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Memory Management in Modern Computer Systems

e Memory Abstraction
— NSDI’14 FaRM

e Demand paging: remote memory over RDMA

— NSDI’17 InfiniSwap
— OSDI'20 AIFM

e Demand paging: memory swapping between GPU memory and host memory
— OSDI’20 PipeSwitch
— NSDI'23 TGS



~aRM: Fast Remote Memory

Aleksandar Dragojevi¢, Dushyanth Narayanan,
Orion Hodson, Miguel Castro



Hardware trends

- Main memory is cheap

- 100 GB — 1 TB per server
- 10— 100 TBs in a small cluster

- New data centre networks

- 40 Gbps throughput (100 this year)
- 1-3 s latency
- RDMA primitives



Remote direct memory access

- Read / write remote memory
- NIC performs DMA requests

- FaRM uses RDMA extensively

- Reads to directly read data
- Writes into remote buffers for messaging

- Great performance

- Bypasses the kernel
- Bypasses the remote CPU
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Applications

- Data centre applications

- Irreqular access patterns
- Latency sensitive

- Data serving

- Key-value store
- Graph store

- Enabling new applications



How to program a modern cluster?

We have: Desirable:

* TBs of DRAM » Keep data in memory

* 100s of CPU cores  Access data using RDMA
 RDMA network * Collocate data and computation
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Traditional model

Servers: store data

\&y
</// o///>

Clients: execute application
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Symmetric model
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much faster ) )~ p- )~
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with RDMA

Machines store data and execute application
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Shared address space

Supports direct
RDMA of objects

Programmability
a welcome bonus
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Shared address space

General primitive | Shared address space
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Optimizations: locality awareness



Optimizations: locality awareness
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Transactions

Buffer writes
mmm | Llock Validate Update and unlock
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Executioni Commit
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TAQ [Bronson “13, Armstrong "13]

- Facebook’s in-memory graph store

- Workload
- Read-dominated (99.8%) 6 MOpS/S/SI‘V
- 10 operation types (10x improvement)
- FaRM implementation
- Nodes and edges are FaRM objects 42 ps average latency
- Lock-free reads for lookups (40 — 50x iImprovement)

- Transactions for updates

17



FaRM

- Platform for distributed computing

- Data is In memory
- RDMA

- Shared memory abstraction

- Transactions
- Lock-free reads

- Order-of-magnitude performance improvements

- Enables new applications

18



Memory Management in Modern Computer Systems

e Memory Abstraction
— NSDI’14 FaRM

e Demand paging: remote memory over RDMA

— NSDI’17 InfiniSwap
— OSDI'20 AIFM

e Demand paging: memory swapping between GPU memory and host memory
— OSDI’20 PipeSwitch
— NSDI'23 TGS
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Efficient Memory Disaggregation with
Infiniswap
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Agenda

 Motivation and related work

3/30/17



Memory-intensive applications
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Memory-intensive applications

A Your computer is low on memory

To restore enough memory for programs to work
correctly, save your files and then close or restart all
open programs.

3/30/17



Performance degradation
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Memory underutilization

* Google Cluster Analysis.,

Allocated Used
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Portion of Memory
o
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[1] Reiss, Charles, et al. "Heterogeneity and dynamicity of clouds at scale: Google trace analysis." SoCC’12.



Memory underutilization

* Google Cluster Analysis.,

Allocated Used
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Disaggregate free memory
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What are the challenges?

* Minimize deployment overhead
* No hardware design

* No application modification

* Tolerate failures
* e.g. network disconnection, machine crash

* Manage remote memory at scale



Recent work on memory disaggregation

No app Fault-

Memory Blade([IscA’09]
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1 https://github.com/accelio/NBDX

3/30/17
/30/ 2 http://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html



http://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html

Agenda

* Design and system overview

3/30/17
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System Overview
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System Overview
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System Overview

~

szzie{/*pp“cationl J [Applicationz J Local disk
g\\ * [ASYNC] backup swapped-out
g;rzl[ Virtual Memory Manager (VMM) ] data
@ * Tolerate remote memory
failure

B
; \Dﬂfc T
W [ RNIC J L { RNIC J

Machine 1 Machine 2
3/30/17 27




System Overview
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System Overview

[Applicationz J ".\ RDMA

g\\ * One-sided operations
g;;rg[ Virtual Memory Manager (VMM) ] ° Bypass remote CPU
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How to meet the design objectives?

