
Operating Systems
(Honor Track)

IO: General I/O, Disk and SSD

Acknowledgments: Ion Stoica, Berkeley CS 162

Xin Jin
Spring 2024

2

Requirements of I/O

• So far, we have studied:
– Abstractions: the APIs provided by the OS to applications running in a process
– Synchronization/Scheduling: How to manage the CPU
– Memory: How to manage the memory

• What about I/O?
– Without I/O, computers are useless
– But… thousands of devices, each slightly different

» How can we standardize the interfaces to these devices?
– Devices unreliable: media failures and transmission errors

» How can we make them reliable?
– Devices unpredictable and/or slow

» How can we manage them if we don’t know what they will do or how they will perform?

3

Recall: OS Basics: I/O

Storage

Processor

OS Hardware Virtualization

Hardware

Software

Memory

Process 1

ISA

OS Memory

Protection
Boundary

Networks Displays

Inputs

Process 2 Process 3

• OS provides common
services in form of I/O

Ctrlr

4

Example: Device Transfer Rates in Mb/s (Sun Enterprise 6000)

• Device rates vary over 12 orders
of magnitude!!!

• System must be able to handle
this wide range

– Better not have high
overhead/byte for fast devices

– Better not waste time waiting for
slow devices

5

In a Picture

• I/O devices you recognize are supported by I/O Controllers
• Processors accesses them by reading and writing IO registers as if they were

memory
– Write commands and arguments, read status and results

Core

Core

Secondary
Storage
(Disk)

Processor

Main
Memory
(DRAM)

Secondary
Storage
(SSD)

I/O
Controllers

Read /
Write

Read /
Write wires

interrupts

DMA transfer

6

Modern I/O Systems

network

7

What’s a bus?

• Common set of wires for communication among hardware devices plus
protocols for carrying out data transfer transactions

– Operations: e.g., Read, Write
– Control lines, Address lines, Data lines
– Typically, multiple devices

• Protocol: initiator requests access, arbitration to grant, identification of
recipient, handshake to convey address, length, data

• Very high BW close to processor (wide, fast, and inflexible), low BW with high
flexibility out in I/O subsystem

8

Why a Bus?

• Buses let us connect 𝑛 devices over a single set of wires, connections, and
protocols
– 𝑂 𝑛! relationships with 1 set of wires (!)

• Downside: Only one transaction at a time
– The rest must wait
– “Arbitration” aspect of bus protocol ensures the rest wait

9

PCI Bus Evolution
• PCI (Peripheral Component Interconnect)

started life out as a bus
• But a parallel bus has many limitations

– Multiplexing address/data for many requests
– Slowest devices must be able to tell what’s

happening (e.g., for arbitration)

10

PCI Express “Bus”

• No longer a parallel bus
• Really a collection of fast serial channels or “lanes”
• Devices can use as many as they need to achieve a desired bandwidth
• Slow devices don’t have to share with fast ones

– Space multiplexing vs. time multiplexing

• One of the successes of device abstraction in Linux was the ability to migrate
from PCI to PCI Express

– The physical interconnect changed completely, but the old API still worked

11

Example: PCI Architecture

CPURAM Memory
Bus

USB
Controller

SATA
Controller

Scanner

Hard
DiskDVD

ROM

Root
Hub

Hub Webcam

Mouse Keyboard

PCI #1

PCI #0
PCI Bridge

PCI Slots

Host Bridge

ISA Bridge

ISA
Controller

Legacy
Devices

12

How does the Processor Talk to the Device?

• CPU interacts with a Controller
– Contains a set of registers that can be read and written
– May contain memory for request queues, etc.

• Processor accesses registers in two ways:
– Port-Mapped I/O: in/out instructions

» Example from the Intel architecture: out 0x21,AL
– Memory-mapped I/O: load/store instructions

» Registers/memory appear in physical address space
» I/O accomplished with load and store instructions

Device
Controller

read
write

control
status

Addressable
Memory
and/or
QueuesRegisters

(port 0x20)

Hardware
Controller

Memory Mapped
Region: 0x8f008020

Bus
Interface

Address +
Data

Interrupt Request

Processor Memory Bus

CPU

Regular
Memory

Interrupt
Controller

Bus
Adaptor

Bus
Adaptor

Other Devices
or Buses

13

Example: Memory-Mapped Display Controller
• Memory-Mapped:

– Hardware maps control registers and display memory into physical
address space

» Addresses set by HW jumpers or at boot time
– Simply writing to display memory (also called the “frame buffer”)

changes image on screen
» Addr: 0x8000F000 — 0x8000FFFF

– Writing graphics description to cmd queue
» Say enter a set of triangles describing some scene
» Addr: 0x80010000 — 0x8001FFFF

– Writing to the command register may cause on-board graphics
hardware to do something

» Say render the above scene
» Addr: 0x0007F004

• Can protect with address translation

Display
Memory

0x8000F000

0x80010000

Physical
Address
Space

Status0x0007F000
Command0x0007F004

Graphics
Command
Queue

0x80020000

14

There’s more than just a CPU in there!

