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Requirements of I/O

• So far, we have studied:
– Abstractions: the APIs provided by the OS to applications running in a process
– Synchronization/Scheduling: How to manage the CPU
– Memory: How to manage the memory

• What about I/O?
– Without I/O, computers are useless
– But… thousands of devices, each slightly different

» How can we standardize the interfaces to these devices?
– Devices unreliable: media failures and transmission errors

» How can we make them reliable?
– Devices unpredictable and/or slow

» How can we manage them if we don’t know what they will do or how they will perform?
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Recall: OS Basics: I/O
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Example: Device Transfer Rates in Mb/s (Sun Enterprise 6000)

• Device rates vary over 12 orders 
of magnitude!!!

• System must be able to handle 
this wide range

– Better not have high 
overhead/byte for fast devices

– Better not waste time waiting for 
slow devices
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In a Picture

• I/O devices you recognize are supported by I/O Controllers
• Processors accesses them by reading and writing IO registers as if they were 

memory
– Write commands and arguments, read status and results
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Modern I/O Systems

network
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What’s a bus?

• Common set of wires for communication among hardware devices plus 
protocols for carrying out data transfer transactions

– Operations: e.g., Read, Write
– Control lines, Address lines, Data lines
– Typically, multiple devices

• Protocol: initiator requests access, arbitration to grant, identification of 
recipient, handshake to convey address, length, data

• Very high BW close to processor (wide, fast, and inflexible), low BW with high 
flexibility out in I/O subsystem
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Why a Bus?

• Buses let us connect 𝑛 devices over a single set of wires, connections, and 
protocols
– 𝑂 𝑛! relationships with 1 set of wires (!)

• Downside: Only one transaction at a time
– The rest must wait
– “Arbitration” aspect of bus protocol ensures the rest wait
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PCI Bus Evolution
• PCI (Peripheral Component Interconnect) 

started life out as a bus
• But a parallel bus has many limitations

– Multiplexing address/data for many requests
– Slowest devices must be able to tell what’s 

happening (e.g., for arbitration)
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PCI Express “Bus”

• No longer a parallel bus
• Really a collection of fast serial channels or “lanes”
• Devices can use as many as they need to achieve a desired bandwidth
• Slow devices don’t have to share with fast ones

– Space multiplexing vs. time multiplexing

• One of the successes of device abstraction in Linux was the ability to migrate 
from PCI to PCI Express

– The physical interconnect changed completely, but the old API still worked
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Example: PCI Architecture
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How does the Processor Talk to the Device?

• CPU interacts with a Controller
– Contains a set of registers that can be read and written
– May contain memory for request queues, etc.

• Processor accesses registers in two ways: 
– Port-Mapped I/O: in/out instructions

» Example from the Intel architecture: out 0x21,AL
– Memory-mapped I/O: load/store instructions

» Registers/memory appear in physical address space
» I/O accomplished with load and store instructions
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Example: Memory-Mapped Display Controller
• Memory-Mapped:

– Hardware maps control registers and display memory into physical 
address space

» Addresses set by HW jumpers or at boot time
– Simply writing to display memory (also called the “frame buffer”) 

changes image on screen
» Addr: 0x8000F000 — 0x8000FFFF

– Writing graphics description to cmd queue
» Say enter a set of triangles describing some scene
» Addr: 0x80010000 — 0x8001FFFF

– Writing to the command register may cause on-board graphics 
hardware to do something

» Say render the above scene
» Addr: 0x0007F004

• Can protect with address translation
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There’s more than just a CPU in there!
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Chip-scale Features of 2015 x86 (Sky Lake)
• Significant pieces:

– Four OOO cores with deeper buffers
» Intel MPX (Memory Protection Extensions)
» Intel SGX (Software Guard Extensions)
» Issue up to 6 µ-ops/cycle

– GPU, System Agent (Mem, Fast I/O)
– Large shared L3 cache with on-chip ring bus

» 2 MB/core instead of 1.5 MB/core
» High-BW access to L3 Cache

• Integrated I/O
– Integrated memory controller (IMC)