No hardware design
Remote paging
No application modification

Fault-tolerance Local backup disk

3/30/17 30
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One-to-many
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Many-to-many
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Many-to-many

How to scale remote memory?

e How to find remote memory in the cluster?
e Which remote mapping should be evicted?

33



How to meet the design objectives?

Objectives _ ldeas

Decentralized remote memory

Scalability management

3/30/17 34



Management unit: memory page?

g Infiniswap
Daemon
4 .- . . )
Infiniswap Block Device Infiniswap
Daemon
\_ .
:
p100 <sl, pl1>
. [ Infiniswap]
. _ Daemon
1GB = 256K entries

3/30/17

1GB = 256K RTTs ”



Management unit: memory slab!

| Infiniswap
{ Daemon
g Infiniswap Block Device h Infiniswap
Daemon
- W,

Infiniswap
Daemon

3/30/17 37




Management unit: memory slab!

Infiniswap
Daemon
g Infiniswap Block Device h Infiniswap
Daemon
\_ W,

Infiniswap
Daemon

3/30/17 38




Which remote machine should be selected?

NN Infiniswap
[§ \\ Daemon
g Infiniswap Block Device h Infiniswap
Daemon

- W,
N Infiniswap
\\\\ Daemon

3/30/17 39



Which remote machine should be selected?

Infiniswap Block Device

N Infiniswap
§ \\ Daemon

J

Infiniswap
Daemon

J

memory utilization



Which remote machine should be selected?

NN Infiniswap
[§ \\ Daemon
g Infiniswap Block Device A Infiniswap
Daemon

- W,

» Central controller —

N Infiniswap
\\\\ Daemon
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Which remote machine should be selected?

N R Infiniswap

[§ \\ Daemon

g Infiniswap Block Device ) Infiniswap

Daemon
- Y,
—>—Centralcontroter

[§ Infiniswap]

» Decentralized approach (& Daemon
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Power offwo)choices,

-
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|

777

\

N

Infiniswap
Daemon

3/30/17

[1] Mitzenmacher, Michael. "The power of two choices in randomized load balancing.”, Ph.D. thesis, U.C. Berkeley, 1996
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Power offwo)choices,

NN Infiniswap
[§ § Daemon]

4 . . . )
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3/30/17 44

[1] Mitzenmacher, Michael. "The power of two choices in randomized load balancing.”, Ph.D. thesis, U.C. Berkeley, 1996



Agenda

* Implementation and evaluation

3/30/17
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Implementation

Kernel Space User Space
Infiniswap
m Daemon

e Connection Management
* One RDMA connection per active block device - daemon pair
* Control Plane
* SEND, RECV
..» Data Plane
* One-sided RDMA READ, WRITE

54



3/30/17

What are we expecting from Infiniswap?

m Application performance
m Cluster memory utilization
m Network usage

m Eviction overhead

m Fault-tolerance overhead

m Performance as a block device

55



Evaluation

InfiniBand
Network

=

2 x 8 cores (32 vcores)
- 64GB DRAM

56Gbps InfiniBand NIC

Ay
&y

32-node cluster

R ©

e
VQLTDB HE' emCached powergraph Gl‘dph/\/
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Application performance

* 50% working sets in memory

1
@
=
S 0s 0.77
£ 0.66
o 0.61
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(TPC-C) (Facebook/FB SYS) (TunkRank) (PageRank)

M 100% working sets in memory M Disk + 50% working sets in memory

Infiniswap + 50% working sets in memory

* Application performance is improved by 2-16x



Cluster memory utilization

* 90 containers (applications), mixing all applications and memory constraints.

