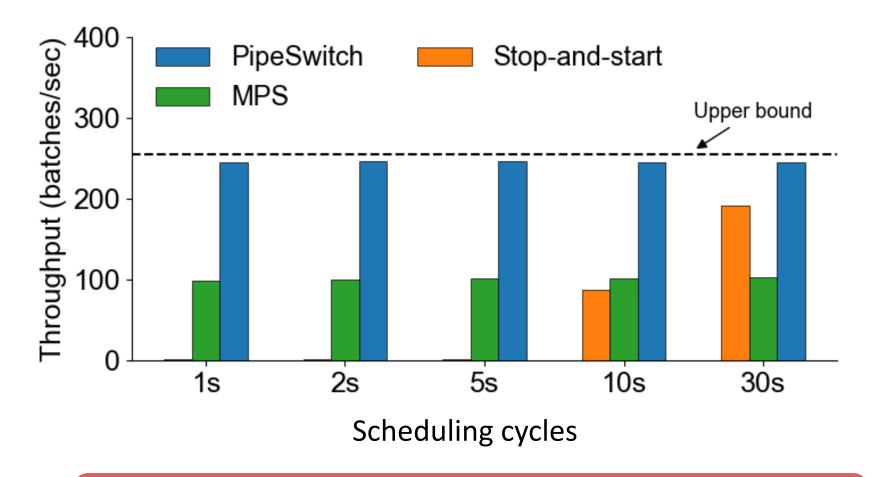


NVIDIA Tesla T4



PipeSwitch achieves low context switching latency.

PipeSwitch provide high utilization



PipeSwitch achieves near 100% utilization.

Summary

- GPU clusters for DL applications suffer from low utilization
 - Limited share between training and inference workloads

- PipeSwitch introduces pipelined context switching
 - Enable GPU-efficient multiplexing of DL apps with fine-grained time-sharing
 - Achieve millisecond-scale context switching latencies and high throughput

Memory Management in Modern Computer Systems

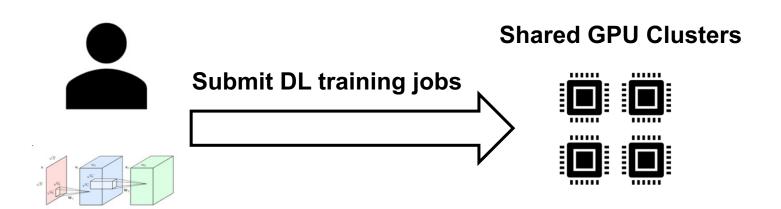
- Memory Abstraction
 - NSDI'14 FaRM
- Demand paging: remote memory over RDMA
 - NSDI'17 InfiniSwap
 - OSDI'20 AIFM
- Demand paging: memory swapping between GPU memory and host memory
 - OSDI'20 PipeSwitch
 - NSDI'23 TGS

Transparent GPU Sharing in Container Clouds for Deep Learning Workloads

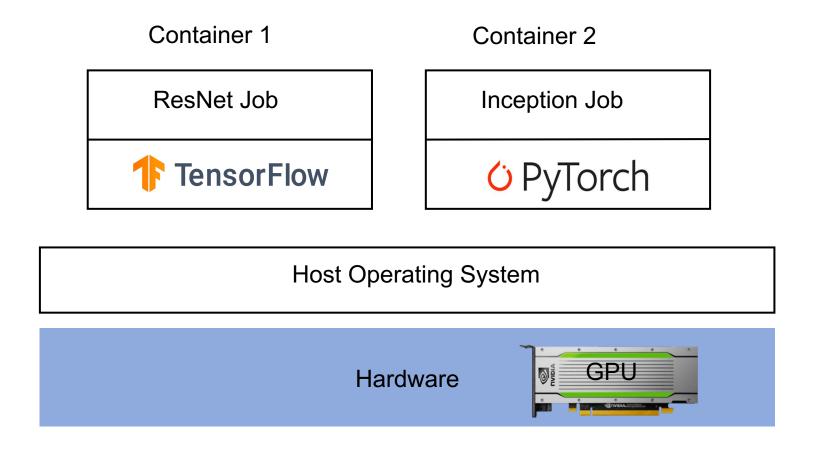
Bingyang Wu, Zili Zhang, Zhihao Bai, Xuanzhe Liu, Xin Jin