15

Chip-scale Features of 2015 x86 (Sky Lake)
• Significant pieces:

– Four OOO cores with deeper buffers
» Intel MPX (Memory Protection Extensions)
» Intel SGX (Software Guard Extensions)
» Issue up to 6 µ-ops/cycle

– GPU, System Agent (Mem, Fast I/O)
– Large shared L3 cache with on-chip ring bus

» 2 MB/core instead of 1.5 MB/core
» High-BW access to L3 Cache

• Integrated I/O
– Integrated memory controller (IMC)

» Two independent channels of DRAM
– High-speed PCI-Express (for Graphics cards)
– Direct Media Interface (DMI) Connection to PCH (Platform Control

Hub)

16

Sky Lake I/O: PCH

• Platform Controller Hub
– Connected to processor with

proprietary bus
» Direct Media Interface (DMI)

• Types of I/O on PCH:
– USB, Ethernet
– Thunderbolt 3
– Audio, BIOS support
– More PCI Express (lower speed

than on Processor)
– SATA (for Disks)Sky Lake

System Configuration

17

Operational Parameters for I/O

• Data granularity: Byte vs. Block
– Some devices provide single byte at a time (e.g., keyboard)
– Others provide whole blocks (e.g., disks, networks, etc.)

• Access pattern: Sequential vs. Random
– Some devices must be accessed sequentially (e.g., tape)
– Others can be accessed “randomly” (e.g., disk, cd, etc.)

» Fixed overhead to start transfers
– Some devices require continual monitoring (polling)
– Others generate interrupts when they need service (e.g., keyboard, network

card)

• Transfer Mechanism: Programmed IO and DMA (Directed Memory Access)

18

• Programmed I/O:
– Each byte transferred via processor in/out or load/store
– Pro: Simple hardware, easy to program
– Con: Consumes processor cycles proportional to data size

• Direct Memory Access:
– Give controller access to memory bus
– Ask it to transfer

data blocks to/from
memory directly

• Sample interaction with DMA controller:

Transferring Data To/From Controller

1

2

3

19

• Programmed I/O:
– Each byte transferred via processor in/out or load/store
– Pro: Simple hardware, easy to program
– Con: Consumes processor cycles proportional to data size

• Direct Memory Access:
– Give controller access to memory bus
– Ask it to transfer

data blocks to/from
memory directly

• Sample interaction with DMA controller:

Transferring Data To/From Controller

4

5

6

20

I/O Device Notifying the OS

• The OS needs to know when:
– The I/O device has completed an operation
– The I/O operation has encountered an error

• I/O Interrupt:
– Device generates an interrupt whenever it needs service
– Pro: handles unpredictable events well
– Con: interrupts relatively high overhead

• Polling:
– OS periodically checks a device-specific status register

» I/O device puts completion information in status register
– Pro: low overhead
– Con: may waste many cycles on polling if infrequent or unpredictable I/O operations

• Actual devices combine both polling and interrupts
– For instance – High-bandwidth network adapter:

» Interrupt for first incoming packet
» Poll for following packets until hardware queues are empty

21

Kernel Device Structure
The System Call Interface

Process
Management

Memory
Management

Filesystems
Device
Control

Networking

Architecture
Dependent

Code

Memory
Manager

Device
Control

Network
Subsystem

File System
Types

Block
Devices

IF drivers

Concurrency,
multitasking

Virtual
memory

Files and dirs:
the VFS

TTYs and
device access Connectivity

22

Device Drivers
• Device Driver: Device-specific code in the kernel that interacts directly with the

device hardware
– Supports a standard, internal interface
– Same kernel I/O system can interact easily with different device drivers
– Special device-specific configuration supported with the ioctl() system call

• Device Drivers typically divided into two pieces:
– Top half: accessed in call path from system calls

» implements a set of standard, cross-device calls like open(), close(), read(),
write(), ioctl()

» This is the kernel’s interface to the device driver
» Top half will start I/O to device, may put thread to sleep until finished

– Bottom half: run as interrupt routine
» Gets input or transfers next block of output
» May wake sleeping threads if I/O now complete

23

Life Cycle of An I/O Request

Device Driver
Top Half

Device Driver
Bottom Half

Device
Hardware

Kernel I/O
Subsystem

User
Program

Kernel
U
ser

24

The Goal of the I/O Subsystem
• Provide Uniform Interfaces, Despite Wide Range of Different Devices

– This code works on many different devices:
FILE fd = fopen("/dev/something", "rw");
for (int i = 0; i < 10; i++) {

fprintf(fd, "Count %d\n", i);
}
close(fd);

– Why? Because code that controls devices (“device driver”) implements standard
interface

• We will try to get a flavor for what is involved in actually controlling devices in
rest of lecture

– Can only scratch surface!