100
< —Infiniswap
o
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-
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- 40
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£
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Rank of Machines

3/30/17 60

» Cluster memory utilization is improved from 40.8% to 60% (1.47x)



Agenda

 Future work and conclusion

3/30/17
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Limitations and future work

e Trade-off in fault-tolerance
e Local diskis the bottleneck

* Multiple remote replicas

e Fault-tolerance vs. space-efficiency

e Performance isolation among applications



Conclusion
* Infiniswap: remote paging over RDMA
* Application performance
* Cluster memory utilization

e Efficient, practical memory disaggregation

* No hardware design

* No application modification
* Fault-tolerance

* Scalability

https://github.com/Infiniswap/infiniswap.git




Memory Management in Modern Computer Systems

e Memory Abstraction
— NSDI’14 FaRM

e Demand paging: remote memory over RDMA

— NSDI’17 InfiniSwap
— OSDI'20 AIFM

e Demand paging: memory swapping between GPU memory and host memory
— OSDI’20 PipeSwitch
— NSDI'23 TGS
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In-Memory Applications

!l pandas

Data Analytics

vy %Y

v V
yoLrbs

Database

& redis

Web Caching

©

powergraph

Graph Processing
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Memory Is Inelastic

* Limited by the server physical boundary.

* Applications cannot overcommit memory.

Opening a 20GB file for analysis with pandas

Asked 2 years, 8 months ago Active 1 year, 4 months ago Viewed 81k times

| am currently trying to open a file with pandas and python for machine learning purposes it would

be ideal for me to have them all in a DataFrame. My RAM is 32 GB. | keep getting memory errors.
20

» Expensive solution: overprovision memory for peak usage.

62




Trending Solution: Far Memory

» Leverage the idle memory of remote servers (with fast network).

r N ( ~ Fast Network  ~——r \
Local Memory NIC < NIC | Far Memory
I " I
| o
- J L J —_— — J \\ J
e r- __________ ]
Local Server : Remote Server |
l

e —————— — — — — —



Existing Far-Memory Systems Perform Poorly

e Real-world Data Analytics from Kaggle.
* Provision 25% of working set in local mem.

» Goal: reclaim the wasted performance.

0 1 aN ideal

c

& 0.8 70% of

S 06 performance

E_’ wasted P state-of-the-art
< 0.4 .

Q M AIFM (this work)
< 0.2

-

2 0
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Why Do Existing Systems Waste Performance?

* Problem: based on OS paging.
— Semantic gap.
— High kernel overheads.



Challenge 1: Semantic Gap

* Page granularity = R/W amplification.

OS ——

App —

» 0S lacks app know

App

Page

—>®

—»

—>

edge =» hard to prefetch, etc.

——»

—>

0S

A sequence of rangom Memory aCCesses.



Challenge 2: High Kernel Overheads

* Expensive page faults.

» Busy Polling for in-kernel net |/O =2 burn CPU cycles.

APP

@

N

Remote Object

@ Swap in page

Page Fault

Handler (8 us)

Net
(6 us)

;
( % @ Busy poll
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Design Space

Manually manage
objects with RDMA

AIFM (this work)

Perf.

Existing OS
@ npagingsystems

Transparency



AIFM’s Design Overview

» Key idea: swap memory using a userspace runtime.

1. Semantic gap Remoteable Data structure library
(Amplification, Hard to prefetch)

2. Kernel overheads Userspace runtime
(page faults, busy poll for net 1/0)
3. Impact of Memory Reclamation Pauseless evacuator
(pause app threads)
4. network BW < DRAM BW Remote Agent

69



1. Remoteable Data Structure Library

» Solved challenge: semantic gap.

Remoteable
»| Data Structure

App User- 1 library API
Level Thread O |

App Semantics

v

Prefetcher

Local Memory

Far Memory



2. Userspace Runtime

» Solved challenge: kernel overheads.

App User- 1 library API
Level Thread O |

Local Memory

Far Memory

>

Remoteable
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v
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Ptr O

e




2. Userspace Runtime

» Solved challenge: kernel overheads.

library API Remoteable < Ptr O

»| Data Structure

Ptr 1

App Semantics

v

Prefetcher

Local Memory

Far Memory i G



2. Userspace Runtime

» Solved challenge: kernel overheads.

library API

vield T

Local Memory

Far Memory

>

Remoteable
Data Structure

App Semantics

v

Prefetcher

Ptr O

<

Ptr 1




3. Pauseless Evacuator

» Solved challenge: impact of memory reclamation.