» Two independent channels of DRAM
– High-speed PCI-Express (for Graphics cards)
– Direct Media Interface (DMI) Connection to PCH (Platform Control 

Hub)
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Sky Lake I/O: PCH

• Platform Controller Hub
– Connected to processor with 

proprietary bus
» Direct Media Interface (DMI)

• Types of I/O on PCH:
– USB, Ethernet
– Thunderbolt 3
– Audio, BIOS support
– More PCI Express (lower speed 

than on Processor)
– SATA (for Disks)Sky Lake

System Configuration
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Operational Parameters for I/O

• Data granularity: Byte vs. Block
– Some devices provide single byte at a time (e.g., keyboard)
– Others provide whole blocks (e.g., disks, networks, etc.)

• Access pattern: Sequential vs. Random
– Some devices must be accessed sequentially (e.g., tape)
– Others can be accessed “randomly” (e.g., disk, cd, etc.)

» Fixed overhead to start transfers
– Some devices require continual monitoring (polling)
– Others generate interrupts when they need service (e.g., keyboard, network 

card)

• Transfer Mechanism: Programmed IO and DMA (Directed Memory Access)
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• Programmed I/O:
– Each byte transferred via processor in/out or load/store
– Pro: Simple hardware, easy to program
– Con: Consumes processor cycles proportional to data size

• Direct Memory Access:
– Give controller access to memory bus
– Ask it to transfer 

data blocks to/from 
memory directly

• Sample interaction with DMA controller:

Transferring Data To/From Controller

1

2

3
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I/O Device Notifying the OS

• The OS needs to know when:
– The I/O device has completed an operation
– The I/O operation has encountered an error

• I/O Interrupt:
– Device generates an interrupt whenever it needs service
– Pro: handles unpredictable events well
– Con: interrupts relatively high overhead 

• Polling:
– OS periodically checks a device-specific status register

» I/O device puts completion information in status register
– Pro: low overhead
– Con: may waste many cycles on polling if infrequent or unpredictable I/O operations

• Actual devices combine both polling and interrupts
– For instance – High-bandwidth network adapter: 

» Interrupt for first incoming packet
» Poll for following packets until hardware queues are empty
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Kernel Device Structure
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Device Drivers
• Device Driver: Device-specific code in the kernel that interacts directly with the 

device hardware
– Supports a standard, internal interface
– Same kernel I/O system can interact easily with different device drivers
– Special device-specific configuration supported with the ioctl() system call

• Device Drivers typically divided into two pieces:
– Top half: accessed in call path from system calls

» implements a set of standard, cross-device calls like open(), close(), read(),
write(), ioctl()

» This is the kernel’s interface to the device driver
» Top half will start I/O to device, may put thread to sleep until finished

– Bottom half: run as interrupt routine
» Gets input or transfers next block of output
» May wake sleeping threads if I/O now complete
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Life Cycle of An I/O Request
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The Goal of the I/O Subsystem
• Provide Uniform Interfaces, Despite Wide Range of Different Devices

– This code works on many different devices:
FILE fd = fopen("/dev/something", "rw");
for (int i = 0; i < 10; i++) {

fprintf(fd, "Count %d\n", i);
}
close(fd);

– Why?  Because code that controls devices (“device driver”) implements standard 
interface

• We will try to get a flavor for what is involved in actually controlling devices in 
rest of lecture

– Can only scratch surface!
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Want Standard Interfaces to Devices
• Block Devices: e.g. disk drives, tape drives, DVD-ROM

– Access blocks of data
– Commands include open(), read(), write(), seek()
– Raw I/O or file-system access
– Memory-mapped file access possible

• Character Devices: e.g. keyboards, mice, serial ports, some USB devices
– Single characters at a time
– Commands include get(), put()
– Libraries layered on top allow line editing

• Network Devices: e.g. Ethernet, Wireless, Bluetooth
– Different enough from block/character to have own interface
– Unix and Windows include socket interface

» Separates network protocol from network operation
» Includes select() functionality

– Usage: pipes, FIFOs, streams, queues, mailboxes
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How Does User Deal with Timing?
• Blocking Interface: “Wait”