Deep learning training jobs: important workloads in datacenters

- Deep learning is widely used in many applications
 - Recommendation
 - Machine Translation
 - Voice Assistant
 - •
- Deep learning models are often trained in shared GPU clusters



Deep learning training jobs in container clouds



Low GPU utilization in production

- Microsoft [1]: the average GPU utilization is only 52%
- Alibaba [2]: the median GPU utilization is no more than 10%
- Low GPU utilization is bad
 - Container clouds: idle GPUs are a huge waste
 - Users: longer queueing delay, longer job completion time

Root cause: Each GPU is statically assigned to a single container

Existing GPU sharing solutions

- Key idea: Share GPUs to improve GPU utilization
- Classify DLT jobs into two classes
 - Production job: Run without performance degradation
 - Opportunistic job: Utilize spare GPU resources to execute

- SOTA solutions:
 - Application-layer solution: AntMan [OSDI' 20]
 - OS-layer solution: NVIDIA MPS, NVIDIA MIG

Application-layer solution: AntMan

- Custom DL framework
 - Modify TensorFlow (~4000 LoC) or PyTorch (~2000 LoC)
- Support GPU compute sharing and GPU memory oversubscription

- Limitations: Lack of Transparency
 - Limited use cases: restricts users to use particular frameworks
 - Huge operation overhead: need to maintain custom frameworks

OS-layer solution: NVIDIA MPS

- A software solution for GPU sharing provided by NVIDIA
- Limitations:
 - Low GPU utilization
 - Does not support GPU memory oversubscription
 - Requires application knowledge to properly set the resource limit
 - Weak fault isolation
 - When a job fails, other jobs may be affected and even fails

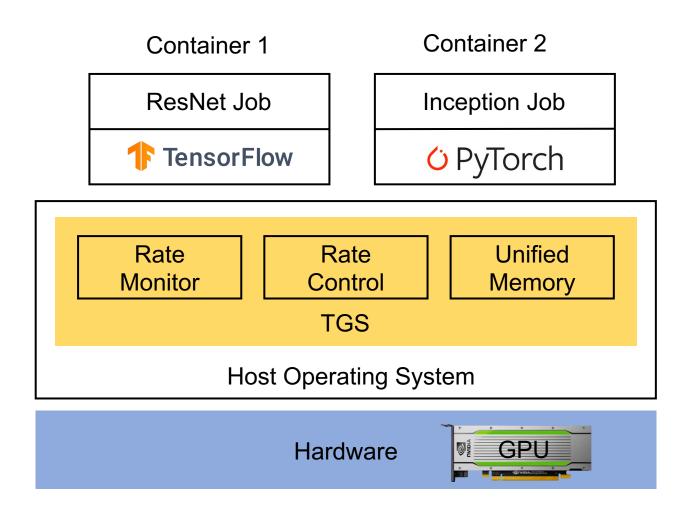
OS-layer solution: NVIDIA MIG

- A recent hardware solution for GPU sharing provided by NVIDIA
- Limitations:
 - Performance isolation
 - Cannot arbitrarily partition a GPU
 - Cannot dynamically change GPU resources
 - Compatibility
 - Only available on a few high-end GPUs
 - Does not support GPU sharing for the multi-GPU instance

A more practical solution: TGS

	AntMan	MPS	MIG	TGS
Transparency		✓	✓	✓
High utilization	✓			✓
Performance isolation	✓	✓	✓	✓
Fault isolation	✓		✓	✓

TGS architecture

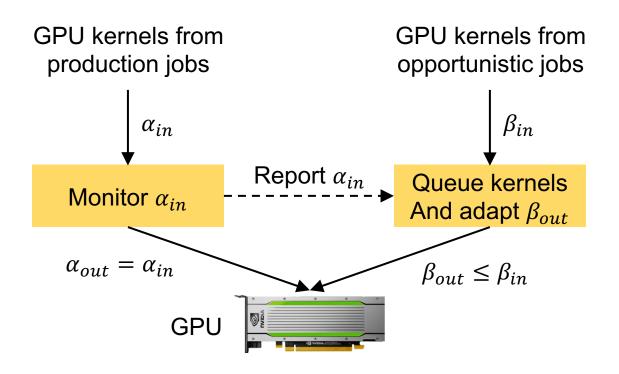


Sharing GPU compute resources

- Strawman solution: priority scheduling
 - Control the opportunistic job based on the GPU kernel queues