[ App User- )IibraryAPI Remoteable Ptr O —@

Data Structure
Level Thread O | g

vield T App Semantics Ptr 1 m‘w@

v Pauseless
Prefetcher see
Evacuator

Ptr N Me

Local Memory

Far Memory
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3. Pauseless Evacuator

» Solved challenge: impact of memory reclamation.

[ App User- )IibraryAPI Remoteable Ptr O —@

Data Structure
Level Thread O | g

Vield T App Semantics Ptr1
v Pauseless
Prefetcher oee Evacuator

Ptr N

Local Memory

Far Memory
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4. Remote Agent

» Solved challenge: network BW < DRAM BW.
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4. Remote Agent

» Solved challenge: network BW < DRAM BW.

[

App User- 1 library API

Level Thread O |
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4. Remote Agent

» Solved challenge: network BW < DRAM BW.

[

App User- 1 library API

Level Thread O |

Yield T

Local Memory

Far Memory

Remoteable

»| Data Structure

App Semantics

v

Prefetcher

Ptr0

Ptr 1

e.g., Copy Obj 1

A 4

[

Remote
Agent

J
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Ptr N
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Sample Code

std::unordered_map<key t, int> hashtable;
std::array<LargeData> arr;

LargeData foo(std::list<key t> &keys list){
int sum = 0;
for (auto key : keys_list) {

sum += hashtable.at(key);

}

LargeData ret = arr.at(sum);
return ret;

}
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Sample Code

RemHashTable<key t, int> hashtable;
RemArray<LargeData> arr;

LargeData foo(RemlList<key t> &keys list) {

int sum = 0;
for (auto key : keys_list) { Prefetch list data.
DerefScope scope;
sum += hashtable.at(key, scope); Cache hot objects.
}

DerefScope scope;

LargeData ret = arr.at</*don’t cache*/ true>(sum, scope);  Avoid polluting local mem.
return ret;

30



Implementation

* Implemented 6 data structures.
* Array, List, Hashtable, Vector, Stack, and Queue.

* Runtime is built on top of Shenango [NSDI’ 19].
e TCP far-memory backend.
»LoC: 6.5K (runtime) + 5.5K (data structures) + 0.8K (Shenango)



Performance on Different Compute Intensities

Normalized Performance

1
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Microseconds of compute per far memory access

AIFM hides far memory latency with moderate compute.
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NYC Taxi Analysis (C++ DataFrame)

<-Fastswap ®-AlIFM
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(U ||
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Local Memory Ratio (%)

AIFM achieves near-ideal performance with small local memory.
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Other Experiments

* Synthetic web frontend: up to 13X end-to-end speedup.
e Data structures microbenchmarks: up to 61X speedup.

* Design Drill-Down.

Read our paper for details.



Related Work

* OS-paging systemes.
e Fastswap [EuroSys’ 20], Leap [ATC 20]

* Distributed shared memory.
* Treadmarks [IEEE Computer’ 96]

e Garbage collection (GC).



Conclusion

* AIFM: Application-Integrated Far Memory.

* Key idea: swap memory using a userspace runtime.

e Data Structure Library: captures application semantics.
* Userspace Runtime: efficiently manages objects and memory.

* Achieves 13X end-to-end speedup over Fastswap.
» Code released at https://github.com/AIFM-sys/AIFM

Please send your questions to us

zainruan@csail.mit.edu



https://github.com/AIFM-sys/AIFM
mailto:zainruan@csail.mit.edu

Memory Management in Modern Computer Systems

e Memory Abstraction
— NSDI’14 FaRM

e Demand paging: remote memory over RDMA

— NSDI’17 InfiniSwap
— OSDI'20 AIFM

e Demand paging: memory swapping between GPU memory and host memory
— OSDI’20 PipeSwitch
— NSDI'23 TGS
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PipeSwitch: Fast Pipelined Context
Switching for Deep Learning Applications

Zhihao Bai, Zhen Zhang, Yibo Zhu, Xin Jin

QY JOHNS HOPKINS |4/ Byte Dance



Deep learning powers intelligent
applications in many domains

Google €)  amazon | |ber

o® Microsoft

.|II



Training and inference

High throughput

Low latency

90



GPUs clusters for DL workloads
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Separate clusters for training and inference

Cluster for
training
I f

Inference
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Utilization of GPU clusters is low