– When request data (e.g. read() system call), put process to sleep 
until data is ready

– When write data (e.g. write() system call), put process to sleep 
until device is ready for data

• Non-blocking Interface: “Don’t Wait”
– Returns quickly from read or write request with count of bytes 

successfully transferred
– Read may return nothing, write may write nothing

• Asynchronous Interface: “Tell Me Later”
– When request data, take pointer to user’s buffer, return immediately 

later kernel fills buffer and notifies user
– When send data, take pointer to user’s buffer, return immediately; 

later kernel takes data and notifies user 
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Storage Devices
• Magnetic disks

– Storage that rarely becomes corrupted
– Large capacity at low cost
– Block level random access
– Slow performance for random access
– Better performance for sequential access

• Flash memory
– Storage that rarely becomes corrupted
– Capacity at intermediate cost (5-20x disk, the gap is decreasing)
– Block level random access
– Good performance for reads; worse for random writes
– Erasure requirement in large blocks
– Ability to store data degrades with the number of writes
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Hard Disk Drives (HDDs)

IBM/Hitachi Microdrive

Western Digital Drive
http://www.storagereview.com/guide/

Read/Write Head
Side View

IBM Personal Computer/AT (1986)
30 MB hard disk - $500 
30-40ms seek time
0.7-1 MB/s (est.)
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The Amazing Magnetic Disk

• Unit of Transfer: Sector
– Ring of sectors form a track

– Stack of tracks form a cylinder
– Heads position on cylinders

Track
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Head Arm

Arm Assembly

Platter

Surface

Surface

Motor Motor

Spindle

cylinder
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The Amazing Magnetic Disk

• Unit of Transfer: Sector
– Ring of sectors form a track

– Stack of tracks form a cylinder
– Heads position on cylinders

• Disk Tracks ~ 1µm (micron) wide
– Wavelength of light is ~ 0.5µm

– Resolution of human eye: 50µm

– 100K tracks on a typical 2.5” disk

• Separated by unused guard regions

– Reduces likelihood neighboring tracks are 
corrupted during writes (still a small non-zero 
chance)

Track
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Platter

Surface

Surface
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Spindle
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Track
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The Amazing Magnetic Disk

• Track length varies across disk
– Outside: More sectors per track, higher 

bandwidth
– Disk is organized into 

regions of tracks with 
same # of sectors/track

– Only outer half of radius is used
» Most of the disk area in the outer regions of 

the disk

• Disks so big that some companies (like 
Google) reportedly only use part of disk for 
active data

– Rest is archival data
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Shingled Magnetic Recording (SMR)

• Overlapping tracks yields 
greater density, capacity

• Restrictions on writing, 
complex DSP (Digital 
Signal Processing) for 
reading



33

Magnetic Disks

• Cylinders: all the tracks under the 
head at a given point on all surfaces

• Read/write data is a three-stage process:
– Seek time: position the head/arm over the proper track
– Rotational latency: wait for desired sector to rotate under r/w head
– Transfer time: transfer a block of bits (sector) under r/w head

Sector
Track

Cylinder
Head

Platter

Software
Queue
(Device Driver)

H
ardw

are
Controller

Media Time
(Seek+Rot+Xfer)

Request

Result

Disk Latency = Queueing Time + Controller time +
Seek Time + Rotation Time + XferTime
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Typical Numbers for Magnetic Disk

Parameter Info/Range

Space/Density Space: 14TB (Seagate), 8 platters, in 3½ inch form factor!
Areal Density: ≥ 1 Terabit/square inch! 