25

Want Standard Interfaces to Devices
• Block Devices: e.g. disk drives, tape drives, DVD-ROM

– Access blocks of data
– Commands include open(), read(), write(), seek()
– Raw I/O or file-system access
– Memory-mapped file access possible

• Character Devices: e.g. keyboards, mice, serial ports, some USB devices
– Single characters at a time
– Commands include get(), put()
– Libraries layered on top allow line editing

• Network Devices: e.g. Ethernet, Wireless, Bluetooth
– Different enough from block/character to have own interface
– Unix and Windows include socket interface

» Separates network protocol from network operation
» Includes select() functionality

– Usage: pipes, FIFOs, streams, queues, mailboxes

26

How Does User Deal with Timing?
• Blocking Interface: “Wait”

– When request data (e.g. read() system call), put process to sleep
until data is ready

– When write data (e.g. write() system call), put process to sleep
until device is ready for data

• Non-blocking Interface: “Don’t Wait”
– Returns quickly from read or write request with count of bytes

successfully transferred
– Read may return nothing, write may write nothing

• Asynchronous Interface: “Tell Me Later”
– When request data, take pointer to user’s buffer, return immediately

later kernel fills buffer and notifies user
– When send data, take pointer to user’s buffer, return immediately;

later kernel takes data and notifies user

27

Storage Devices
• Magnetic disks

– Storage that rarely becomes corrupted
– Large capacity at low cost
– Block level random access
– Slow performance for random access
– Better performance for sequential access

• Flash memory
– Storage that rarely becomes corrupted
– Capacity at intermediate cost (5-20x disk, the gap is decreasing)
– Block level random access
– Good performance for reads; worse for random writes
– Erasure requirement in large blocks
– Ability to store data degrades with the number of writes

28

Hard Disk Drives (HDDs)

IBM/Hitachi Microdrive

Western Digital Drive
http://www.storagereview.com/guide/

Read/Write Head
Side View

IBM Personal Computer/AT (1986)
30 MB hard disk - $500
30-40ms seek time
0.7-1 MB/s (est.)

29

The Amazing Magnetic Disk

• Unit of Transfer: Sector
– Ring of sectors form a track

– Stack of tracks form a cylinder
– Heads position on cylinders

Track

Sector

Head Arm

Arm Assembly

Platter

Surface

Surface

Motor Motor

Spindle

cylinder

30

The Amazing Magnetic Disk

• Unit of Transfer: Sector
– Ring of sectors form a track

– Stack of tracks form a cylinder
– Heads position on cylinders

• Disk Tracks ~ 1µm (micron) wide
– Wavelength of light is ~ 0.5µm

– Resolution of human eye: 50µm

– 100K tracks on a typical 2.5” disk

• Separated by unused guard regions

– Reduces likelihood neighboring tracks are
corrupted during writes (still a small non-zero
chance)

Track

Sector

Head Arm

Arm Assembly

Platter

Surface

Surface

Motor Motor

Spindle

31

Track

Sector

Head Arm

Arm Assembly

Platter

Surface

Surface

Motor Motor

Spindle

The Amazing Magnetic Disk

• Track length varies across disk
– Outside: More sectors per track, higher

bandwidth
– Disk is organized into

regions of tracks with
same # of sectors/track

– Only outer half of radius is used
» Most of the disk area in the outer regions of

the disk

• Disks so big that some companies (like
Google) reportedly only use part of disk for
active data

– Rest is archival data

32

Shingled Magnetic Recording (SMR)

• Overlapping tracks yields
greater density, capacity

• Restrictions on writing,
complex DSP (Digital
Signal Processing) for
reading

33

Magnetic Disks

• Cylinders: all the tracks under the
head at a given point on all surfaces

• Read/write data is a three-stage process:
– Seek time: position the head/arm over the proper track
– Rotational latency: wait for desired sector to rotate under r/w head
– Transfer time: transfer a block of bits (sector) under r/w head

Sector
Track

Cylinder
Head

Platter

Software
Queue
(Device Driver)

H
ardw

are
Controller

Media Time
(Seek+Rot+Xfer)

Request

Result

Disk Latency = Queueing Time + Controller time +
Seek Time + Rotation Time + XferTime

34

Typical Numbers for Magnetic Disk

Parameter Info/Range

Space/Density Space: 14TB (Seagate), 8 platters, in 3½ inch form factor!
Areal Density: ≥ 1 Terabit/square inch!