Today: separate clusters ldeal: shared clusters

50%
100%

Training  25%
75%

Daytime  Midnight » 5 0%

25%

50%

Inference 25%

Daytime  Midnight Daytime  Midnight



Context switching overhead is high

, _____
[
New model \
————— - 4

94



Context switching overhead is high

Infer f
ResNet I
- 4

o -

NVIDIA T4

Latency: 6s
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Drawbacks of existing solutions

* NVIDIA MPS
* High overhead due to contention

e Salus[MLSys’20]
* Requires all the models to be preloaded into the GPU memory

Latency: 6s

96



Goal: fast context switching

Enable GPU-efficient multiplexing of multiple DL apps
with fine-grained time-sharing

Achieve millisecond-scale context switching latencies
and high throughput

Latency: 6s
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PipeSwitch overview: architecture

New
A‘ Task




PipeSwitch overview: execution

New
Task
 Stop the current task and
prepare for the next task. Controller
* Execute the task with pipelined r | Standby  Standby  Memory
model transmission. L---i----l WO‘rker ESNS | Daemon
* Clean the environment for the Active
previous task. Worker




Sources of context switching overhead

Model transmission
Memory allocation
Task initialization

Task cleaning
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How to reduce the overhead?

. Pipelined
model transmission

101



DL models have layered structures

Forward
Propagation

Backward
Propagation
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Sequential model transmission and execution

Transmit layer O Execute layer O

To | To| Ty [ *ec | To1 | Ep E, E, oo E.4
N\ LN
Y Y
model transmission task execution

over PCle on GPU



Pipelined model transmission and execution

PCle T, T, T, | eee | T .

GPU EO E1 Ez o0e¢ En-l




Pipelined model transmission and execution

Transmit layer O

PCle T, T, T, | eee | T .

GPU EO E1 Ez o0e¢ En-l




Pipelined model transmission and execution

Transmit layer 1

PCle T, T, T, | eee | T .

GPU E, E, E, eoe | E_ .

Execute layer O



Pipelined model transmission and execution

Transmit layer 2

PCle T, T, T, | eee | T .

GPU E, E, E, eoe | E_ .

Execute layer 1



Pipelined model transmission and execution

1.Multiple calls to PCle;

2.Synchronize transmission and execution.

108



Pipelined model transmission and execution

PCle

GPU

Group Group cee Group
(O) I) (i+1) J) (k) n_l)
Group Group

(0, i)

(i+1, j)

Group
(k, n-1)




Pipelined model transmission and execution

 Exponential time to find the optimal strategy

* Two heuristics for pruning

110



How to reduce the overhead?

Model transmission

. Unified
memory management

Task initialization

Task cleaning

111



Unified memory management

Manage model parameters.
Allocate GPU memory.

Memor Pointer >
Daemon Offset
% GPU memory
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How to reduce the overhead?

Model transmission
Memory allocation
Task initialization

Active-standby
worker switching
Task cleaning
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Active-standby worker switching

Time
|
|
New Task | Init. | Execute | Clean
|

New Task Starts
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Active-standby worker switching

Time

|
|

New Task | Init. | Init. | Execute | Clean
| 1 2

L

New Task Starts
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Active-standby worker switching

Time

New Task

|
|
| Init. | Execute | Clean
I 2
Launch the process. t Allocate GPU memory.
Create CUDA context. New Task Starts
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Active-standby worker switching

Time

1 2

New Task Starts

117



Implementation

* Testbed: AWS EC2
* p3.2xlarge: PCle 3.0x16, NVIDIA Tesla V100 GPU
e gddn.2xlarge: PCle 3.0x8, NVIDIA Tesla T4 GPU

e Software
 CUDA 10.1
* PyTorch 1.3.0

* Models
* ResNet-152
* Inception-v3
 BERT-base
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Evaluation

* Can PipeSwitch satisfy SLOs?
* Can PipeSwitch provide high utilization?

* How well do the design choices of PipeSwitch work?



Evaluation

* Can PipeSwitch satisfy SLOs?

* Can PipeSwitch provide high utilization?