- Low GPU utilization:
 - The state of queues do not reflect the remaining GPU resources

Adaptive rate control of TGS



Sharing GPU memory resources

- Weak Fault isolation: total GPU memory consumption may exceed GPU memory capacity and cause OOM
- Low GPU utilization: some jobs always claim all GPU memory

- Application-layer technique cannot be used in the OS layer
 - Cannot directly ask DL framework to release unused GPU memory
 - Cannot directly change pointer address from GPU memory to host memory

Transparent unified memory of TGS

- Key ideas: leverage CUDA unified memory to transparently unify GPU memory and host memory
- High GPU utilization: The actual physical GPU memory is allocated when jobs first access to them
- Fault isolation: When GPU memory is oversubscribed, TGS changes virtual memory mapping to evict GPU memory of opportunistic job to host memory

Evaluation setup

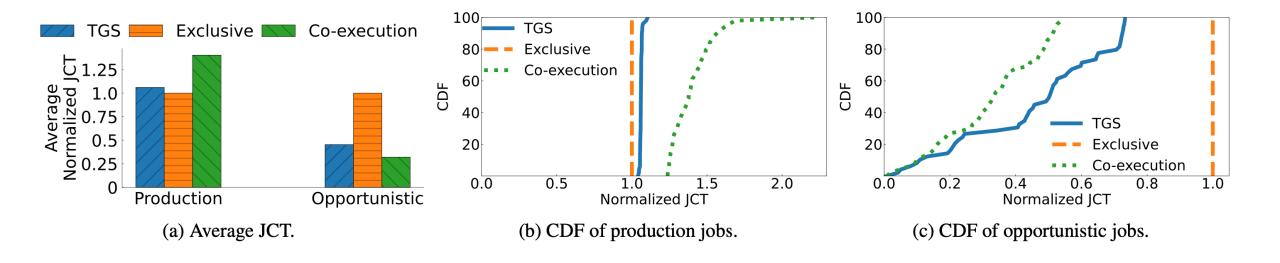
- Implementation: ~3000 LoC C++ & Python
 - Integration with Docker and Kubernetes
- Testbed: NVIDIA A100 GPUs and NVIDIA V100 GPUS
- Trace: Philly Trace from Microsoft [Jeon et al. 2019]
- Models
 - CV: ResNet, ShuffleNet, MobileNet
 - Graph: GCN
 - NLP: Bert, GPT-2
 - Recommendation: DLRM

Evaluation baselines

- TGS: our work
- AntMan: the state-of-the-art application-layer solution
- MPS: manually set appropriate limit
- MIG: manually set best configuration
- Exclusive: give exclusive access to a GPU
- Co-execution: share a GPU without any control

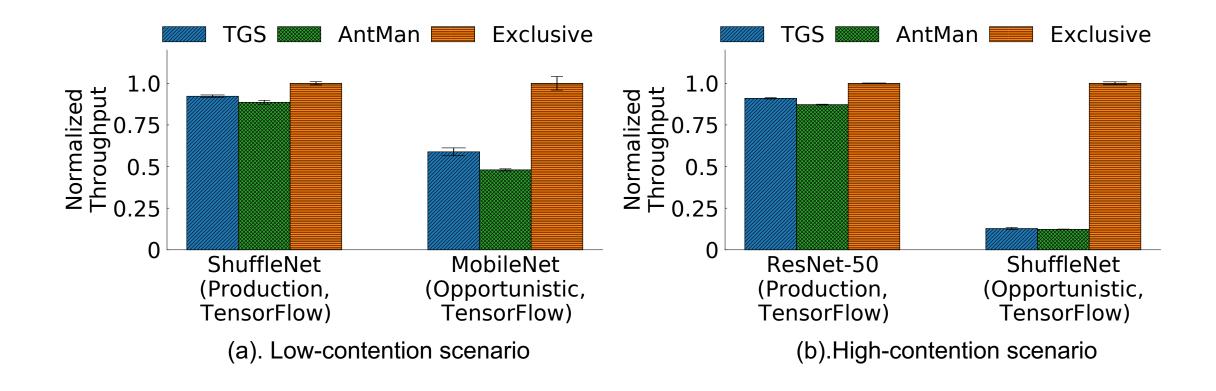
Mixed workload job stream

- A job stream contains 50 production jobs and 50 opportunistic jobs
- Opportunistic jobs: 52% JCT reduction compared to Exclusive
- Production jobs: 21% JCT reduction compared to Co-execution