Average Seek Time Typically, 4-6 milliseconds
Average Rotational Latency Most laptop/desktop disks rotate at 3600-7200 RPM

(16-8 ms/rotation). Server disks up to 15,000 RPM.
Average latency is halfway around disk so 4-8 milliseconds

Controller Time Depends on controller hardware
Transfer Time Typically, 50 to 250 MB/s. Depends on:

• Transfer size (usually a sector): 512B – 1KB per sector
• Rotation speed: 3600 RPM to 15000 RPM
• Recording density: bits per inch on a track
• Diameter: ranges from 1 in to 5.25 in

Cost Used to drop by a factor of two every 1.5 years (or faster), now slowing down

35

Disk Performance Example
• Assumptions:

– Ignoring queuing and controller times for now
– Avg seek time of 5ms
– 7200RPM Þ Time for rotation: 60000 (ms/min) / 7200(rev/min) ~= 8ms
– Transfer rate of 50MByte/s, block size of 4Kbyte Þ

4096 bytes/(50×106 (bytes/s)) = 81.92 × 10-6 sec @ 0.082 ms for 1 block
• Read block from random place on disk:

– Seek (5ms) + Rot. Delay (4ms) + Transfer (0.082ms) = 9.082ms
– Approx 9ms to fetch/put data: 4096 bytes/9.082×10-3 s @ 451KB/s

• Read block from random place in same cylinder:
– Rot. Delay (4ms) + Transfer (0.082ms) = 4.082ms
– Approx 4ms to fetch/put data: 4096 bytes/4.082×10-3 s @ 1.03MB/s

• Read next block on same track:
– Transfer (0.082ms): 4096 bytes/0.082×10-3 s @ 50MB/sec

• Key to using disk effectively (especially for file systems) is to minimize seek and rotational
delays

36

Lots of Intelligence in the Controller

• Sectors contain sophisticated error correcting codes
– Hide corruptions due to neighboring track writes

• Sector sparing
– Remap bad sectors transparently to spare sectors on the same surface

• Slip sparing
– Remap all sectors (when there is a bad sector) to preserve sequential behavior

• Track skewing
– Sector numbers offset from one track to the next, to allow for disk head movement

for sequential ops

37

Track Skewing

Track 2

Track 1

0

1
2

n

0

1
2

Head

skewing
(hide seek from

track 1 to track 2)

38

Example of Current HDDs
• Seagate Exos X18 (2020)

– 18 TB hard disk
» 9 platters, 18 heads
» Helium filled: reduce friction and power

– 4.16 ms average seek time
– 4096 byte physical sectors
– 7200 RPMs
– Dual 6 Gbps SATA /12Gbps SAS interface

» 270MB/s MAX transfer rate
» Cache size: 256MB

– Price: $ 562 (~ $0.03/GB)

• IBM Personal Computer/AT (1986)
– 30 MB hard disk
– 30-40 ms seek time
– 0.7-1 MB/s (est.)
– Price: $500 ($17K/GB)

600K x

10 x

300 x 567K x

39

Solid State Disks (SSDs)

• 1995 – Replace rotating magnetic media with non-
volatile memory (battery backed DRAM)

• 2009 – Use NAND Multi-Level Cell (2 or 3-bit/cell) flash
memory

– Sector (4 KB page) addressable, but stores 4-64 “pages” per
memory block

– Trapped electrons distinguish between 1 and 0

• No moving parts (no rotate/seek motors)
– Eliminates seek and rotational delay (< 0.1-0.2ms access

time)
– Very low power and lightweight
– Limited “write cycles”

• Rapid advances in capacity and cost ever since!

40

SSD Architecture – Reads

Read 4 KB Page: ~25 usec
– No seek or rotational latency
– Transfer time: transfer a 4KB page

» SATA: 300-600MB/s => ~4 x103 b / (400 x 106 bps) => 10 us

– Latency = Queuing Time + Controller time + Xfer Time
– Highest Bandwidth: Sequential OR Random reads

Host

Buffer
Manager
(software
Queue)

Flash
Memory

Controller

DRAM

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

SATA

41

SSD Architecture – Writes
• Writing data is complex! (~200μs – 1.7ms)

– Can only write empty pages in a block
– Erasing a block takes ~1.5ms
– Controller maintains pool of empty blocks by

coalescing used pages (read, erase, write), also
reserves some % of capacity

• Rule of thumb: writes 10x reads, erasure 10x
writes

https://en.wikipedia.org/wiki/Solid-state_drive

https://en.wikipedia.org/wiki/Solid-state_drive

42

SSD Architecture – Writes

• SSDs provide same interface as HDDs to OS – read and write chunk (4KB) at a time

• But can only overwrite data 256KB at a time!