PipeSwitch satisfies SLOs

NVIDIA Tesla V100 NVIDIA Tesla T4
10000, HEE Ready model B MPS 100001 pumm Ready Model B MPS
8000 B PipeSwitch [ Stop-and-start 2500 HEE PipeSwitch I Stop-and-start
#H000-+ o . = 000+ = . ==
€ 4001 £ 600+
5 5
§ 300 5 400
3 200 3
200 -
100 -

0- 0-
ResNet152 Inception_v3 Bert _base ResNet152 Inception_v3 Bert _base

PipeSwitch achieves low context switching latency.



PipeSwitch provide high utilization

)

N
o
o

| o PipeSwitch [ Stop-and-start

300 MPS Upper bound

N
o
o

N
o
o

Throughput (batches/sec

o

1s 2s 5s 10s 30s

Scheduling cycles

PipeSwitch achieves near 100% utilization.
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Summary

 GPU clusters for DL applications suffer from low utilization
* Limited share between training and inference workloads

e PipeSwitch introduces pipelined context switching
* Enable GPU-efficient multiplexing of DL apps with fine-grained time-sharing
* Achieve millisecond-scale context switching latencies and high throughput
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Memory Management in Modern Computer Systems

e Memory Abstraction
— NSDI’14 FaRM

e Demand paging: remote memory over RDMA

— NSDI’17 InfiniSwap
— OSDI'20 AIFM

e Demand paging: memory swapping between GPU memory and host memory
— OSDI’20 PipeSwitch
— NSDI'23 TGS
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Deep learning training jobs: important workloads in datacenters

* Deep learning is widely used in many applications
« Recommendation
 Machine Translation
» Voice Assistant

* Deep learning models are often trained in shared GPU clusters

‘ Shared GPU Clusters
- Submit DL training jobs E E




Deep learning training jobs in container clouds

Container 1 Container 2
ResNet Job Inception Job
1 TensorFlow O PyTorch

Host Operating System




Low GPU utilization in production

* Microsoft [1]: the average GPU utilization is only 52%
* Alibaba [2]: the median GPU utilization is no more than 10%

 Low GPU utilization is bad

« Container clouds: idle GPUs are a huge waste
» Users: longer queueing delay, longer job completion time

* Root cause: Each GPU is statically assigned to a single container

[1] M. Jeon, et al., “Analysis of large-scale multitenant GPU clusters for DNN training workloads,” in USENIX ATC 2019.
[2] W. Xiao, et al., “Antman: Dynamic scaling on GPU clusters for deep learning,” in USENIX OSDI 2020.



Existing GPU sharing solutions

» Key idea: Share GPUs to improve GPU utilization

* Classify DLT jobs into two classes
* Production job: Run without performance degradation
* Opportunistic job: Utilize spare GPU resources to execute

« SOTA solutions:
« Application-layer solution: AntMan [OSDI’ 20]

» OS-layer solution: NVIDIA MPS, NVIDIA MIG



Application-layer solution: AntMan

* Custom DL framework
* Modify TensorFlow (~4000 LoC) or PyTorch (~2000 LoC)

« Support GPU compute sharing and GPU memory oversubscription

 Limitations: Lack of Transparency

» Limited use cases: restricts users to use particular frameworks
 Huge operation overhead: need to maintain custom frameworks



OS-layer solution: NVIDIA MPS

* A software solution for GPU sharing provided by NVIDIA

 Limitations:
* Low GPU utilization
e Does not support GPU memory oversubscription
* Requires application knowledge to properly set the resource limit
« Weak fault isolation
* When a job fails, other jobs may be affected and even fails



OS-layer solution: NVIDIA MIG

* Arecent hardware solution for GPU sharing provided by NVIDIA
 Limitations:
» Performance isolation
« Cannot arbitrarily partition a GPU
« Cannot dynamically change GPU resources
« Compatibility
* Only available on a few high-end GPUs
* Does not support GPU sharing for the multi-GPU instance



A more practical solution: TGS

Transparency
High utilization v v
Performance v v v v
Isolation

Fault isolation v v v



TGS architecture

Container 1 Container 2
ResNet Job Inception Job
TensorFlow O PyTorch
Rate Rate Unified
Monitor Control Memory
TGS

Host Operating System

Hardware




Sharing GPU compute resources

« Strawman solution: priority scheduling
« Control the opportunistic job based on the GPU kernel queues

* Low GPU utilization:
* The state of queues do not reflect the remaining GPU resources