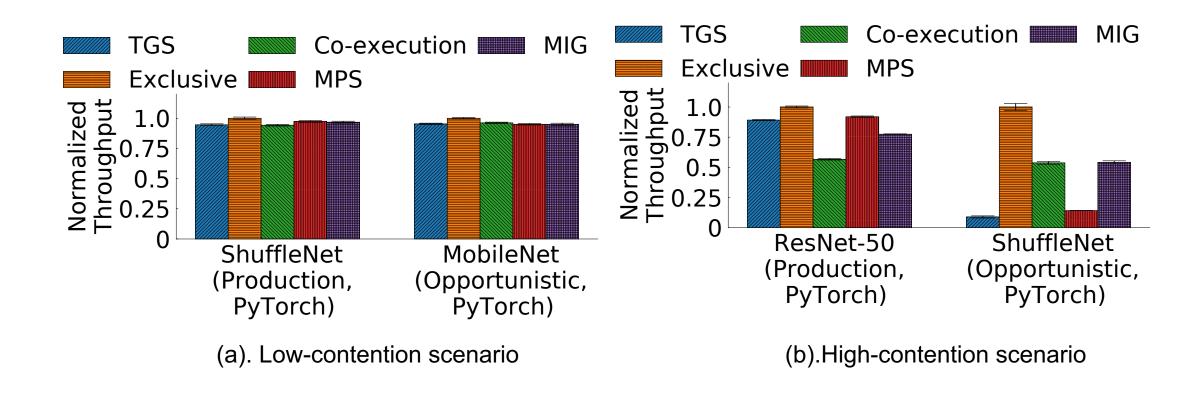
Comparison with AntMan

- Achieve comparable performance in different contention scenarios
- Provide transparency without sacrificing performance



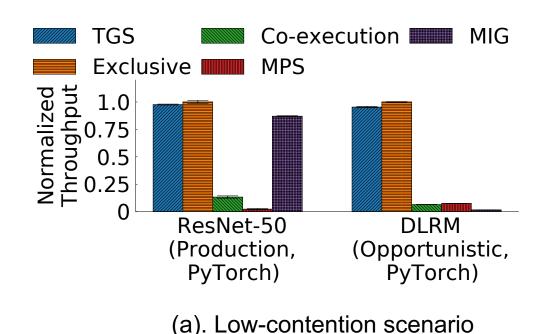
Adaptive rate control of TGS

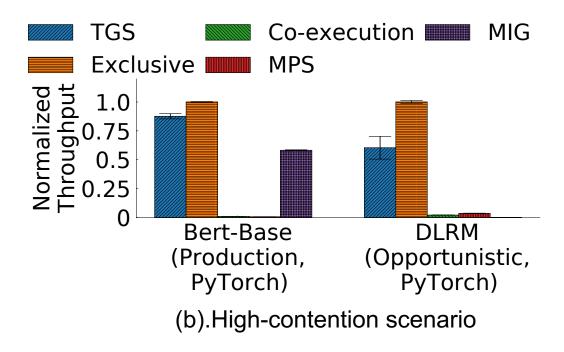
 TGS protects productions job with little overhead, while providing remaining GPU resources to opportunistic jobs



Transparent unified memory of TGS

- TGS protects production jobs under GPU memory oversubscription
- 15 × throughput improvement compared to MPS





More experiments in our paper

- System overhead
- Convergence of TGS in different scenarios
 - Convergence of the rate control under dynamic job arrival
 - Convergence of the rate control under dynamic resource usage
- Supporting different DL frameworks
- GPU sharing for large model training

Conclusion

- TGS provides transparent GPU sharing to DL training in container clouds with four important properties:
 - Transparency
 - Performance isolation
 - High GPU utilization
 - Fault isolation
- TGS improves the throughput of the opportunistic job by up to 15× compared to the existing OS-layer solution MPS