Average Seek Time Typically, 4-6 milliseconds
Average Rotational Latency Most laptop/desktop disks rotate at 3600-7200 RPM 

(16-8 ms/rotation). Server disks up to 15,000 RPM.
Average latency is halfway around disk so 4-8 milliseconds

Controller Time Depends on controller hardware
Transfer Time Typically, 50 to 250 MB/s. Depends on:

• Transfer size (usually a sector): 512B – 1KB per sector
• Rotation speed: 3600 RPM to 15000 RPM
• Recording density: bits per inch on a track
• Diameter: ranges from  1 in to 5.25 in

Cost Used to drop by a factor of two every 1.5 years (or faster), now slowing down
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Disk Performance Example
• Assumptions:

– Ignoring queuing and controller times for now
– Avg seek time of 5ms
– 7200RPM Þ Time for rotation: 60000 (ms/min) / 7200(rev/min) ~= 8ms
– Transfer rate of 50MByte/s, block size of 4Kbyte Þ

4096 bytes/(50×106 (bytes/s)) = 81.92 × 10-6 sec @ 0.082 ms for 1 block
• Read block from random place on disk:

– Seek (5ms) + Rot. Delay (4ms) + Transfer (0.082ms) = 9.082ms
– Approx 9ms to fetch/put data: 4096 bytes/9.082×10-3 s @ 451KB/s

• Read block from random place in same cylinder:
– Rot. Delay (4ms) + Transfer (0.082ms) = 4.082ms 
– Approx 4ms to fetch/put data: 4096 bytes/4.082×10-3 s @ 1.03MB/s

• Read next block on same track:
– Transfer (0.082ms): 4096 bytes/0.082×10-3 s @ 50MB/sec 

• Key to using disk effectively (especially for file systems) is to minimize seek and rotational 
delays
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Lots of Intelligence in the Controller

• Sectors contain sophisticated error correcting codes
– Hide corruptions due to neighboring track writes

• Sector sparing
– Remap bad sectors transparently to spare sectors on the same surface

• Slip sparing
– Remap all sectors (when there is a bad sector) to preserve sequential behavior

• Track skewing
– Sector numbers offset from one track to the next, to allow for disk head movement 

for sequential ops
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Track Skewing
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Example of Current HDDs
• Seagate Exos X18 (2020)

– 18 TB hard disk
» 9 platters, 18 heads
» Helium filled: reduce friction and power

– 4.16 ms average seek time
– 4096 byte physical sectors
– 7200 RPMs
– Dual 6 Gbps SATA /12Gbps SAS interface

» 270MB/s MAX transfer rate
» Cache size: 256MB 

– Price: $ 562 (~ $0.03/GB)

• IBM Personal Computer/AT (1986)
– 30 MB hard disk
– 30-40 ms seek time
– 0.7-1 MB/s (est.)
– Price: $500 ($17K/GB)

600K x

10 x

300 x 567K x
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Solid State Disks (SSDs)

• 1995 – Replace rotating magnetic media with non-
volatile memory (battery backed DRAM)

• 2009 – Use NAND Multi-Level Cell (2 or 3-bit/cell) flash 
memory

– Sector (4 KB page) addressable, but stores 4-64 “pages” per 
memory block

– Trapped electrons distinguish between 1 and 0

• No moving parts (no rotate/seek motors)
– Eliminates seek and rotational delay (< 0.1-0.2ms access 

time)
– Very low power and lightweight
– Limited “write cycles”

• Rapid advances in capacity and cost ever since!
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SSD Architecture – Reads

Read 4 KB Page: ~25 usec
– No seek or rotational latency
– Transfer time: transfer a 4KB page

» SATA: 300-600MB/s => ~4 x103 b / (400 x 106 bps) => 10 us

– Latency = Queuing Time + Controller time + Xfer Time
– Highest Bandwidth: Sequential OR Random reads
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SSD Architecture – Writes
• Writing data is complex! (~200μs – 1.7ms)

– Can only write empty pages in a block
– Erasing a block takes ~1.5ms
– Controller maintains pool of empty blocks by 

coalescing used pages (read, erase, write), also 
reserves some % of capacity

• Rule of thumb: writes 10x reads, erasure 10x 
writes

https://en.wikipedia.org/wiki/Solid-state_drive

https://en.wikipedia.org/wiki/Solid-state_drive
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SSD Architecture – Writes

• SSDs provide same interface as HDDs to OS – read and write chunk (4KB) at a time

• But can only overwrite data 256KB at a time!