Adaptive rate control of TGS

GPU kernels from GPU kernels from
production jobs opportunistic jobs

l din l ,Bin

Monitor __Report %in__ Queue kernels
i And adapt S,

Tout —Nm Bin
GPU ‘IE%




Sharing GPU memory resources

« Weak Fault isolation: total GPU memory consumption may exceed GPU
memory capacity and cause OOM

* Low GPU utilization: some jobs always claim all GPU memory

 Application-layer technique cannot be used in the OS layer

« Cannot directly ask DL framework to release unused GPU memory
« Cannot directly change pointer address from GPU memory to host memory



Transparent unified memory of TGS

» Key ideas: leverage CUDA unified memory to transparently
unify GPU memory and host memory

» High GPU utilization: The actual physical GPU memory is
allocated when jobs first access to them

* Fault isolation: When GPU memory is oversubscribed, TGS
changes virtual memory mapping to evict GPU memory of
opportunistic job to host memory



Evaluation setup

* Implementation: ~3000 LoC C++ & Python

* Integration with Docker and Kubernetes

» Testbed: NVIDIA A100 GPUs and NVIDIA V100 GPUS
 Trace: Philly Trace from Microsoft [Jeon et al. 2019]

 Models

 CV: ResNet, ShuffleNet, MobileNet
» Graph: GCN
 NLP: Bert, GPT-2

« Recommendation: DLRM



Evaluation baselines

* TGS: our work

- AntMan: the state-of-the-art application-layer solution
 MPS: manually set appropriate limit

« MIG: manually set best configuration

 Exclusive: give exclusive access to a GPU

« Co-execution: share a GPU without any control



Mixed workload job stream

« A job stream contains 50 production jobs and 50 opportunistic jobs
« Opportunistic jobs: 52% JCT reduction compared to Exclusive
* Production jobs: 21% JCT reduction compared to Co-execution

_ _ 100 S 100
BB TGS B8 Exclusive I Co-execution = TGS [ o* |
— 80(== = Exclusive | 80 [
0 1.25 === Co-execution | [
o= L 60 ! w 60 [
o 1.0 a a ¢
© o ) I O I
= N0.75 40 | 40 — TGS :
© .
Zg 05 20 1K 20 . — = Exclusive I
§ 0.25 [ - === Co-execution |
0 : | 0.0 0.5 1.0 1.5 2.0 0.0 0.2 0.4 0.6 0.8 1.0
Production Opportunistic Normalized JCT Normalized JCT

(a) Average JCT. (b) CDF of production jobs. (c) CDF of opportunistic jobs.



Comparison with AntMan

« Achieve comparable performance in different contention scenarios
* Provide transparency without sacrificing performance

B TGS B AntMan E= Exclusive @ TGS B AntMan E= Exclusive

Throughput
Normalized
Throughput

Normalized

ShuffleNet MobileNet ResNet-50 ShuffleNet
(Production, (Opportunistic, (Production, (Opportunistic,
TensorFlow) TensorFlow) TensorFlow) TensorFlow)

(a). Low-contention scenario (b).High-contention scenario



Adaptive rate control of TGS

« TGS protects productions job with little overhead, while providing
remaining GPU resources to opportunistic jobs

ESS Co-execution EEEE MIG @ TGS BN Co-execution EEE MIG
BE= Exclusive Il MPS

@ TGS
BE= Exclusive Il MPS
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PyTorch) PyTorch) yTorch) yTorch)

(a). Low-contention scenario (b).High-contention scenario



Transparent unified memory of TGS

« TGS protects production jobs under GPU memory oversubscription

* 15 Xthroughput improvement compared to MPS
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More experiments in our paper

« System overhead

» Convergence of TGS in different scenarios

« Convergence of the rate control under dynamic job arrival
« Convergence of the rate control under dynamic resource usage

« Supporting different DL frameworks
» GPU sharing for large model training



Conclusion

* TGS provides transparent GPU sharing to DL training in
container clouds with four important properties:
* Transparency
* Performance isolation
» High GPU utilization
* Fault isolation

* TGS improves the throughput of the opportunistic job by up to
15X compared to the existing OS-layer solution MPS

Q‘ bingyangwu@pku.edu.cn