• Why not just erase and rewrite new version of entire 256KB block?
– Erasure is very slow (milliseconds)
– Each block has a finite lifetime, can only be erased and rewritten about 10K times
– Heavily used blocks likely to wear out quickly

43

Solution – Two Systems Principles

1. Layer of Indirection
– Maintain a Flash Translation Layer (FTL) in SSD
– Map virtual block numbers (which OS uses) to physical page numbers (which flash

memory controller uses)
– Can now freely relocate data w/o OS knowing

2. Copy on Write
– Don’t overwrite a page when OS updates its data (this is slow as we need to erase

page first!)
– Instead, write new version in a free page
– Update FTL mapping to point to new location

44

Flash Translation Layer

• No need to erase and rewrite entire 256KB block when making small
modifications

• SSD controller can assign mappings to spread workload across pages
– Wear Levelling

• What to do with old versions of pages?
– Garbage Collection in background
– Erase blocks with old pages, add to free list

45

Some “Current” (large) 3.5in SSDs
• Seagate Exos SSD: 15.36TB (2017)

– Dual 12Gb/s interface
– Sequential reads: 860MB/s
– Sequential writes: 920MB/s
– Random Reads (IOPS): 102K
– Random Writes (IOPS): 15K
– Price (Amazon): $5495 ($0.36/GB)

• Nimbus SSD: 100TB (2019)
– Dual port: 12Gb/s interface
– Sequential reads/writes: 500MB/s
– Random Read Ops (IOPS): 100K
– Unlimited writes for 5 years!
– Price: ~ $40K? ($0.4/GB)

» However, 50TB drive costs $12500 ($0.25/GB)

46

HDD vs. SSD Comparison

SSD prices drop faster than HDD

47

SSD Summary

• Pros (vs. hard disk drives):
– Low latency, high throughput (eliminate seek/rotational delay)
– No moving parts:

» Very light weight, low power, silent, very shock insensitive
– Read at memory speeds (limited by controller and I/O bus)

• Cons
– Small storage (0.1-0.5x disk), expensive (3-20x disk)

» Hybrid alternative: combine small SSD with large HDD

48

SSD Summary

• Pros (vs. hard disk drives):
– Low latency, high throughput (eliminate seek/rotational delay)
– No moving parts:

» Very light weight, low power, silent, very shock insensitive
– Read at memory speeds (limited by controller and I/O bus)

• Cons
– Small storage (0.1-0.5x disk), expensive (3-20x disk)

» Hybrid alternative: combine small SSD with large HDD
– Asymmetric block write performance: read pg/erase/write pg

» Controller garbage collection (GC) algorithms have major effect on performance
– Limited drive lifetime

» 1-10K writes/page for multi-level cell (MLC) NAND
» Avg failure rate is 6 years, life expectancy is 9–11 years

• These are changing rapidly!

No longer true!

49

Conclusion (1/2)
• I/O Devices Types:

– Many different speeds (0.1 bytes/sec to GBytes/sec)
– Different Access Patterns:

» Block Devices, Character Devices, Network Devices
– Different Access Timing:

» Blocking, Non-blocking, Asynchronous
• I/O Controllers: Hardware that controls actual device

– Processor Accesses through I/O instructions, load/store to special physical memory
• Notification mechanisms

– Interrupts
– Polling: Report results through status register that processor looks at periodically

• Device drivers interface to I/O devices
– Provide clean Read/Write interface to OS above
– Manipulate devices through PIO, DMA & interrupt handling
– Three types: block, character, and network

50

Conclusion (2/2)

• Disk Performance:
– Queuing time + Controller + Seek + Rotational + Transfer
– Rotational latency: on average ½ rotation
– Transfer time: spec of disk depends on rotation speed and bit storage density

• Devices have complex interaction and performance characteristics
– Response time (Latency) = Queue + Overhead + Transfer

» Effective BW = BW * T/(S+T)
– HDD: Queuing time + controller + seek + rotation + transfer
– SSD: Queuing time + controller + transfer (erasure & wear)

• Systems (e.g., file system) designed to optimize performance and reliability
– Relative to performance characteristics of underlying device