• Why not just erase and rewrite new version of entire 256KB block?
– Erasure is very slow (milliseconds)
– Each block has a finite lifetime, can only be erased and rewritten about 10K times
– Heavily used blocks likely to wear out quickly
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Solution – Two Systems Principles

1. Layer of Indirection
– Maintain a Flash Translation Layer (FTL) in SSD
– Map virtual block numbers (which OS uses) to physical page numbers (which flash 

memory controller uses)
– Can now freely relocate data w/o OS knowing

2. Copy on Write
– Don’t overwrite a page when OS updates its data (this is slow as we need to erase 

page first!)
– Instead, write new version in a free page
– Update FTL mapping to point to new location
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Flash Translation Layer

• No need to erase and rewrite entire 256KB block when making small 
modifications

• SSD controller can assign mappings to spread workload across pages
– Wear Levelling

• What to do with old versions of pages?
– Garbage Collection in background
– Erase blocks with old pages, add to free list
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Some “Current” (large) 3.5in SSDs
• Seagate Exos SSD: 15.36TB (2017)

– Dual 12Gb/s interface
– Sequential reads: 860MB/s
– Sequential writes: 920MB/s
– Random Reads (IOPS): 102K
– Random Writes (IOPS): 15K
– Price (Amazon): $5495 ($0.36/GB)

• Nimbus SSD: 100TB (2019)
– Dual port: 12Gb/s interface 
– Sequential reads/writes: 500MB/s
– Random Read Ops (IOPS): 100K
– Unlimited writes for 5 years!
– Price: ~ $40K? ($0.4/GB)

» However, 50TB drive costs $12500 ($0.25/GB)
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HDD vs. SSD Comparison

SSD prices drop faster than HDD
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SSD Summary

• Pros (vs. hard disk drives):
– Low latency, high throughput (eliminate seek/rotational delay)
– No moving parts: 

» Very light weight, low power, silent, very shock insensitive
– Read at memory speeds (limited by controller and I/O bus)

• Cons
– Small storage (0.1-0.5x disk), expensive (3-20x disk)

» Hybrid alternative: combine small SSD with large HDD
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SSD Summary

• Pros (vs. hard disk drives):
– Low latency, high throughput (eliminate seek/rotational delay)
– No moving parts: 

» Very light weight, low power, silent, very shock insensitive
– Read at memory speeds (limited by controller and I/O bus)

• Cons
– Small storage (0.1-0.5x disk), expensive (3-20x disk)

» Hybrid alternative: combine small SSD with large HDD
– Asymmetric block write performance: read pg/erase/write pg

» Controller garbage collection (GC) algorithms have major effect on performance
– Limited drive lifetime 

» 1-10K writes/page for multi-level cell (MLC) NAND
» Avg failure rate is 6 years, life expectancy is 9–11 years

• These are changing rapidly!

No longer true!
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Conclusion (1/2)
• I/O Devices Types:

– Many different speeds (0.1 bytes/sec to GBytes/sec)
– Different Access Patterns:

» Block Devices, Character Devices, Network Devices
– Different Access Timing:

» Blocking, Non-blocking, Asynchronous
• I/O Controllers: Hardware that controls actual device

– Processor Accesses through I/O instructions, load/store to special physical memory
• Notification mechanisms

– Interrupts
– Polling: Report results through status register that processor looks at periodically 

• Device drivers interface to I/O devices
– Provide clean Read/Write interface to OS above
– Manipulate devices through PIO, DMA & interrupt handling
– Three types: block, character, and network
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Conclusion (2/2)

• Disk Performance: 
– Queuing time + Controller + Seek + Rotational + Transfer
– Rotational latency: on average ½ rotation
– Transfer time: spec of disk depends on rotation speed and bit storage density

• Devices have complex interaction and performance characteristics
– Response time (Latency) = Queue + Overhead + Transfer

» Effective BW = BW * T/(S+T)
– HDD: Queuing time + controller + seek + rotation + transfer
– SSD: Queuing time + controller + transfer (erasure & wear)

• Systems (e.g., file system) designed to optimize performance and reliability
– Relative to performance characteristics of underlying device


